REPUBLIC OF NAMIBIA

DIRECTORATE OF ENVIRONMENTAL AFFAIRS MINISTRY OF ENVIRONMENT AND TOURISM

NATURAL RESOURCE MAPPING OF THE KAVANGO REGION

SPECIALIST REPORT 2 SOILS OF THE KAVANGO REGION

E. B. Simmonds

SOILS OF KAVANGO REGION

A Report for the Kavango Environmental Profile Programme

Compiled by E. B. Simmonds
January 2000
For:
P. O. BOX 20690

WINDHOEK
TEL.: +264 (0) 61220400
FAX: +264 (0) 61230934

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Project Background 1
1.2 Aims and Objectives I
2 PHYSICAL ENVIRONMENT 2
2.1 Climate 2
2.2 Agroecological Zones 3
2.3 GEOLOGY AND GEOMORPHOLOGY 3
2.3.I Topography and Regional Drainage Characteristics 3
2.3.2 Landforms Summary and Geological Context. 4
3 APPROACH AND METH்ODOLOGY 7
3.1 Soil Survey Methodology 7
3.1.1 Specific Requirements for Soils 7
3.1.2 Modifications to Methodology. 8
3.1.3 Soil Survey, Classification and Mapping 11
3.2 Data Analysis 11
3.2.1 Sample Analysis. 11
3.2.2 Measurement of Soil Conditions. 12
3.3 Discussion of Soil Properties and Methiods used for their Estimation 15
3.3.1 Cation Exchange Capacity (CEC) 15
3.3.1.1 Interpretation of CEC values with respect to potential fertility 16
3.3.2 Individual Exchangeable Cations. 18
3.3.3 Micronutrients. 19
3.3.3.1 Interpretation of Low Micronutrient Concentrations 20
3.3.4 Anions. 21
3.3.5 Organic Matter 22
3.3.6 Free Carbonates. 23
3.3.7 Gypsum 23
3.3.8 Sulphates 24
3.3.9 Erodibility and Erosion Hazard Ratings. 24
3.3.10 Sodium Adsorption Ratio (SAR). 25
4 SOIL CLASSIFICATION 26
4.1 Diagnostic Horizons 27
4.1.1 Horizon Definitions 27
4.1.1.1 Transitional Horizons 28
4.1.1.2 Letter Sullixes 28
4.1.1.3 Qualification by Charcoal Accumulation 29
4.1.1.4 Figure Suffixes 29
4.1.1.5 Figure Prefixes 30
4.1.1.5.1 Ochric A horizon 30
4.1.1.5.2 Argillic B horizon 30
4.1.1.5.3 Nalric B horizon 30
4.1.1.5.4 Cambic B horizon 30
4.1.1.5.5 Calcic horizon 31
4.1.1.5.6 Albic E horizon 31
4.2 Diagnostic Properties 32
4.2.1 Abrupt Textural Change 32
4.2.2 Albic Material 32
4.2.3 Calcareous 32
4.2.4 Calcaric 32
4.2.5 Ferralic Properties 32
4.2.6 Fluvic Properties. 33
4.2.7 Hydromorphic properties 33
4.2.8 Interfingering 34
4.2.9 Slickensides 34
4.2.10 Sofl Powdery Lime 34
4.2.11 Takyric Features. 35
4.2.12 Tonguing 35
4.2.13 Aridic Moisture Regime 35
4.3 Soll Phases 37
4.3.1 Phreatic Phase 37
4.3.2 Yermic Phase. 37
4.3.3 Fragipan Phase 38
4.3.4 Duripan Phase 39
4.3.5 Rudic Phase 39
4.3.6 Petrocalcic Phase 40
4.4 Classification Summary 40
4.5 EXPLANATORY Legend to the Reconnaissance SOIL Map of Kavango Region 41
4.5.1 Soils Conditioned by Parent Material $+1$
4.5.2 Soils Conditioned by Limited Leaching 42
4.5.3 Soils Conditioned by Relief 45
4.5.4 Soils Conditioned by Human Influence 46
4.6 Soll Unit Subdivisions 47
4.6.1 Fluvisols (FL) 47
4.6.2 Arenosols (AR) 47
4.6.3 Calcisols (CL) 48
4.6.4 Solonetz (SN) 49
4.6.5 Anthrosols (AT) 50
5 LAND SYSTEMS 51
5.1 Mapping Units 51
5.2 Explanatory Legend to the reconnaissance land systems map of Kavango region 52
5.2.1 Land Region I: Western Stabilised Dunes 52
5.2.2 Land Region 2: SW Pediplain 53
5.2.3 Land Region 3: Northern Sandplain 53
5.2.4 Land Region 4: Omatako Drainage 55
5.2.5 Land Region 5: Ephemeral Catchment Divide 56
5.2.6 Land Region 6: Southern/Eastern Panveld 56
5.2.7 Land Region 7: Eastern-flowing Paleo Drainage 57
6 FACTORS CONTROLLING SOIL DEVELOPMENT 59
6.1 CLIMATE, PARENT MATERIAL AND GEOMORPHOLOGICAL PROCESSES 59
6.1.1 A residual landscape 59
6.2 SOIL COLOUR, GENETIC INHERITANCE AND CATENARY SEQUENCES 60
6.2.1 Soil colours and genetic inheritance 60
6.2.2 Soil colour change, subsurface drainage and catenary sequences 60
6.3 The VERTICAL MOVEMENTS OF SALTS 61
6.3.1 Origin of bases in soils of Kavango region 62
6.3.2 The end-products of calcification 64
6.4 SUB-SURFACE DRAINAGE AND SOIL DEVELOPMENT 64
7 REFERENCES 66
TABLES
Table 1: Total rainfall per season (July-June) measured at Rundu Airport and matched to project activities 2
Table 2: Growing Period Zones and Areas of Influence in Kavango 3
Table 3: Summary of Measurements for Soil Classification and Land Evaluation 13
Table 4: Standard Critical Deficiency Levels of Soil Micronutrients 20
Table 5: Formative elements used for naming major soil groups 26
Table 6: Formative elements used for naming soil units and sub-units 27
Table 7: Soil Units of Kavango 47

APPENDICIES

APPENDIX 1: Terms of Reference and Excerpts from Proposal
APPENDIX 2: Agroecological Zones
APPENDIX 3: Laboratory Procedures
APPENDIX 4: Sample Site Location Data
APPENDIX 5: Soil Chemistry and Physical Properties
APPENDIX 6: Soil Classification and Environmental Data
APPENDIX 7: Soils Analysis: Test Site Summaries

1 INTRODUCTION

1.1 PROJECT BACKGROUND

The Directorate of Environmental Affairs, Ministry of Environment and Tourism requested the mapping of natural resources of the Kavango Region as a first step in the compilation of baseline information for an Environmental Profile of the region. The profile aims to document the major environmental processes and resources in the region, as well as the major demands placed on those resources. The final product aims at providing one or more publications which document major environmental issues and processes as well as a set of environmental data which can be used for further analysis and monitoring.

1.2 AIMS AND OBJECTIVES

This study was aimed at the generation of a set of thematic maps comprising polygons showing the distribution of the most prominent and important soil and vegetation units. Polygons were to be linked to tabulations of attribute data in formats that permit interrogation and analysis for both single and multiple themes. Resource values of the different units were to be highlighted.

The detailed aims and objectives of the study are given in the Project Proposal included as Appendix I to this report.

This document reports on the major soil units and land systems of Kavango Region. Attribute data characterising soil condition and land unit features are summarised from representative test pits and field site information. These are submitted in Excel spreadsheet format and linked by unique identification codes. Four projects compiled in ArcView (3.1) GIS format, present mapped information. Map 1 locates the field survey route and sites from which attribute data are drawn, Map 2 describes the land systems of the region and Map 3 delineates the major soil units. Map 4, depicting the vegetation of Kavango, is linked to Maps I, 2 and 3 and presented in conjunction with the vegetation report.

2 PHYSICAL ENVIRONMENT

2.1 CLIMATE

Located between $17^{\circ} 20^{\prime}-19^{\circ} 12^{\prime} \mathrm{S}$ and $18^{\circ}-21^{\circ} \mathrm{E}$, the climate of the Kavango Region is semi-arid with an average annual rainfall total of $400-600 \mathrm{~mm}$ (van der Merwe 1983). The 500 mm rainfall isohyet cuts diagonally through the middle of the region in a broad loop from south-west to north-east, with lower mean annual totals recorded for the south. The region receives summer rainfall from December to April, and decades of regional climatic data record no rainfall between May and October.

The mean annual temperature of the regional weather station at Rundu is $22.2^{\circ} \mathrm{C}$. Mean summer and winter temperatures differ by more than $5^{\circ} \mathrm{C}$ with a rnean summer temperature (December to February) of $24.8^{\circ} \mathrm{C}$ and a mean winter temperature (June to August) of $17.1^{\circ} \mathrm{C}$ (P. Hutchinson, pers.comm., May 1999). Diurnal temperature ranges are highest in winter when frosts can occur. The frequency of high winds increases significantly from August onwards, reaching a maximum in November just prior to the onset of the rainy season. During the same period wind speeds also increase.

Rainfall conditions during the past three seasons were extremely variable with an exceptionally good year in 1997 (Table 1).

Table 1: Total rainfall per season (July-June) measured at Rundu Airport and matched to project activities

Season.	hainfall (mm)	Activity
1996/97	791.5	Satellite image data capture
1997/98	254.5	-
1998/99	485.6	Field reconnaissance survey

2.2 AGROECOLOGICAL ZONES

Table 2: Growing Period Zones and Areas of Influence in Kavango

Gominant,	Associated Zones	Sength of Growing Period	Areas of Influence in Kavango
GP1	GP2	Avarat ${ }^{\prime}$	Extreme north along the terraces bordering the Okavango river
GP2	GP3/GP1	Average growing period 91-120 days; dependable growing period 80% of average	North-west, west, north-central and north-east
GP3	GP4/GP2	Average growing period 61-90 days; dependable growing period 60\% of average	South-west, central, south-central, east and south-east
		Average growing period 61-90 days; very short dependable growing period	

Explanatory notes supplied by FAO (1991a) define arid climatic zones by an LPG (length of growing period) of less than 75 days, and seasonally dry tropical areas by a dry season lasting between 90 and 285 days. This characterisation places Kavango region in a climatic transition zone, experiencing both arid and semi-arid conditions as reflected by average and dependable lengths of growing period.

Similarly, from the information used to derive the growing periods and their spatial extent (Table 2 and Appendix II), it is evident that a north-east/south-west climatic gradient divides Kavango into two sub-regions in terms of moisture regimes, and therefore of potential moisture availability. Much of the region can expect an average growing period of 61-90 days, although the probability of this ranges from less than 60% in the south-west to over 80% in the north-east. A thin strip of the region to the extreme north experiences an average growing period of more than 120 days in most years. The variability of climatic parameters, rainfall in particular, therefore increases along this gradient in a south-westerly direction.

2.3 GEOLOGY AND GEOMORPHOLOGY

2.3.1 Topography and Regional Drainage Characteristics

The perennial Okavango River flows eastwards along the northern border of Namibia. Situated south of Angola where the river rises, and west of the Botswana where it empties into the Okavango Delta, the administrative boundary of Kavango Region lies entirely within the south-western reaches of the Okavango River basin.

Topographically, Kavango is flat to gently undulating with maximum altitude differences of approximately 200 m across this vast region. The steepest relief gradients are encountered towards the Kavango River and where dry rivers (omiramba) have incised the sand mantle. Regional elevations gradually descend from 1200 m.a.s.l in the extreme south and south-west to $1150 \mathrm{~m} . a . \mathrm{s} . l$ west of Rundu, and to 1000 m at Andara on the Caprivi West boundary. The south-north regional gradient is thus of the order of $0.8 \mathrm{~m} / \mathrm{km}(0.08 \%)$.

Gentle slope factors combined with the deep, highly permeable soils of the sand plains encourage very little surface runoff, and with the exception of rare high intensity rainfall events, soil absorption capacities are rarely exceeded. However, where long slopes, unstable soils and intensive forms of land use are combined, aeolian and sheet-wash erosion surfaces are evident.

Deep horizontal drainage occurs after heavy rains in the catchment areas of welldefined omiramba, although surface flow is ephemeral and generally truncated by sand drift and alluvial deposits. Surface waters collecting at the confluences of deep omiramba with the eastward draining Okavango River are largely the result of lateral flooding by the Okavango River.

In the extreme south and south-west of the region no omiramba are developed. Drainage mainly occurs via shallow depressions into numerous pans where impeded drainage conditions are found in shallow to moderately deep soils overlying and adjacent to calcrete outcrops. Calcrete crusts and hardpans caused by alternating dry and wet cycles have encouraged seasonal ponding in many localities and appear near the surface where sand cover is thin or lacking.

2.3.2 Landforms Summary and Geological Context

Kavango region can be described as a large aggradational land surface characterised by an increasing differentiation of aeolian sands. True Kalahari sands were deposited on the margins of the Kalahari Basin during the Tertiary desert-forming era (1.8 to 66 million years BP), and younger red sands were deposited and later redistributed from the Late Holocene period to the present. During the latter period, wetter conditions prevailed from 49,000 to 34,000 years BP. From 34,000 to 27,000 years BP a period of aridity favoured the precipitation of calcrete deposits, after which a short return to wetter conditions prevailed (27,000 to 25,000 years $B P$). In the most recent geological time frame, from $25,000 \mathrm{BP}$ to present, a distinct return to aridity has been documented (Heine \& Geyh, 1984).

The land surfaces of Kavango are thus characterised by extensive areas of aeolian sand-drift and dune formations deposited on calcrete erosion surfaces, the calcretes having been formed by quasi-pedogenic processes associated with receding water surfaces under increasingly arid conditions.

Sand drift plains cover extensive areas of northern, north-eastern and central Kavango. The depth of sand mantle increases generally to the north and east, as does the extent to which those sands have been worked and reworked by wind. The plains slope gradually to the north-east and east, and are incised by a number of well-defined omiramba. Over large tracts of the northern sand plains surface drainage features are imperceptible or non-existent.

A broad, indistinct sandy plateau in central Kavango marks the water divide between eastern-draining omiramba from the largest north-draining Omatako omuramba. This area is pitted with shallow depressions and defined by average slope gradients of less than 0.07%.

Fault systems, produced by tectonic activity commencing during the early Cretaceous period, exert a strong influence on the directions of omiramba in Kavango. Omiramba were initially incised along fault-weakened zones during a pluvial period post-dating the formation of calcrete layers at the top of the Kalahari Sequence. During subsequent periods of aridity intense aeolian processes have deposited dune sands on the floors of the omiramba valleys. Omiramba valleys are thus a combination of recent fluvial deposits, sandy side slopes of aeolian origin, and steep calcrete faces.

In the case of the omiramba draining eastwards towards Botswana, incision depths into underlying calcretes increase to the east, with the result that their valleys tend to narrow along their length. It is apparent that recent aeolian activity in addition to fluvial processes have influenced the form of these valleys and their environs. Dunes and drifts of wind blown-sand commonly fringe the eastern omiramba, being more pronounced on southern banks.

Basement formations comprising basalt and quartzite underlie some localised areas in the south-east corner of Kavango, but do not surface in the region. These are capped by a discontinuous layer of calcrete deposits and a thin surface cover of aeolian sand. Denudation process have subsequently planed this area down to form a deflation zone.

Western Kavango is characterised by an extensive system of seif dunes, orientated in an east-west direction and deposited on calcrete surfaces during the Late Holocene. Now stabilised by vegetation, the dune system is clearly differentiated by dune amplitude and the depth of sand mantle to underlying calcrete. The widely spaced northern dunes are associated with a deep sand mantle whereas the more narrowly spaced southern dunes are associated with a shallower sand mantle. The latter are characterised by the common occurrence of pans in dune streets, where underlying calcretes are exposed or thinly covered by recent aeolian and colluvial deposits.

The western dune system gradually loses its distinctive morphology towards the east where its fringes are characterised by feathery complexes of flattened dune outliers with in-filled dune streets, and sand-drifts characteristic of the northern sand plains.

The south-west corner of Kavango intersects the northern tip of a broad flat pediplain where calcretes are exposed or lie near the surface of shallow aeolian and predominantly red sands. The pediplain peters out to the north and east where the calcretes gradually disappear under sand drift and seif dunes.

The perennial eastern-flowing Okavango River is characterised by scroll and point bars, meanders, ox-bow lakes and other erosional and depositional features encompassing a distinct sequence of riverine land units. The floodplain area, two to six kilometres wide, can be divided into two zones. A broad area adjacent to the present course of the river actively receives fresh sediments during regular seasonal periods of inundation. As water levels drop, ponds and lakes remain. Behind this area can be found a drier zone where the floodplain is no longer seasonally indundated. A terrace system differentially covered by alluvial and aeolian deposits is situated approximately six kilometres behind the floodplain.

3 APPROACH AND METHODOLOGY

3.1 SOIL SURVEY METHODOLOGY

3.1.1 Specific Requirements for Soils

The methodology adopted for the soils investigation was designed to fulfill the following end-product requirements:

1. It will identify the most prominent and important soil units in the Region;
2. These units will be delineated and mapped in one or more layers of polygons;
3. Fieldwork will be required to collect sample data for purposes of interpretation and documentation of units;
4. Detailed sets of quantitative descriptive or attribute data will be compiled and linked to the polygon layers in formats which will allow for interrogation and analysis of the data, both as a separate data set and in combination with other sets of data for the region;
5. The attribute data will emphasise the resource values of the units;
6. All data products to be provided by this project will be compatible in ERMAPPER and ArcView data formats;
7. All digital mapped data will conform to a co-ordinate system and projection to be specified by the Environmental Profiles Project;
8. A detailed report on the vegetation and soils of the region will be submitted along with digital information.

With respect to the soils investigation, a number of comments made in the proposal were discussed and the following points were clarified:

- The principal focus of the soils mapping would be to map and provide quantitative descriptions and resource values for identified soil units.
- The identification, mapping and description of landform units were omitted from the ToR although particularly within the Kavango Region, a land systems approach based on identification of landforms would provide diagnostic information essential to the identification of soil units and to the delineation of boundaries.
- Sample data required for the interpretation and documentation of units referred to the collection of soil samples so that detailed sets of quantitative descriptive or attribute data would be compiled.
- With respect to the sampling and analysis of soils, the determination of field sampling methodology and laboratory analytical methods both depend upon the type of classification system required. The ToR did not specify a classification system. The FAO/UNESCO/ISRIC classification system was agreed upon, and the standard requirements of the FAO Revised Legend (1988, 1990) were complied with.
- Laboratory analysis of soil samples were reqúired for the identification and classification of soils at the soil unit level.
- The objectives of a sqils investigation designed to emphasize resource values were analogous to those of a soils investigation designed to feed into a land evaluation study. in order to emphasise the resource values of the soil units a land evaluation approach was used so that resource values could later be used for further analysis using FAO procedural guidelines for land evaluation (FAO, 1993).

3.1.2 Modifications to Methodology

Difficulties with satellite data interpretation were encountered at an early stage of the project. To preserve the integrity of the original approach significant modifications to the methodology was warranted.

In terms of the soils investigation, the original procedural design was proposed as follows:
"In view of the lack of appropriate soils information available in FAO format, the mapping of soil resources would based in the first instance on an unsupervised classification of remotely sensed data to provide soil polygons. A reconnaissance soil survey would then be carried out over the region to transect the polygon boundaries using standard FAO guidelines for description. These samples would be analysed to provide representative profiles for classification and the signatures of these profiles would be employed in a digital image processing exercise for spatial extrapolation purposes. A further short field check should be carried out to verify boundaries".

Preliminary band combination trials were made on the satellite data to cross check compliancy with known landform and soil boundaries mapped for previous studies of the region (FAO, 1984; Schneider, 1987; Simmonds, 1997 \& 1998). Band combination 354 was found to be appropriate as it appeared to highlight gross landform boundaries as well as the presence of pans. An unsupervised classification
was then performed on a combination of 6 bands and produced as a map of 36 land cover classes in digital and hardcopy formats at a scale of 1:125 000.

Field checks commenced in the north-west of Kavango where landform, soils and vegetation variability were expected to produce the clearest distinctions in land resource signatures, and continued south-eastwards to areas where landscape morphology became less distinct. The field checking procedure, however, revealed no relationship at all between the signatures and landforms, soils or vegetation. In some areas one land cover class could account for up to eight land resource combinations, and in others up to three classes would account for no observed differences. Field checking of the 6-band false colour composite data (Landsat TM) also picked up woefully inadequate boundary definitions.

It was discovered, however, that the frequency and spatial extent of fire sequences played a key role in determining the quality of land cover features. With respect to the effects of fire on soils, field evidence strongly indicated that charcoal and ash cover altered surface horizon colours to the point where significantly different colours appeared to be the same. On the basis of surface colour, therefore, boundaries derived from unsupervised classification of satellite data would highlight fire boundaries rather than soil changes.

The soil reconnaissance survey was abandoned after 5 days and the project methodology re-designed to accommodate the difficulties outlined above.

To re-establish the mapping framework, a land regions map was compiled manually at a scale of 1:250 000 from a 1:50 000 topographic information database obtained from the Surveyor General, and digitised. Land regions were split into component land systems, the defining features of which were systematically noted. A high proportion of both defining features and boundaries were based on landform as represented by differences in surface topography. This approach was used in order to identify, and as far as possible to define, land systems in terms of landforms in the interests of having a uniform basis to the mapping.

Information on possible underlying environmental parameters determining vegetation and soil resources was collated and prepared in a GIS-compatible format to enable overlays of different parameters. The reviewed information included:

- False colour satellite images of the Landsat TM images
- Geology (Geological Survey, 1980)
- Land use units (De Sousa Correira \& Bredenkamp, 1987)
- FAO land types (FAO, 1984)
- Veld types (Page, 1980)
- Agroecological zones (De Pauw, 1996)
- Soil Associations classified by the South African Taxonomic System (Loxton et al, 1971; McVicar et a/, 1977; Schneider, 1987)
- Topographic maps (Surveyer General)
- Water rest level contours (Namibia Groundwater Consultants, 1991).

A field survey route was established to traverse the boundaries of all land systems and included a soil sampling intensity designed to cover soil reconnaissance survey requirements for classification and land systems analysis.

The main field survey was carried out alongside the soils and vegetation sampling programmes, during the period 24 April - 5 May 1999. The survey route was recorded by GPS. The land regions/systems map was verified by field checks taken at 64 sample sites. FAO guidelines were used in the field to confirm land units. The following individual elements were measured and described: altitude, slope angle and aspect, profile curvatures, land system and facet, micro-topography, surface condition and drainage, and erosion-deposition status. These were incorporated into a preliminary polygon database to identify landform elements, and further combined into land systems and regional patterns. These were used in the first instance to derive base maps for soils and vegetation.

A two-day flight survey was undertaken from 25-26 August 1999 to cross-check boundaries and extent of the identified land systems. With the help of an additional 103 geo-referenced waypoints and notes made during the flight, the draft map was reviewed, corrected and finalised accordingly. The final map comprised a combination of 7 land regions, largely determined by drainage patterns, and 19 land systems within these broader land regions. The seven land regions were defined as:

1. Western Stabilised Dunes
2. South-western Karst Pediplain
3. Northern Sandplain
4. Omatako Drainage
5. Ephemeral Catchment Divide
6. Eastern/Southern Panveld
7. Eastern-flowing Paleo Drainage

3.1.3 Soil Survey, Classification and Mapping

The soil survey was designed to acquire field data pertaining to the character and distribution of soil and land unit parameters represented in the project area. The survey was carried out at reconnaissance level in terms of observation density, and adopted a catenary transect approach to identify relationships between landform, slope position and soils. Thirty-eight test pits and 25 auger holes were used to describe profiles and sample the major soil associations within land systems identified on the map. This was supplemented by a further 42 auger holes drilled to verify soil boundaries.
Profile pits were dug at least twice in each significant land unit identified, although accessibility problems precluded the sampling of one land region.

All observations were located GPS. Soil horizons were described in accordance with the FAO Guidelines for Soil Description (1977), and colours were determined on moist samples using the standard Munsell colour chart.

Soil characteristics were determined on representative samples of each significant horizon in all soil pits. Soil property determinations were made by field and laboratory analysis.

Physical, chemical, descriptive and analytical soil survey results were uniquely coded by sample and site identifiers and entered into Excel worksheets. Worksheet information was linked to land system polygon identification codes.

Soils were classified to FAO group, unit and phase levels, and their boundaries drawn on a topographic base map at $1: 250000$ scale. Boundaries were delineated by interpretation of recent (1996) aerial photographs at 1: 80000 scale, by reference to adjoining soils maps prepared for NW Ngamiland, Botswana (Jamagne, 1990), NE Otjozondjupa Region (DRFN, 1999), Cubango Province, Angola (Minader, 1996), and commercial farms bordering south-central Kavango (Wierenga, 1999), and by incorporating the results of previous field-based studies on landform/soil associations in the region (Simmonds; 1997, 1998).

3.2 DATA ANALYSIS

3.2.1 Sample Analysis

All analytical procedures followed standard reference methodologies. Tests used for the determination of soil properties complied with the requirements of the revised FAO system of soil classification (FAO/UNESCO/ISRIC; 1988) and land evaluation (FAO; 1991). Laboratory analyses were carried out by Analytical Laboratory

Services (Windhoek) who performed method validation by direct reference and sample exchange through the Agri Laboratories Association of Southern Africa (ALASA). Details of analytical procedures are given in Appendix III.

3.2.2 Measurement of Soil Conditions

A summary of the measurements made for classification and use in land evaluation is given in Table 3 overleaf. Data and calculations are supplied in spreadsheet format (Excel 97) and presented in Appendix IV.

Although not specifically required for classification purposes, dry bulk density and total porosity measurements were made to estimate the degree of soil compaction observed in test pit profiles in order to determine effective depth for land evaluation.

K:CEC (clay)	Estimation of aggregate stability
	Sum test pits: 38
Sample size:75	Auger sample size: 25

Clay fraction cation exchange capacities (CEC clay) were determined in addition to total soil CEC to highlight differences in base concentrations of all soils for which a low organic matter content was indicated. Total charcoal contents were estimated independently of other forms of carbon.

Soil properties and the methods used for their estimation are discussed below.

3.3 DISCUSSION OF SOIL PROPERTIES AND METHODS USED FOR THEIR ESTIMATION

3.3.1 Cation Exchange Capacity (CEC)

Cation exchange capacity (CEC) measurements are made as a standard part of the overall assessment of the potential fertility of a soil. For the majority of soils CEC measurements give values that, at a given pH , are related to the sum of cations held be the permanent negative charge on the clay particles and the cations held by the organic matter.

Cation exchange capacity is a property of the colloidal fraction of the soil, derived mainly from the clay and organic matter fractions, although the silt-sized particles contribute significantly. Hence, assessment of CEC values take the clay content, mineralogy and organic matter content of the sample into account.

The FAO (1979) quote CEC values of $8-10 \mathrm{me} / 100 \mathrm{~g}$ of soil as indicative minimum values in the top 30 cm of soil for satisfactory production under irrigation, provided that other factors are favourable. Lower values than these should be highlighted in land suitability classifications and in the assessment of land potential. CEC values < $4 \mathrm{me} / 100 \mathrm{~g}$ (measured at the pH of the soil) indicate a degree of infertility normally unsuitable for agriculture.

For soils low in organic matter, Landon (1984; p121) advises that CEC values "can usefully be expressed as a proportion of the clay fraction" where:

$$
\mathrm{CEC}(\mathrm{me} / 100 \mathrm{~g} \text { clay })=\left[\text { CEC } \left(\mathrm{me} / 100 \mathrm{~g} \text { soil } / \% \text { clay }{ }^{*} 100\right.\right.
$$

CEC (clay) values derived from the equation above can be used as a rough guide to the clay mineralogy of a sample, although no suggestions on how these values could indicate potential fertility are offered by Landon.

CEC (clay) values, by virtue of the equation used above, will result in higher CEC values. These values have been widely used to support CEC (total) values in the
classification of soil units (FAO, 1991; Siderius, 1992; UNESCO, 1986). Presumably the rationale is that whereas they cannot be used alone to substitute total CEC values as indicators of soil fertility, they can provide an indication of the potential productivity of the clay fraction of soils.

Critical limits have not yet been established for CEC (clay) values as a stand-alone soil property. Landon (op sit) and FAO (op sit) apply critical limits normally set for CEC (total) values although the FAO also provide gúidelines for further interpretation of CEC (clay) values. In comparison, the limits for CEC (total) and CEC (clay) set by Siderius (op sit) for land evaluation coincide at the lower end of the rating scale although they differ by $u p$ to 40% at the higher end of the scale where the limits set for CEC(clay) are lower.

Despite a certain lack of confidence attached to the setting of appropriate critical levels, the CEC (clay) values derived for the soils of Kavango nevertheless serve to highlight the differences in total cation concentrations found in their clay fractions. These sandy and loamy soils contain extremely low levels of organic matter, little clay, and are otherwise classified as "exhibiting low to very low inherent fertility" when measured against standard CEC (total) critical reference values.

For the purpose of this classification both the standard FAO reference limits for CEC (total) and their recommended limits for CEC (clay) are adhered to. No tests of significant difference are applied to the CEC (clay) results; they are simply presented and used where recommended by FAO guidelines.

For the determination of soil properties requiring CEC as an integral part of their equations, both CEC (total) and CEC (clay) values are used in separate calculations (Appendix IV). However, as no method of validation could be found for the calculations based on CEC (clay) values, no attempt was made to use them either for classification purposes or to support judgement on soil conditions except where specifically recommended.

3.3.1.1 Interpretation of CEC values with respect to potential fertility

With respect to soil fertility, support for the interpretation of total CEC values rested on evidence deduced from other test results. The low values of total CEC determined for the soils of the region in fact suggest a significant and almost universal level of inherent infertility. In a broad sense such indications of infertility are supported by, and can be attributed to, genetically low clay and silt fractions combined with the extremely low percentages of organic matter measured in all horizons of all test pit profiles. These soils are the products of reworked aeolian
parent material, intrinsically lacking in colloidal clay. If CEC is a property of the colloidal fraction of a soil, then CEC values can never be high in soils with low colloidal content.

Although not quantitatively expressed, it is clear that the CEC (clay) values reflect differences in relative soil fertility status more definatively than do the CEC (total) values. The soils of this region are developing in a semi-arid climatic regime, over a relief loosely described as flat to undulating, and' on parent material consisting predominantly of freely draining sands. Despite the genetically low clay and silt fractions, immature horizon development and dearth of soil organic matter, high CEC (clay) values are nevertheless found. Exchangeable salts are actively moving into and out of, and up and down the soil profiles, and whether these salts arrive in solution after storm events or as upwardly mobile evaporative precipitates characteristic of secondary enrichment, differences in their levels of concentration can be measured by CEC (clay) values.

With only 7 exceptions in a group of 75 samples, the CEC (total) values indicated low to very low fertility ratings ($<5 \mathrm{me} / 100 \mathrm{~g}$). However, among the same group of samples, significant differences in CEC (clay) values are found, with a range from 1.20 to $518.38 \mathrm{me} / 100 \mathrm{~g}$. These differences can largely be attributed to the following exogenic influences:

- slope position in catenary sequences;
- local depressions on otherwise flat plains
- deposits of alluvial clay and silts along ephemeral river floors;
- depth of underlying calcrete, silcrete and sandstone deposits;
- presence of shallow groundwater levels
- effects of fire
- dry season wind speeds
- rainfall intensity of storm events and rainfall distribution pattern

It is evident that exogenic factors exert a substantial local influence on the soils of Kavango, producing conditions favouring the transport and re-deposition of windborne and alluvial clays and silts, the accumulation of exchangeable salts, and the transformation of genetically infertile soil bodies into pockets of high potential productivity. The differences in CEC (clay) values are sufficient to warrant further investigation into the importance of using CEC (clay) as a diagnostic property for the classification and evaluation of soils of the region.

3.3.2 Individual Exchangeable Cations

The levels of exchangeable cations are of more immediate value than the CEC, because they not only indicate existing nutrient status but can also be used to assess balances amongst cations. This is of importance because many effects (e.g. on soil structure and nutrient uptake by plants) are influenced by the relative concentrations of cations as well as by their absolute levels.

Concentrations of exchangeable bases (calcium, magnesium, sodium and potassium) and micronutrients (copper, iron, zinc and manganese) were assessed. Levels of aluminium were not individually assessed because the measured $\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O}\right)$ values of 93% of the soils were higher than 5.5 - the level above which aluminium is not present in available form.

For the assessment of complex soil properties such as 'nutrient status' or 'fertility', the utility of exchangeable base measurements lies more in the proportional representation of each base in relation to other bases and to total CEC, than in the stand-alone interpretation of individual base values.

Indicies of plant-available calcium are of little value, since the availability varies enormously from soil to soil and is highly dependent on a number of factors. Normally Ca deficiency as a plant nutrient occurs only in soils of low CEC at pH values of 5.5 or less, although high K values may inhibit plant uptake of Ca in soils having a more neutral reaction. Ca may also be deficient at high pH levels when there is excessive Na content. This can occur when the measured available Ca levels are well in excess of those considered adequate for less extreme soils. (Landon, 1984).

A deficiency threshold of $0.2 \mathrm{me} / 100 \mathrm{~g}$ is often given for magnesium levels in tropical soils, although as with Ca , cation relationships affect plant availability. Increasing $\mathrm{Ca}: \mathrm{Mg}$ ratios above $5: 1$ reduces the Mg availability to plants, although when Mg is present in much larger amounts than Ca , the latter becomes less available and the soil structure weaker. Similarly, where $\mathrm{K}: \mathrm{Mg}$ ratios are greater than 2:1 plant uptake of the latter becomes inhibited. In neither event is it possible to give precise ratios within which fertility is assured and beyond which deficiency symptoms will occur.

Critical values of available potassium are most useful when given as a percent of the total CEC, known as the exchangeable potassium percentage (EPP). The minimum relative level quoted by Jones and Wild (1975; in Landon, 1984) is at least 2% of the sum of all exchangeable bases.

Sodium is not an essential plant nutrient and its absence, or presence in very small quantities, is therefore not usually detrimental to plant nutrition. However, high concentrations of exchangeable sodium salts, particularly in proportion to the other cations present (as in alkali or sodic soils) produces soil structural breakdown which reduces permeability, aeration, infiltration rates and soil workability.

Saline and alkali (sodic) soils are classified mainly on the basis of their soluble salt concentration (electrical conductivity) and exchangeable sodium content.

As with exchangeable potassium, the exchangeable sodium in a soil is assessed as a percent of the total CEC, known as the exchangeable sodium percentage (ESP), where:

$$
\mathrm{ESP}=[\text { Exchangeable } \mathrm{Na} / \mathrm{CEC}] * 100
$$

An ESP of 15 is regarded as the critical limit between sodic and non-sodic soils, with sodicity being indicated at values greater than 15 . This is an arbitrary figure since the properties of soils often exhibit no sharp change as the content of exchangeable Na increases. In some soils an exchangeable Na contentration of 2 to $3 \mathrm{me} / 100 \mathrm{~g}$ is used as a more suitable criterion for distinguishing sodic samples, although the particular circumstances under which this limit is best applied have not been defined (Landon, 1984). In general, soils with exchangeable Na greater than 1 $\mathrm{me} / 100 \mathrm{~g}$ should be regarded as potentially sodic.

For the classification of Kavango soils, both ESP values greater than 15 and values of exchangeable Na greater than $1 \mathrm{me} / 100 \mathrm{~g}$ were used to determine potential sodicity. This precautionary measure was taken to cross-check the values of CECdependent results against Na concentrations, which are independent of CEC.

In all cases where ESP was greater than 15, exchangeable Na values were also greater than $1 \mathrm{me} / 100 \mathrm{~g}$. In soils where ESP values were less than 15 but higher than 14, exchangeable Na values were always less than $1 \mathrm{me} / 100 \mathrm{~g}$. These soils were considered to be marginally sodic, and classified accordingly.

3.3.3 Micronutrients

Four trace elements considered essential for plant growth - copper, iron, manganese and zinc were measured directly. For reference purposes, a small set of boron levels was obtained from the results of recent commercial surveys on representative soils
of the region. These were later discounted as the values were found to be affected by the presence of soil additives (pers. comm. Wierenga, 1999).

With the exception of boron, little information is available on trace element levels which may cause toxicity problems; much more attention has been paid to the critical levels below which deficiency symptoms may appear. Similarly, whilst it is accepted that the availability of trace elements to plants is affected by many soil and environmental factors, little information is available on the effect of environmental conditions whereas a wealth of investigations provide data on specific soil element interactions.

Standard methods for measuring trace elements are not widely agreed, with the most common methods designed to quantify water-soluble, cation-exchangeable, readily reducible or complexed forms. Values of critical deficiency are deperident upon the extracting agent although an acceptable summary of calibrations has been produced to standardize results (Cox and Kampreth in Landon, 1984).

Micronutrients from Kavango soils were extracted by 1 M ammonium acetate (Appendix III). Deficiency levels in soils using this method are given as:

Table 4: Standard Critical Deficiency Levels of Soil Micronutrients

Micronutient lavallabie form	Citical Defictency level (ppm)
Cu	0.2
Fe	2
Mn	20
Zn	0.3-2.3

The soils of Kavango were found to be deficient in iron, zinc and manganese. In the case of managnese the majority of values were significantly lower than the critical deficiency levels set for the extractant used. Precise values for copper could not be obtained because, with only one exception, the measurements of concentration fell below 0.5 ppm - the lowest accurate level of detection. At 0.2 ppm , the critical deficiency level for copper is reasonably close to this level, and therefore it was assumed that the concentration levels of this micronutrient, if not proven to be deficient, were marginally deficient at best.

3.3.3.1 Interpretation of Low Micronutrient Concentrations

The low micronutrient status of Kavango soils can be attributed to observed environmental and genetic conditions. Although many factors affect the concentrations of single micronutrients, not the least being the levels of other soil
elements, the conditions summarised in Table 5 below consistently appear to control and limit their overall availability as a nutrient resource. Factors interacting with copper, iron, manganese and zinc have been included to indicate the areas of co-dependency with other soil elements, although the nature and direction of these interactions have not been investigated further.

Table 5: Environmental and Genetic Conditions Limiting Micronutrient Availability

Available Micronutrien t.	Interacting factors	Kavango Solls: Conditions Limiting Micronutrient Availability
Cu	N, Fe, Mg; Mo, P, Zn	- Sandy texture of aeolian origin
Fe	$\begin{aligned} & \mathrm{pH}, \mathrm{~K}, \mathrm{Mn}, \mathrm{Ca}, \mathrm{Mg}, \\ & \mathrm{P}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Zn} \end{aligned}$	- Free CaCO^{3} - Extreme soil moisture conditions - Soil temperature extremes - Low organic matter - Parent material deficiency (genetic)
Mn	pH, OM, K, Mo, P, $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Zn}$	- Soil alkalinity - Dry climate conditions
Zn	pH, Cu, N, P, Ca	- Calcareous soils - Low organic matter - Restricted root zones (compaction)

3.3.4 Anions

Of all the major plant nutrients, phosphorous is the most versatile and complex in both its organic and inorganic forms. Inorganic phosphorous can occur as various compounds of Ca, Fe and Al , in solution, in surface films, in the solid state, or as exchangeable anions held by the positive charges on the edge of clay particles.

Exchange reactions involving adsorbed phosphate ions are slow compared with the reactions of individual cations, and therefore the rate of its release is also slow. Interactions of P with exchangeable cations tend to be dependent on soil pH . For example, at low pH values (<5.5) phosphate ions combine with Al and Fe to form compounds not readiliy available to plants. At high pH values (>8.0) in the presence of calcium, phosphate tends to be converted to calcium phosphate and the availability of P to plants is reduced. Above pH 8.5 the presence of sodium may increase phosphate availability by formation of soluble sodium phosphate.

For the soils of Kavango, available P was estimated by the Olsen method. By this method a critical deficiency level of $<5 \mathrm{ppm}$ and a high availability value of 15 ppm are quoted in Landon (1984) for all soils, especially where pH is >7.

3.3.5 Organic Matter

The quantity of organic matter in a soil is pivotal to the FAO system of classification, for which these values are used in the determination of diagnostic properties and horizons and in the categorisation of soil groups and units (FAO, 1988).

Estimation of organic matter content is normally carried out by the standard Walkley-Black dichromate method of organic carbon determination. Particularly for the soils of Kavango, however, difficulties were expected to arise in the determination and interpretation of such results because of the very low observed levels of organic matter combined with an almost ubiquitous presence of carbon in the form of charcoal. Furthermore, charcoal was found to occur not only in the form of mottles and fragments dispersed throughout profiles as would be expected after periodic sequences of burning by fire, but also embedded in thin, compact and sometimes consolidated layers bonded by cementing agents.

In view of the fact that low organic matter and the presence of charcoal were expected to influence analytical results, an amendment to the standard methodology was made in an attempt to isolate the influences of each.

The colourimetric Walkley-Black method was used in place of the standard method as this procedure yields more accurate results on soils with low organic matter content (see Appendix III). Results were expressed as organic carbon weight percentages.

Total organic matter content was estimated by loss-on-ignition (L.O.I.) on subsamples of the same sample set used for the Walkley-Black method. Results were expressed as organic matter weight percentages, and compared to those determined for organic carbon content.

No direct method could be found to quantify the interference of organic carbon results by charcoal, although a crude estimation of total charcoal content was made. Undisturbed samples previously used for bulk density estimation and samples used in loss-on-ignition procedures were completely oxidized by ashing at $500^{\circ} \mathrm{C}$, and re-weighed. Weight losses after oxidization at $500^{\circ} \mathrm{C}$ provided values of total
charcoal content for the loss-on-ignition sample set. For the bulk density sample set, values of total carbon content were produced and used for reference purposes only.

3.3.6 Free Carbonates

Carbonates in soil profiles may be derived from carbonate-rich rocks (especially from calcite CaCO 3 and dolomite CaCO 3 and MgCO 3) but are more commonly encountered as a secondary deposition from groundwater.

Kalahari aquifers under Kavango are believed to be recharged from dolomite mountains to the west. Shallow calcrete deposits underly most of the aeolian sands blown into Kavango and significant areas were found exposed on dune streets and omiramba floors. From these sources the soils of Kavango would be expected to receive sufficient quantities of free carbonates to warrant classification based on enrichment horizons.

Free carbonates were measured for soils with minimum $\mathrm{pH}(\mathrm{H} 2 \mathrm{O})$ values of 7.0 as below this pHC Ca and Mg carbonates are seldom present. The presence of free carbonate normally indicates that the clay complex is dominated by exchangeable Ca , which usually implies favourable soil physical conditions. Excess Ca , however, can lead to deficiencies of minor elements as well as antagonising the action of others. High levels of carbonate ($>15 \%$) affect the physical, as well as the chemical, properties of a soil.

There are no precise ratings for levels of free carbonates, but values of over 40% can be considered as extremely calcareous. A CaCO3 equivalent of $>15 \%$ is used in the FAO definition of a calcic horizon and $>40 \%$ for the calcareous material underlying shallow soils.

3.3.7 Gypsum

Where cemented and indurated layers were observed in soils for which the field testing of carbonates yielded negative results, the presence of gypsic horizons was questioned. In all cases however, analytical testing for gypsum was rejected for classification purposes on the grounds that the zones of suspected enrichment were always less than 15 cm thick. This disqualified the horizons in question from being used as diagnostic of soil type.

3.3.8 Sulphates

Sulphur is a necessary plant nutrient but rarely determined because of interpretative problems, which are due to the complex nature of S compounds in soils. Available sulphur $\left(\mathrm{SO}_{4}-\mathrm{S}\right)$ values were measured for the sole purpose of cross-checking with individual exchangeable base concentrations and free carbonate measurements, to support other parameters in the identification of diagnostic horizons and classification of soils.

3.3.9 Erodibility and Erosion Hazard Ratings

Erodibility factors are not required for the classification of soils, but for land evaluation their values can provide a good indication of resource value in terms of soil potential based on a combination of the soil and land qualities specific to any one area.

The SLEMSA Soil Loss Estimator model was developed to take into account the variety of soils and soil environments experienced in Southern African conditions, and SLEMSA Erodibility Factor values (F_{b} values) have been established for South African soil types classified under the RSA taxonomic system (Republic of South Africa, 1976). Maps of soil associations produced in the early 1970s (Loxton et al, 1971) for northern Namibia used the RSA taxonomic system, although soil erodibility factors under Kavango conditions were not attached. For many reasons, soils classified under the RSA system are difficult to correlate to the FAO Revised Legend (Simmonds, 1998) and have not been achieved for Namibian soils.

A qualitative and site-specific estimation of erodibility and erosion hazard was made for a number of Kavango soils during the course of this field survey. Site observations were made on soil properties influencing runoff properties and resistance to detachment (crusting, strength, internal drainage, aggregate stability, texture) and environmental factors (ground condition, ground cover, surface drainage, slope length, slope \%, evidence of erosion and deposition). Individual site co-ordinates were then overlaid onto a soil map classified under the RSA taxonomic system and soil types were determined. Erodibility factors already derived for these soil types in South Africa were amended according to the conditions experienced at each site in Kavango, and assigned an erosion hazard potential on a qualitative rating scale (very low to very high).

These values are presented in Appendix IV, although they should be treated with caution as the method itself has not been validated. Sources of error have undoubtedly crept in (e.g. the RSA system of assigning one erodibility factor to
each soil type), and many more sites would be needed to justify extrapolation into a regional soil erodibility map.

3.3.10Sodium Adsorption Ratio (SAR)

Although of little importance to the classification of Kavango soils, sodium adsorption ratios were calculated to demonstrate an independent empirical relationship with ESP which can be used to monitor change in the quality of soils under irrigated agriculture. As a measure of changing resource values, this relationship would be particularly appropriate to establish on the soils of the Okavango river terraces and old floodplain in areas already placed under irrigated cultivation. Using the equation:

$$
\text { SAR } \left.=\left[\mathrm{Na}^{+}\right] / \sqrt{ }\left(0.5\left[\mathrm{Ca}^{++}+\mathrm{Mg}^{++}\right]\right) \quad \text { (all units in me/ } /{ }^{-1}\right)
$$

- the ESP and SAR of soils under irrigation can be related empirically by the following equation:

ESP $=100(-0.0126+0.01475$ SAR $) / 1+(-0.0126+0.01475$ SAR $)$

The estimated ESP is then used as the ESP value to be expected in association with measured SAR values of soils which have reached equilibrium under irrigation.

Sodium adsorption ratios were calculated for the soils of Kavango although their values have no current application. Exchangeable sodium percentages estimated from these SAR values demonstrated no clear relationship with ESP calculations derived from field samples simply because the soils measured do not regularly or consistently receive water. The results are nevertheless presented in Appendix IV as they can be used in the screening of soils for potential suitability under irrigation, and to provide a baseline for monitoring change in SAR values under future irrigation.

4 SOIL CLASSIFICATION

Soils were classified to the FAO/UNESCO/ISRIC Revised Legend (1988) using general principles and nomenclature recommended by FAO (1990).

At the first level of generalization, 6 major soil groups were identified. These were subdivided at the second level into 11 soil units, of which 3 were further subdivided into an additional 4 sub-units. Through this process, one first-level and two secondlevel inter-grades were identified. A total, therefore, of 15 distinct soil types were identified.

Six phases were assigned to soils in specific areas of Kavango where surface and/or subsurface features of the land (e.g. arid conditions, cementation of parent material) formed constraints to their management and use. Phases cut across boundaries of different soil units and therefore are not shown on the soil map (Map 2). A description of the phases is given in Section 4.3; where evidence of such conditions was found by the field survey, a phase level has been appended to the soil unit name (Appendices IV and V).

The formative elements used to name soil groups and units in Kavango are tabulated below.

Table 6: Formative elements used for naming major soil groups

Name	Formative element
Arenosol	From L. arena, sand; connotative of weakly developed coarse textured soils
Calcisol	From L. calx, lime; connotative of accumulation of calcium carbonate
Fluvisol	From L. fluvius, river; connotative of alluvial deposits
Solonetz	From Russian sol, salt, and etz, strongly expressed
Anthrosol	From Gr. anthropos, man; connotative of human activities
Alisol	Fron L. alumen; connotative of high aluminium content

Table 7: Formative elements used for naming soil units and sub-units

Name	Formative element
Albic	From L. albus, white; connotative of strong bleaching
Calcaric	Form L. calcarius, calcareous; connotative of the presence of calcareous material
Calcic	From L. calx, lime; connotative of accumulation of calcium carbonate
Cambic	From late L. cambiare, to change; connotative of changes in colour, structure and consistence
Dystric	From Gr. dys, ill, dystrophic, infertile; connotative of low base saturation
Ferralic	From L. ferrum and a/umen; connotative of a high content of sesquioxides
Haplic	From Gr. haplous, simple; connotative of soils with a simple, normal horizon sequence
Luvic	From L. /uere, to wash, 'lessiver'; connotative of accumulation of clay
Petric	From L. petra, stone; connotative of the presence of an indurated layer at shallow depth
Sodic	From L. sodium, connotative of high content of exchangeable sodium
Xanthic	From gr. xanthos, yellow; connotative of yellow coloured soils

4.1 DIAGNOSTIC HORIZONS

Sets of quantitatively defined properties produced by soil forming processes made it possible to base the classification on general principles of soil genesis. Objectivity was secured in that the processes themselves were not used as criteria but rather in their effects expressed in terms of morphological properties that had identification value.

4.1.1 Horizon Definitions

The following MASTER HORIZONS are present in Kavango:
$A=$ Mineral horizon formed at or adjacent to the surface, lacking the properties of B or E horizons, but having morphology distinct from parent material.
$E=$ Mineral horizon showing concentration of sand and silt fractions high in resistant minerals, resulting from a loss of silicate clay, iron or aluminium. Eluvial, generally underlying an H, O or A horizon and overlying a B horizon
$\mathrm{B}=$ Mineral horizon with either illuvial clays, residual sesquioxides or alteration of material from original condition.
$\mathrm{C}=$ Mineral horizon (or layer) of unconsolidated material from which the solum is presumed to have formed and which does not show properties diagnostic of any other master horizons.

4.1.1.1 Transitional Horizons

Soil horizons in which the properties of two master horizons merge are indicated by the combination of two capital letters (e.g. $A E, B C, A B, A C$) The first letter marks the master horizon to which the transitional horizon is most similar.

Mixed horizons that consist of intermingled parts, each of which are identifiable with different master horizons, are designated by two capital letters separated by a diagonal stroke (e.g. E/B, B/C). The first letter marks the master horizon that dominates.

4.1.1.2 Letter Suffixes

A small letter was added to the capital letter to qualify the master horizon designation. Suffix letters were combined to indicate properties which occurred concurrently in the same master horizon (e.g. Ahz, Btg, Cck). No more than two suffixes were used in combination and in transitional horizons no use was made of suffixes which qualified only one of the capital letters. A suffix was used, however, when it applieed to the transitional horizon as a whole (e.g. BCk, ABg).

Suffix letters qualifying the master horizons of Kavango soils:
b. Buried or bisequal soil horizon (e.g. Btb).
c. Accumulation in concretionary form; this suffix is commonly used in combination with another which indicates the nature of the concretionary material (e.g. Bck).
g. Mottling reflecting variations in oxidation and reduction (e.g. $\mathrm{Bg}, \mathrm{Btg}, \mathrm{Cg}$).
k. Accumulation of calcium carbonate (e.g. Ak)
m . Strongly cemented, consolidated, indurated; this suffix is commonly used in combination with another indicating the cementing material (e.g. Cmk marking a petrocalcic horizon within a C horizon).
n. Accumulation of sodium (e.g. Btn).
p. Disturbed by ploughing or other tillage practices (e.g. Ap). **
r. Strong reduction as a result of groundwater influence (e.g. Cr).
t. Illuvial accumulation of clay (e.g. Bt).
u. Unspecified; this suffix is used in connection with A and B horizons which are not qualified by another suffix but have to be subdivided vertically by figure suffixes (e.g. Au1, Au2, Bu1, Bu2).
w. Alteration in situ as reflected by clay content, colour, structure (e.g. Bw).
x. Occurrence of a fragipan (e.g. Btx).
** For horizons which showing accumulations of charcoal, the suffix ' p ' has been applied.

4.1.1.3 Qualification by Charcoal Accumulation

Charcoal accumulations posed a problem with the assignation of an appropriate suffix to indicate its presence. Suffix ' p ' denotes disturbance by ploughing or other tillage practices, although fires are not specified. The suffix ' h ' denotes the accumulation of organic matter in mineral horizons (e.g. Ah, Bh). For the A horizon, the ' h ' suffix is applied only where there has been no disturbance or mixing from ploughing, pasturing or other activities of man. The ' h ' and ' p ' suffixes are thus mutually exclusive.

Burning is not a tillage practice per se in Kavango although large areas have been repeatedly burned for field preparation and to create greater visibility (flushing out of game; pre-Independence military operations). Fires of various magnitudes and heat regimes have also been induced by natural events (lightning) and are widespread throughout the region (Trigg, 1997).

The suffix ' h ' was not assigned to horizons showing accumulations of charcoal because even though its presence in different part of the profile suggests fire sequences, the disturbance caused by fires could not definitely be attributed to either natural events or the activities of man.

4.1.1.4 Figure Suffixes

Horizons designated by a single combination of letter symbols were vertically subdivided by numbering each subdivision consecutively, starting at the top of the horizon (e.g. Bt1-Bt2-Bt3).

The suffix number always followed all of the letter symbols and the number sequence applied to one symbol only so that the sequence was resumed in case of
change of the symbol (e.g. Bt1-Bt2-Btx1-Btx2). Numbered subdivisions were also be applied to transitional horizons (e.g. AB1 - AB2), in which case the suffix appliesd to the entire horizon and not only to the last capital letter.

4.1.1.5 Figure Prefixes

When it was necessary to distinguish lithological discontinuities, Arabic numerals were prefixed to the horizon designations concerned (e.g. when the C horizon was different from the material in which the soil was presumed to have formed the following soil sequence was given: A, B, 2C. Strongly contrasting layers within the C material were shown as an $A, B, C, 2 C$...sequence.

The following diagnostic horizons were found in the soils of Kavango:

4.1.1.5.1 Ochric A horizon

An ochric A horizon is one that is too light in colour, has too high a chroma, too little organic matter, or is too thin to be mollic or umbric, or is both hard and massive when dry. In separating Yermosols from Xerosols a distinction used to be made between very weak and weak ochric A horizons.

4.1.1.5.2 Argillic B horizon

An argillic B horizon is one that contains illuvial layer-lattice clays. This horizon forms below an eluvial horizon, but it may be at the surface if the soil has been partially truncated.

4.1.1.5.3 Natric B horizon

This is an argillic horizon with additional diagnostic properties connotative of sodium salt accumulation. It has a columnar or prismatic structure in some part of the B horizon or a blocky structure with tongues of an eluvial horizon, AND a saturation with exchangeable sodium of more than 15% within the upper 40 cm of the horizon or more exchangeable $\mathrm{Mg}+\mathrm{Na}$ than Ca pus exchange acidity at pH 8.2 within the upper 40 cm of the horizon.

4.1.1.5.4Cambic B horizon

An altered B horizon lacking properties that meet requirements of argillic, natric or spodic horizon; lacking the dark colours, organic matter content and structure of a histic H horizon, or the mollic and umbric A horizons; showing no cementation, induration, or brittle consistence when moist, AND having the following properties:

- Very fine sand, loamy very fine sand, or finer
- Structure in at least 50% of horizon
- CEC $>16 \mathrm{me} / 100 \mathrm{~g}$ clay
- Higher clay content than underlying horizon, or
- Stronger chroma or fedder hue than underlying horizon, or
- Evidence of removal of carbonates - lower carbonates than underlying horizon of calcium carbonate accumulation, or
- Evidence of reduction processes - chromas of 2 or less if mottling; if no mottling and value is <4, the chroma is <1; if the value is $4+$ then chroma is 1 or less; hue is no bluer than 10 Y .
- Enough thickness that its base is at least 25 cm below soil surface.

4.1.1.5.5Calcic horizon

The calcic horizon is a horizon of accumulation of calcium carbonate. The accumulation may be in the C horizon, but it may also occur in a B or in an A horizon.

The calcic horizon consists of secondary carbonate enrichment over a thickness of 15 cm or more, has a calcium carbonate equivalent content of 15% or more and at least 5% greater than that of the C horizon. The latter requirement is expressed by volume if the secondary carbonates in the calcic horizon occur as pendants on pebbles, or as concretions or soft powdery forms; if such a calcic horizon rests on very calcareous materials ($40 \%+$ calcium carbonate equivalent) the $\%$ of carbonates need not decrease with depth.

4.1.1.5.6 Albic E horizon

The albic E horizon is one from which clay and free iron oxides have been removed, or in which the oxides have been segregated to the extent that the colour of the horizon is determined by the colour of the primary sand and silt particles rather than by coatings on these particles.

An albic E horizon has a moist colour value of $4+$. If the moist value is $6+$ then the chroma should be 3 or less. If the parent materials have a hue of 5 YR or redder, a moist chroma of 3 is permitted in the albic E horizon where the chroma is due to the colour of uncoated silt or sand grains. An albic E horizon may overlie a spodic B, an argillic or natric B, a fragipan, or an impervious layer that produces a perched watertable.

4.2 DIAGNOSTIC PROPERTIES

A number of soil characteristics used to separate the soil units could not be considered as horizons. They were rather diagnostic features of horizons or of soils which, when used for classification purposes, needed to be quantitatively defined.

Diagnostic properties present in the soils of Kavango Region:

4.2.1 Abrupt Textural Change

This is a considerable increase in clay content within a very short distance in the zone of contact between an A or E horizon and the underlying horizon. When the A or E horizon has less than 20% clay content (as with all soil profiles sampled), the clay content of the underlying horizon is at least double that of the A or E within a vertical distance of 8 cm or less.

4.2.2 Albic Material

Albic material are exclusive of E horizons, and have a moist colour value of $4+$. If the value is $6+$, the moist chroma is less than 3. If parent materials have a hue of 5 YR or redder, a moist chroma of 3 is permitted if the chroma is due to the colour of uncoated silt or sand grains.

4.2.3 Calcareous

The term calcareous applies to soil material which shows a strong effervescence with $10 \% \mathrm{HCL}$ in most of the fine earth, or which contains more than 2% calcium carbonate equivalent.

4.2.4 Calcaric

The term calcaric refers to soils which are calcareous throughout the depth between 20 and 50 cm

4.2.5 Ferralic Properties

Ferralic properties are used in connection with Arenosols which have a CEC of less than $24 \mathrm{me} / 100 \mathrm{~g}$ (clay) in, respectively, at least some of the cambic B horizon or immediately underlying the A horizon.

4.2.6 Fluvic Properties

1. An organic carbon content that decreases irregularly with depth or that remains above 0.2% to a depth of 125 cm . Thin strata of sand may have less organic carbon if the finer sediments below, exclusive of buried A horizons, meet the requirement.
2. Stratification in at least 25% of the soil volume within 125 cm of the surface

Fluvic properties indicated by the second requirement dominate the soils of the Okavango floodplain, and are strongly evident on the inner curves of meanders and at the confluence of the Omatako omuramba. Soils of the NW omiramba floors show a similar stratification, meeting the requirements of 2 above.

4.2.7 Hydromorphic properties

Gleysols - soils strongly influenced by groundwater, do not exist in Kavango. However, soils of which only the lower horizons are influenced by groundwater (gleyic) do occur where the water table is shallow ($1-5 \mathrm{~m}$ below surface) in parts of NE Kavango, and on the Okavango floodplain.
A gleyic condition describes a reducing moisture regime virtually free of dissolved oxygen due to saturation by groundwater or its capillary fringe.

Hydromorphic properties in the soils of Kavango refer to the existence of the following property only:
"Saturation with water at some period of the year, or artificially drained, with evidence of reduction processes or of reduction and segregation of iron. This can be reflected in a number of ways, not all relevant to the soils observed". Of relevance are:

In horizons with textures finer than loamy sand:

- If hues are as red as or redder than 10YR and there is mottling, chromas of 2 or less; if there is no mottling and values are <4, chromas of <1; or if values are $4+$, chromas of 1 or less.
- If hues are between $10 Y R$ and $10 Y$ are there is distinct or prominent mottling, chromas of 3 or less; of there is no mottling, chromas of 1 or less.

4.2.8 Interfingering

Interfingering consists of penetrations of an albic E horizon into an underlying argillic or natric B horizon along ped faces, primarily vertical faces. The penetrations are not wide enough to constitute tonguing but form continuous skeletans (ped coatings of clean silt or sand over 1 mm thick on the vertical ped faces). A total thickness of more than 2 mm thick is required if each ped has a coating of more than 1 mm . Because quartz is such a common constituent of soils, the skeletans are usually white when dry, and light grey when moist, but their colour is determined by the colour of the sand or silt fraction.

The skeletans constitute more than 15% of the volume of any subhorizon in which interfingering is recognised. They are also thick enough to be obviuos by their colour, even when moist. Thinner skeletans that must be dry to be seen as a whitish powdering on a ped are not included in the meaning of interfingering.

4.2.9 Slickensides

Slickensides are polished and grooved surfaces that are produced by one mass sliding past another. Some of them occur at the base of a slip surface where a mass of soil moves downward on a relatively steep slope.

Although slip surface conditions occur in Kavango on the base slopes of the Okavango river terraces and steeper dunes de-stabilised by vegetation removal, slickensides are very rare due to the lack of swelling clays.

4.2.10Soft Powdery Lime

Soft powdery lime refers to translocated authigenic lime, soft enough to be cut readily with a finger nail, precipitated in place from the soil solution rather than inherited from a soil parent material. It should be present in significant accumulation.

To be identifiable, soft powdery lime must have some relation to the soil structure or fabric. It may disrupt the fabric to form spheroidal aggregates (white eyes) that are soft and powdery when dry, or the lime may be present as soft coatings in pores or on structural faces. If present as coatings, it covers a significant part of the surface; commonly it coats the whole surface to a thickness of $1-5 \mathrm{~mm}+$. Only part of a surface may be coated if little lime is present in the soil. The coatings should be thick enough to be visible when moist and should cover a continuous area large enough to be more than filaments. Pseudomycelia which come and go with
changing moisture conditions are not considered as soft powdery lime in this definition.

Soft powdery limes are present in Kavango on some omiramba floors and dune streets, in the SE Sikeretti area (in association with paleo-pans) and on the SW pediplain.

4.2.1 1 Takyric Features

These soils have a heavy texture, crack into polygonal elements when dry and form a platy or massive surface crust.

Takyric features are almost unknown in Kavango. The only observed areas with borderline takyric features were on eastern-draining omiramba floors in the vicinity of small longitudinal pans. In these areas thick layers of alluvial silts cover the surface.

4.2.12 Tonguing

Tonguing is connotative of the penetration of an albic E horizon into an argillic B horizon along ped surfaces, if peds are present. Tongues must have greater depth than width, have horizontal dimensions of $5 \mathrm{~mm}+$ in fine textured argillic horizons (clay, silty clay and sandy clay), $10 \mathrm{~mm}+$ in moderately fine textureds argillic horizons, and $15 \mathrm{~mm}+$ in medium or coarser textured argillic horizons (silt loams, loams, very fine sandy loams or coarser), AND must occupy more than 15% of the mass of the upper part of the argillic horizon.

Tonguing is only present in Kavango where Cambic Arenosols occur.

4.2.13 Aridic Moisture Regime

Where factors such as local climate, parent material and catenary position combine with soil morphology to produce a "soil climate" showing a propensity for low moisture availability at critical periods of the growing season, such soils exhibit an aridic moisture regime.

Under the FAO (1974) legend this property was used to characterise Yermosols and Xerosols and to separate them from soils outside arid areas which have a comparable morphology. It has now been deleted from the revised legend, along
with Yermosols and Xerosols, to conform to the general principle not to use climatic criteria to define soil units (FAO, 1990).

This deletion has repercussions on the classification of Kavango soils where, in the absence of this diagnostic condition and with no other condition to separate them, large areas of deep, light sandy soils are classified as modal Haplic Arenosols. A useful sub-division of these soil units could nevertheless be made on the basis of differences in soil moisture availability to rank them for management purposes and environmental resource value (for supporting properties refer to the Yermic phase in section 4.3 below). The conditions defining soils with an aridic moisture regime would then follow the FAO legend as it was originally presented in FAO (1974), as follows:

- In most years these soils have no available water in any part of the moisture control section for more than half the time (cumulative) that the soil temperature at 50 cm is above $5^{\circ} \mathrm{C}$. (The moisture control section lies approximately between $10-30 \mathrm{~cm}$ for medium to fine textures, between $20-60 \mathrm{~cm}$ for medium to coarse textures, and between $30-90 \mathrm{~cm}$ for coarse textures).
- There is no period as long as 90 consecutive days when there is moisture in some or all parts of the moisture control section while the soil temperature at 50 cm is continuously above $8^{\circ} \mathrm{C}$.
- In most years the moisture control section is never moist in all parts for as long as 60 consecutive days during the 3 months following the winter solstice, where mean summer and mean winter temperatures differ by $5^{\circ} \mathrm{C}$ or more and mean annual temperature is less than $22^{\circ} \mathrm{C}$.

In this regard, even though Kavango is not an arid region, large areas are covered by deep, friable and freely draining sands. Depending on the depth of consolidated parent material and on relative slope position, some of these soils are very unlikely to have available water in the moisture control section for over 90 consecutive days while the soil temp. is above $8^{\circ} \mathrm{C}$, and they are equally unlikely to have available water in any part of the moisture control section for more than 50% of the time that the soil temp is over $5^{\circ} \mathrm{C}$.

In terms of the climatic conditions necessary to satisfy the soil conditions described above, a preliminary cross-check of regional data revealed that the mean annual temperature of the regional weather station (Rundu) is just $0.2^{\circ} \mathrm{C}$ above the critical maximum of $20^{\circ} \mathrm{C}$. However, the mean summer and winter temperatures differ by more than $5^{\circ} \mathrm{C}$, where:

$$
\begin{gathered}
\text { June }=16.1^{\circ} \mathrm{C} ; \text { July }=16.1^{\circ} \mathrm{C} ; \text { August }=19.0^{\circ} \mathrm{C}\left(\text { mean }=17.1^{\circ} \mathrm{C}\right) ; \\
\mathrm{Dec}=25.4^{\circ} \mathrm{C} ; \text { Jan }=24.9^{\circ} \mathrm{C} ; \text { Feb }=24.2^{\circ} \mathrm{C}\left(\text { mean }=24.8^{\circ} \mathrm{C}\right)
\end{gathered}
$$

Several decades of rainfall data strongly indicate that no rain falls between May and October in an average year.

4.3 SOIL PHASES

Soil phases are subdivisions of soil units based on characteristics which are significant to the use or management of the land, but are not diagnostic for the separation of the soil units themselves.

In terms of resource value, phases add an extra dimension to the diagnostic signature of any soil unit by indicating those factors which currently constrain its potential, or may do so if managed inappropriately.

Descriptions of phases assigned to the soils of Kavango are given below.

4.3.1 Phreatic Phase

The phreatic phase refers to the occurrence of a groundwater table within 5 m from the surface, the presence of which is not reflected in the morphology of the soil. Therefore the phreatic phase is not shown with Fluvisols. Its presence is important for the water regime of the soil, and because of this, especially in areas under irrigation, attention should be paid to effective water use and drainage in order to avoid salinization as a result of rising groundwater.

Phreatic phase sub-units occur in the north east and east of Kavango, particularly in a wide band stretching 50 km to the north and 40 km to the south of Kaudam camp in the streets of the incipient dunes and floors of paleo-drainage channels.

4.3.2 Yermic Phase

The yermic phase applies to soils which have less than 0.6% organic carbon in the surface 18 cm when mixed, or less than 0.2% organic carbon if the texture is coarser than sandy loam, and which show one or more of the following features connotative of arid conditions:

1. presence in the surface horizon of gravels or stones shaped by the wind or showing desert varnish (manganese coatings at the upper surface) or both. When the soil is not ploughed these gravels or stones usually form a surface pavement; they may show calcium carbonate or gypsum accumulating immediately under the coarse material.
2. Presence in the surface horizon of pitted and rounded quartz grains showing a matte surface which constitute 10% or more 'of the sand fraction having a diameter of 0.25 mm or more.
3. Presence of 2% or more palygorskite in the clay fraction in at least some subhorizon within 50 cm of the surface.
4. Surface cracks filled with in-blown sand or silt; when the soil is ploughed this characteristic may be obliterated, although cracks may extend below the plough layer.
5. A platy surface horizon which frequently shows vesicular pores and which may be indurated but not cemented.
6. Accumulation of blown sand on a stable surface.

Over 70% of Kavango soils meet the first-level low organic matter requirements of the Yermic phase, and 40% of the soil units contain one or more features connotative of arid conditions. Arid conditions are described almost entirelv by features 4 and 6 above, and to a lesser extent by feature 2. Features 1,3 and 5 do not occur in the region.

4.3.3 Fragipan Phase

The fragipan phase marks soils which have the upper level of the fragipan occurring within 100 cm of the surface. A fragipan is a loamy (uncommonly a sandy) subsurface horizon which has a high bulk density relative to the horizons above it, is hard or very hard and seemingly cemented when dry, is weakly to moderately brittle when moist; when pressure is applied peds or clods tend to rupture suddenly rather than undergo slow deformation. Dry fragments slake or fracture when placed in water.

A fragipan is low in organic matter, slowly or very slowly permeable and often shows bleached fracture planes that are faces of coarse or very coarse polyhedrons
or prisms. Clayskins may occur as patches or discontinuous streaks both on the faces and interiors of the prisms. A fragipan commonly, but not necessarily, underlies a B horizon. It may be from $15-200 \mathrm{~cm}$ thick with commonly an abrupt or clear upper boundary, while the lower boundary is mostly gradual or diffuse.

Cambic Arenosols occurring in the eastern paleo-drainage system of Kavango show the only evidence of fragipan layering, where fragipans underlie incipient argillic B (illuviated) horizons.

4.3.4 Duripan Phase

The duripan phase marks soils in which the upper level of a duripan occurs within 100 cm of the surface. A duripan is a subsurface horizon cemented by silica so that dry fragments do not slake during prolonged soaking in water or in hydrochloric acid.

Duripans vary in the degree of cementation by silica and in addition they commonly contain accessory cements, mainly iron oxides and calcium carbonate. As a result, duripans vary in appearance but all of them have a very firm or extremely firm moist consistency, and they are always brittle even after prolonged wetting.

Duripan sub-units occur in Kavango in association with Calcisols and Solonetz soils and where Cambic Arenosols occur in association with Solonetz. The most evident duripans are located in the south-central area where they lie to the east of the Omatako omuramba on the western edge of the watershed with the eastern paleodrainage system.

4.3.5 Rudic Phase

The rudic phase marks areas where the presence of gravel, stones, boulders or rock outcrops in the surface layers or at the surface makes the use of mechanized agricultural equipment impracticable. Hand tools can be used and also simple mechanical equipment if other conditions are particularly favourable. Fragments with a diameter up to 7.5 cm are considered as gravel; larger fragments are called stones or boulders.

Gravel, stones and boulders are not present in Kavango, although outcrops do occur. Basement outcrops occur in the SE corner of the region near Sikeretti on level to gently undulating slope classes. Occasional calcrete outcrops occur below the crests of both east- and west-facing slopes of the main Omatako omuramba
channel, and where these occur slope angles are of the order of $5-8 \%$. Significant areas of calcrete lie within the plough layer of soils in the longer north-flowing omiramba and in the eastern-draining Khaudom omuramba.

4.3.6 Petrocalcic Phase

The petrocalcic phase marks soils in which the upper part of a petrocalcic horizon occurs within 100 cm of the surface.

A petrocalcic horizon is a continuous cemented or indurated calcic horizon, cemented by calcium carbonates and in places by calcium and some magnesium carbonate. Accessory silica may be present. The petrocalcic horizon is continuously cemented to the extent that dry fragments do not slake in water and roots cannot enter. It is massive or platy, extremely hard when dry so that it cannot be penetrated by auger or spade, and very firm to extremely firm when moist. Noncapillary pores are filled; hydraulic conductivity is moderately slow to very slow. It is usually thicker than 10 cm .

Petrocalcic phase soils are present in Kavango over where a petrocalcic layer underlies a calcic B horizon (i.e. as a petrocalcic C horizon) within 100 cm of the surface. Areas include the SW pediplain, omuramba floors and narrow dune streets, and in southern Kavango on level to gently undulating slopes forming the watershed between the paleo-drainage system to the east, and the Omatako omuramba to the west. In the latter case, large areas of calcrete deposits were observed to underlie soil profiles at shallow depths. In these areas, where a soil unit has been classified on the basis of a petrocalcic horizon, the name assumes the phase.

4.4 CLASSIFICATION SUMMARY

The FAO/UNESCO/ISRIC Revised Legend was used as far as possible as it is presented in World Soil Resources Report 60. Where discrepancies existed between field evidence and guidelines for classification efforts were made to enhance the base of the legend without diminishing the integrity of its general principles. In particular the presence, causes and possible effects of charcoal accumulations could not be ignored and were therefore documented to qualify master horizons. Ir. the case of 'soil climate' where soil properties warranted a more appropriate subdivision of Arenosols, no attempt was made to invent new criteria for classification although suggestions were made for the further use of such properties to the management and future evaluation of these soils.

Bearing these caveats in mind, the soils of Kavango are summarized below.

4.5 EXPLANATORY LEGEND TO THE RECONNAISSANCE SOIL MAP OF KAVANGO REGION

Of the eight columns offered by the Revised Legend to reflect evolutionary and geographical background, four are represented in the region. The first column includes soils which are not bound by specific zonal climatic conditions: the Fluvisols. The second column comprises soils in which soil formation is conditioned by parent material: the Arenosols. Soils of the fourth column show accumulations of salts connotative of aridic conditions or physiological drought: the Caicisols and Solonetz. In the eighth and last column soils are distinctive in having characteristics and processes profoundly altered by human influences: the Anthrosols. The seventh column, where soils are conditioned by intense weathering (the Alisols), is only marginally represented.

4.5.1 Soils Conditioned by Parent Material

Arenosols: soils developed in sands

AR	ARENOSOLS
ARh	Haplic Arenosols
ARb	Cambic Arenosols
ARo	Ferralic Arenosols
ARc	Calcaric Arenosols
Arhk	Calci-Haplic Arenosols

The most abundant parent materials of Kavango Region include the extensive windblown sands on which extensive areas of Arenosols have developed.

Arensosols are defined as soils which are coarser than sandy loam to a depth of at least 100 cm of the surface, with less than 35% of rock fragments or other coarse fragments in all subhorizons within 100 cm of the surface (exclusive of materials which show fluvic or andic properties). No diagnostic horizons other than an ochric A horizon or an albic E horizon are required.

Fine sands are the dominant size fraction of Arenosols in Kavango, indicating without any doubt the aeolian nature of the parent material. The total fine sand is generally more than 50% and often greater than 70%. Clay and silt are less than 10% and often around 6%.

These soils are marked by the absence of any significant soil profile development and profiles are generally uniform throughout the depth. They are highly permeable and storage of available water is low within normal rooting depths. This is supported by high porosity values of about 42% with a preponderance of large and free-draining pores. Consequently these soils are poor in moisture retention and experience prolonged periods of moisture stress. The low moisture availability can be attributed to their predominantly sandy textures. Surface horizons have slightly higher moisture contents of about 8% compared to that of subsurface horizons which is in the range of $3-6 \%$.

In common with the Arenosols of neighbouring northwest Ngamiland (Botswana) and northeast Otjosondjupa Region, these sands behave remarkably like structurally stable soils under rainfall conditions. Although they do not have any aggregation, they also do not develop crusts because on the loose sand surfaces. Infiltration rates are high with initial rates being much higher (DRFN, 1999), in keeping with the coarse granular textures and lack of surface crust development. Runoff therefore can be expected to be minimal even on slopes with up to 5% inclination. Thus, in terms of erodibility, they can be considered to provide a certain amount of resistance to erosion somewhat like structurally stable soils.

4.5.2 Soils Conditioned by Limited Leaching

Solonetz: sodic soils

SN	SOLONETZ
SNh	Haplic Solonetz
SNhx	Haplic-xanthic Solonetz
SNk	Calcic Solonetz

Solonetz soils are formed in Kavango where sodium is present in the soil matrix in excess over calcium. These soils are found in conditions of impeded drainage controlled by shallow layers of indurated or consolidated parent materials on the high plains of the ephemeral watershed. In low catenary positions they are found in association with pans and shallow underlying calcrete on the gently undulating sand plains and omiramba floors of the eastern drainage region.

All Solonetz soils in Kavango are recognised by a thin loose litter cover resting on black humified surface material about $2-3 \mathrm{~cm}$ thick. This overlies a brown granular A
horizon which abruptly changes into a natric B horizon with coarse prismatic or columnar structure elements and grading with depth into a massive subsoil.

Sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ may be formed in these soils by the evaporation of water containing sodium bicarbonate or by the biological reduction of sodium sulphate. Under either of these conditions clay is dispersed and worked into the subsoil, forming a dense accumulation horizon with columnar or prismatic subsoil structures. Clays held in surface horizons are decomposed in the high pH conditions resulting from the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and in conditions of periodically low salt content combined with high exchangeable sodium.

The essential characteristic of Solonetz soils is therefore a natric B horizon which has an exchangeable sodium percentage (ESP) of 15 or more. Such a high value will also affect the concentration and balance of other ions, particularly the divalent ions that are preferentially adsorbed at the exchange complex. The high ESP of Solonetz is both directly and indirectly harmful to plants whereby a high proportion of sodium ions in the soil induces toxicity directly in salt sensitive plants and obstructs the uptake of other essential plant nutrients.

In terms of textural characteristics the Solonetz soils occurring in Kavango are variable, depending on the depth and consolidation of parent material and on catenary position. Fine to very fine sands dominate the sand fraction with a content of $50-75 \%$, although sand content as a whole varies from $21-90 \%$. Similarly in the finer particle fraction silt contents vary from 5 to 72%, although clay content remains low at $3-9 \%$. Soils on lower topographic sites in eastern Kavango are generally heavier textured, whereas soils in areas of impeded drainage on local high ground (where duripans underlie soils of the ephemeral catchment divide) are light textured. Solonetz soils with local concentrations of clay are waterlogged in the wet season.

Moisture retention properties of the Solonetz soils are not dependent on pore size distribution alone as part of the soil moisture is always retained due to osmotic potential. Due to these conditions, moisture content is never constant and this property does not reflect moisture availability to plants.

Calcisols: Soils with a Calcium Carbonate Accumulation

CL	CALCISOLS
CLh	Haplic Calcisols
CL1	Luvic Calcisols
CL1p	Hyper-Luvic Calcisols
CLp	Petric Calcisols \quad.

Calcisols occur in Kavango in all land systems with the exception of the Okavango floodplain. These soils always occupy low catenary positions in local landscape sequences and are always found in association with shallow calcrete deposits. Whereas the pans scattered across Kavango are not always associated with calcrete, those pans which are formed on petrocalcic layers are found in association with Calcisols.

The most prominent feature of Calcisols is the translocation of calcium carbonate from the surface horizons to an accumulation layer at depth. This layer may be soft and powdery or consist of hard concretions or calcite pendants, and can eventually become indurated and cemented.

In terms of profile characteristics the Calcisols of Kavango are distinctly recognizable by a thin brown A horizon over a darker brown Bck horizon and/or a yellowish brown Cck or Cmk horizon that is speckled with white calcite mottles. The organic matter content of the surface soil is low on account of sparse vegetation and rapid decomposition of vegetal debris. The surface soil is crumb or granular, but platy structures also occur where this horizon is enhanced by a high percentage of adsorbed magnesium. Subsurface horizons are weakly platy in structure or structureless. The highest calcite concentration is found in the deeper B horizons.

The Calcisols do not appear to follow any noticeable trend in particle size distributions although medium textures prevail with fine to very fine sands dominating the sand fraction at $40-70 \%$. Silt fractions vary between 7 and 37% and clays between 5-14\%.

Total porosities are remarkably high at 41-64\% with an overall increase in pore size due to the presence of calcium carbonate in the profiles. Consequently there is an increase in the proportion of freely draining macro-pores and a decrease in the proportion of slow and non-conducting micropores which would otherwise retain adsorbed moisture. Moisture retention properties are therefore lower than the clay
contents indicate, although available moisture levels are significantly higher. Infiltration rates are moderate with average values being more closely related to the higher porosities in the calcic horizon than to the proportion of micropores.

The Calcisols are therefore inherently well-drained. Where the surface soils are silty in the south-east corner of Kavango, slaking and crust formation no doubt hinders infiltration, causing runoff, sheet-wash erosion, and in places the exposure of a petrocalcic horizon. Where they lie on shalow petróclacic horizons on the southwest pediplain, however, they tend to become waterlogged.

They are also potentially.fertile soils as they are rich in mineral nutrients, although the high calcium may also result in iron and zinc deficiencies.

4.5.3 Soils Conditioned by Relief
 Fluvisols: soils of alluvial lowlands

FL	FLUVISOLS
FLd	Dystric Fluvisols

Fluvisols have developed in recent fluviatile deposits on the floodplain of the Okavango River. On the banks and active floodplain of the Okavango river these soils are periodically wet in all or part of the profile due to the presence of seasonal flood water.

The floodplain area, two to six kilometres wide, can be divided into two zones in terms of soil development and modification. A broad area adjacent to the present course of the river actively receives fresh sediments during regular seasonal periods of inundation and hence the soils are regularly rejuvenated. The soils of this zone, although used for wet season cropping and dry season grazing, are not profoundly modified by agricultural activities and can therefore be classified by their fluvic properties.

Soil profiles and auger holes show stratified layers of coarse and fine materials with a predominance of fine to very fine sands and silts in shallower horizons and an increase in clay content with depth. Significantly, the deposition of clay layers is uncommon and clay contents even at depth are consequently lower than would be expected in these alluvial soils. This attribute can be linked to the scarcity of clays in the provenance areas (Minader, 1996). Surface clay contents are lower than subsurface horizons with an average of 6%, increasing irregularly to 14% in lower
horizons. Low clay contents combined with low and irregular levels of organic matter are also linked to relatively low nutrient concentrations and CEC (total) levels. Whereas these soils are not infertile, they are also not highly productive.

4.5.4 Soils Conditioned by Human Influence

Anthrosols

AT	ANTHROSOLS
ATd	Dystric Anthrosols

Away from the main Okavango River channel in a broad zone of variable width, the floodplain is no longer seasonally inundated. In this area soils resembling buried Fluvisols at depth and Arenosols nearer to the surface have developed on colluvial sands lying over older dry fluviatile deposits.

Intensively used for both dryland and irrigated cultivation, these soils have been significantly modified. Evidence from borehole records and sample analyses (Weirenga, 1999) indicate that the original morphology of these soils would have included buried accumulation horizons of stratified coarse and fine materials under moderately deep fine sands of colluyvial and aeolian origin. Analytical and profile records from Mashere Agricultural College indicate that the surface horizons have been physically mixed by ploughing, chemically altered by the addition of organic materials, leached by irrigation water and generally deficient in potassium.

These soils therefore have been classified as Anthrosols to indicate the degree to which modification by agricultural use has altered a number of their diagnostic properties. Judging by the inherently low CEC status of the Arenosol group, by the relatively low nutrient concentrations of the underlying Fluvisols, and by the fact that organic additives are needed to increase the concentration of base cations, these soils have been categorized as Dystric Anthrosols.

4.6 SOIL UNIT SUBDIVISIONS

Soil units defined in the Legend to the Reconnaissance Soil Map of Kavango are tabulated and summarized below.

Table 8: Soil Units of Kavango

Group 1	Group 4		Group 7	
FL FLUVISOLS	CL	CALCISOLS	AL	ALISOLS
FLd Dystric Fluvisols	CLh	Haplic Calcisols	ALh	Haplic Alisols
	CL1	Luvic Calcisols		
Group 2	CL1p	Hyper-Luvic Calcisols	Grou	
AR ARENOSOLS	CLp	Petric Calcisols	AT	ANTHROSOLS
ARh Haplic Arenosols			ATd	Dystric Anthrosols
ARb Cambic Arenosols	SN	SOLONETZ		
ARo Ferralic Arenosols	SNh	Haplic Solonetz		
ARc Calcaric Arenosols	SNhx	Haplic-xanthic Solonetz		
ARhk Calci-Haplic Arenosols	SNk	Calcic Solonetz		

4.6.1 Fluvisols (FL)

Soils showing fluvic properties and having no diagnostic horizons other than an ochric, a mollic or an umbric A horizon, or sulphidic material within 125 cm of the surface

Dystric Fluvisols (FLd)

Fluvisols having a base saturation (by NH4Oac) of less than 50% at least between 20 and 50 cm of the surface; lacking a sulphidic horizon and sulphidic material within 125 cm of the surface.

4.6.2 Arenosols (AR)

Soils which are coarser than sandy loam to a depth of at least 100 cm of the surface, having less than 35% of rock fragments or other coarse fragments in all subhorizons within 100 cm of the surface, exclusive of materials which show fluvic or andic properties; having no diagnostic horizons other than an ochric A horizon or an albic E horizon.

Haplic Arenosols (ARh)

Arenosols having no diagnostic horizon other than an ochric A horizon; lacking ferralic properties; lacking gleyic properties within 100 cm of the surface. Deep to
very deep moderately well to somewhat excessively drained, dark grey to white sands to sandy loams.

Cambic Arenosols (ARb)

Arenosols showing colouring or alteration characteristic of a cambic B horizon immediately below the A horizon; lacking lamellae of clay accumulation; lacking ferralic properties; lacking an albic E horizon with a minimum thickness of 50 cm ; lacking gleyic properties within 100 cm of the surface; non-calcaric. Deep to very deep, well to somewhat excessively drained, strong brown to red, loamy sands to loamy fine-medium sands.

Ferralic Arenosols (ARo)

Arenosols showing ferralic properties, and colouring of the B horizon expressed by chromas of 5 or more or hues redder than 10YR; lacking a clay increase or lamellae of clay accumulation within 125 cm of the surface; lacking an albic E horizon with a minimum thickness of 50 cm ; lacking gleyic properties within 100 cm of the surface; non-calcaric. Deep to very deep, well to excessively drained, yellowish brown to dark red, coarse sands to loamy fine sands.

Calcaric Arenosols (ARc)
Arenosols which are calcaric; lacking gleyic properties within 100 cm of the surface. Deep to very deep, moderately well to well drained, dark grey to pale brown fine sands to loamy sands.

Calci-Haplic Arenosols (ARhk)
Haplic Arenosols having calcic properties within 125 cm of the surface; lacking the properties diagnostic of Calcisols and Calcaric Arenosols. Deep to very deep, well drained, dark reddish brown, loamy medium-fine sands.

4.6.3 Calcisols (CL)

Soils having one or more of the following; a calcic horizon, a petrocalcic horizon or concentrations of soft powdery lime within 125 cm of the surface; having no diagnostic horizons other than an ochric A horizon, a cambic B horizon or an argic B horizon which is calcareous; lacking the characteristics which are diagnostic for Vertisols or Planosols; lacking salic properties; lacking gleyic properties within 100 cm of the surface.

Haplic Calcisols (CLh)

Calcisols lacking an argic B horizon and a petrocalcic horizon. Moderately deep to deep, imperfect to moderately well drained, dark brown and greyish brown to yellowish brown, sands to sandy loams.

Luvic Calcisols (CL1)

Calcisols having an argic B horizon; lacking a petrocalcic horizon. Moderately deep to deep, imperfectly to moderately well drained, brownish black, fine loamy sands.

Hyper-Luvic Calcisols (CL1p)
Luvic Calcisols resting on very calcareous material which has more than 40% CaCO_{3} equivalent. Moderately deep, imperfect drainage, brownish black to greish yellow brown, fine sandy loams.

Petric Calcisols (CLp)
Calcisols having a petrocalcic horizon. Shallow to moderately deep, imperfect drainage, dark reddish grey to brownish grey, sandy loams.

4.6.4 Solonetz (SN)

Soils having a natric horizon.

Haplic Solonetz (SNh) / Haplic-xanthic Solonetz (SNhx)
Solonetz having an ochric A horizon; lacking stagnic properties and lacking gleyic properties within 100 cm of the surface. Moderately deep to deep, poor to imperfect drainage, greyish brown to dull yellow orange/brown, silty fine sands to sandy loams

Calcic Solonetz (SNk)

Solonetz having a calcic horizon or concentrations of soft powdery lime within 125 cm of the surface; lacking a gypsic horizon; lacking stagnic properties and lacking gleyic properties within 100 cm of the surface. Shallow to moderately deep, poor to imperfect drainage, dull yellowish orange to dark reddish grey, fine sandy loams to silty loams.

Calci-haplic Solonetz (SNhk)

Haplic Solonetz having calcic properties; lacking the properties diagnostic of Calcic Solonetz. Shallow to moderately deep, poorly drained, dull yellowish brown sands.

4.6.5 Anthrosols (AT)

Soils in which human activities have resulted in profound modification or burial of the original soil horizons through removal or disturbance of surface horizons, cuts and fills, secular additions of organic materials, long-continued irrigation, etc.

Dystric Anthrosol (ATd)

Anthrosols which have a base saturation (by $\mathrm{Na}_{4} \mathrm{OAc}$) of less than 50% at least from 20 to 50 cm from the surface. Moderately deep to deep, moderately well to weil drained, dark brown fine sands to sandy loams. This unit of classification does not appear in the FAO revised legend. Based on field experience, however, it best describes the soil characteristics modified by man on the old and now drying Okavango floodplain (no longer periodically inundated). It is suggested as a refinement to the legend.

5 LAND SYSTEMS

5.1 MAPPING UNITS

The integrated land systems approach enabled complete coverage of the physical environment. Final mapping units employed were based on a combination of landforms, surface drainage, depth of sand mantle, shallow groundwater rest water levels, growing period zones, regional climate, soils and vegetation.

Three principal levels of mapping unit were employed - the land region, land system and land unit (used synonymously with land facet) - using a nested hierarchical system of aggregation.

Land units within each system were often causally linked by surface geology, the occurrence of shallow groundwater and locally active geomorphological processes. These units were not illustrated on the final land systems map, although as they are fully represented by soil unit changes, soil phase and catenery position, the soils map (Map 3) can be overlaid to locate specific land units.

Land regions were delineated as aggregations of land systems contained within discrete regional surface drainage areas. Within each drainage region land systems were represented as areas with a recurring pattern of topography, landform, depth of sand mantle, soil and vegetation associations within relatively uniform growing period zones

Seven land regions, 19 land systems and 62 land units were identified in Kavango Region.

Each land system was unique and numbered. The land units within each system were given connotative titles, e.g. floodplain: seasonally inundated.

5.2 EXPLANATORY LEGEND TO THE RECONNAISSANCE LAND SYSTEMS MAP OF KAVANGO REGION

A legend to the Land Systems Map describing its main features is given below.

5.2.1 Land Region 1: Western Stabilised Dunes

land System	land Unit	Soll Unit
Wide Dunes	Dune crests and slopes	Cambic Arenosols
	Inter-dune valleys: no pans	Haplic Arenosols
Narrow Dunes	Dune crests and slopes	Cambic Arenosols
	Inter-dune valleys: thin sand mantle, no pans	Ferralic Arenosols
	Inter-dune valleys: pan zones	Petric Calcisols
Dune Fringes	Dune crests and slopes	Cambic Arenosols
	Inter-dune valleys: thin sand mantle, no pans	Ferralic Arenosols
	Sand-drift plain	Haplic Arenosols
	Pan zones	Petric Calcisols
Dune Outliers - wide dunes, NE Kavango	Crests and mid-slopes	Cambic Arenosols
	Interdune valleys	Haplic Arenosols
Dune Outliers - narrow dunes, SE Kavango	Crests and mid-slopes	Cambic Arenosols
	Interdune valleys: thin sand mantle	Ferralic Arenosols
	Interdune valleys: pan zones	Petric Calcisols

Western Kavango is characterised by an extensive system of seif dunes, orientated in an east-west direction and deposited on calcrete surfaces during the Late Holocene. Now stabilised by vegetation, the dune system is clearly differentiated by dune amplitude and the depth of sand mantle to underlying calcrete. The widely spaced northern dunes are associated with a deep sand mantle whereas the more narrowly spaced southern dunes are associated with a shallower sand mantle. The latter are characterised by the common occurrence of pans in dune streets, where underlying calcretes are exposed or thinly covered by recent aeolian and colluvial deposits.

The western dune system gradually loses its distinctive morphology towards the east where its fringes are characterised by feathery complexes of flattened dune outliers with in-filled dune streets, and sand-drifts characteristic of the northern sand plains.

5.2.2 Land Region 2: SW Pediplain

land Systom	Land Unit	Soil Unit
Karst pediplain	Gentle rises and flat areas: thin sand mantle	Calcaric Arenosols
	Depressions on hard plain.	Petric Calcisols

The south-west corner of Kavango intersects the northern tip of a broad flat pediplain where calcretes are exposed or lie near the surface of shallow aeolian and predominantly red sands. The pediplain peters out to the north and east where the calcretes gradually disappear under sand drift and seif dunes. Thought to be the fringe of a calcrete apron skirting the Karst Otavi mountain complex, the pediplain is characterised by numerous pans and dune remnants.

5.2.3 Land Region 3: Northern Sandplain

Land System	land Unit	Soil Unit
Okavango river and terraces	Floodplain: seasonally inundated	Dystric Fluvisols
	Floodplain: dry back floor $\&$ base of terraces	Dystric Anthrosols
	Terraces: mid slopes	Haplic Arenosols
	Terraces: crests	Ferralic Arenosols
Sand plain incised by short omiramba	High sites \& flat areas: central \& northern sand plain	Haplic Arenosols
	Flat areas with shallow water table: NE Kavango	Ferralic Arenosols
	Local depressions with shallow water table	Haplic Calcisols
	Flat areas: NW Kavango	Haplic Arenosols
Northern omiramba	Omiramba crests and slopes	Cambic Arenosols
	Omiramba floors: thin sand mantle	Ferralic Arenosols
	Omiramba floors: deep sand mantle and/or colluvial deposits	Cambic Arenosols
	Omiramba floors: pan zones	Haplic Calcisols

Sand drift plains cover extensive areas of northern, north-eastern and central Kavango. The depth of sand mantle increases generally to the north and east, as does the extent to which those sands have been worked and reworked by wind.

The plains slope gradually to the north-east and east, are incised by a number of well-defined north and east draining omiramba, and are bordered by the perennial Kavango River system in the north. Over large tracts of the northern sand plains surface drainage features are imperceptible or non-existent.

Fault systems, produced by tectonic activity commencing during the early Cretaceous period, exert a strong influence on the directions of omiramba.. Omiramba were initially incised along fault-weakened zones during a pluvial period post-dating the formation of calcrete layers at the top of the Kalahari Sequence. During subsequent periods of aridity intense aeolian processes have deposited dune sands on the floors of the omiramba valleys. Omiramba valleys are thus a combination of recent fluvial deposits, sandy side slopes of aeolian origin, and steep calcrete faces.

The perennial eastern-flowing Okavango River is characterised by point bars, meanders, ox-bow lakes and other erosional and depositional features encompassing a distinct sequence of riverine land units. The floodplain area, two to six kilometres wide, can be divided into two zones. A broad area adjacent to the present course of the river actively receives fresh sediments during regular seasonal periods of inundation. As water levels drop, ponds and lakes remain. Behind this active floodplain area can be found a drier zone where the floodplain is no longer seasonally indundated. A terrace system differentially covered by alluvial and aeolian deposits is situated approximately six kilometres behind the floodplain.

5.2.4 Land Region 4: Omatako Drainage

Land System	Land Unit	Soll Unit
Main channel	Channel floor: pan zones	Haplic Calcisols
	Channel floor \& confluences: thin sand mantle	Ferralic Arenosols
	Mid slopes: shallow calcrete	Calcaric Arenosols
	Mid slopes: deep sand mantle	Cambic Arenosols
	Crests	Ferralic Arenosols
Tributaries	Tributary floors: pan zones	Haplic Calcisols
	Tributary floors and side slopes: shallow calcrete	Calcaric Arenosols
	Tributary floors \& side slopes: deep sand mantle and/or colluvial deposits	Cambic Arenosols
Upper slopes	Western tributaries top slope transition to dunes: thin sand mantle	Ferralic Arenosols
	Western tributaries top slope transition to dunes: shallow calcrete, pan zones	Petric Calcisols
	Eastern tributaries: upper slopes, thin sand mantle	Ferralic Arenosols
	Eastern tributaries: upper slopes, shallow calcrete, south-west of watershed	Petric Calcisols
	Eastern tributaries: upper slopes, shallow calcrete, north-west of watershed	Haplic Calcisols

Because of its extent and influence far beyond the Kavango Region, the Omatako Omuramba has been assigned an individual land region map unit. The systems within this region, comprising the broad main channel floor, the tributary areas and the upper slopes, may be viewed as areas with recurring patterns of genetically linked land units.

In terms of catenary sequencing the region is divided into systems individually displaying distinctly different erosion-deposition relationships between their component land units. Within the region as a whole the land systems also link up to form a cascading 'meta-system' functioning as a series of simple erosion catenas. This is compounded in places (particularly between the main Omatako channel and steep valley side slopes) by more complex local erosion-deposition sequences, whereby surface wash is greatest on the lower steeper parts of slopes leading to the preferential removal of fine soil particles and leaving a coarse-grained soil at slopes bases.

5.2.5 Land Region 5: Ephemeral Catchment Divide

land System	Land Unit	Soil Unit
Watershed	Local depressions and flat areas with thin sand mantle	Cambic Arenosols
	Local crests: shallow calcrete	Calci-Haplic Solonetz

A broad, indistinct sandy plateau in central Kavango marks the water divide between eastern-draining omiramba from the largest north-draining Omatako omuramba. This area is pitted with shallow depressions and defined by average slope gradients of less than 0.07%.
One of the most complex map units, the ephemeral catchment divide provides a mosaic of localised differential substrate conditions ranging from deep sand to calcrete outcrops. Extensive areas of indurated and consolidated parent material lie in shallow subsurface layers impeding drainage throughout the region.

5.2.6 Land Region 6: Southern/Eastern Panveld

Land System	Land Unit	Soill Unit
High plain	Flat areas: thick sand mantle	Haplic Arenosols
	Depressions: shallow calcrete	Petric Calcisols

The northern tip of the Tsumke Panveld intersects the southern Kavango boundary to the west of the transitional hardpan system of Land Region 7. The boundaries of this region were mapped from aerial photographs and confirmed by aerial reconnaissance. From this bird's eye viewpoint the high plain of the southern panveld appears not to form part of the eastern catchment of the Omatako omuramba. By the direction of its slope gradient it should form a link to the hardpan areas of the eastern drainage system, although it stands isolated in the landscape of southern Kavango, resembling most closely the ephemeral catchment divide located further north. It may in fact be a relic ephemeral watershed now physically separated from the main catchment divide by sand drift. From secondary information sources (DRFN, 1999; De Pauw, 1996; FAO, 1984) the soils of this area are inferred to be Arenosols formed in simple catenary sequence with Calcisols overlying shallow calcrete deposits.

5.2.7 Land Region 7: Eastern-flowing Paleo Drainage

land System	land Unit:	Safl Unit
Sand plain with common small pans	Low dune crests, mid slopes \& flat areas: thick sand mantle	Haplic Arenosols
	Low dune crests, mid slopes \& flat areas: shallow calcrete	Calci-Haplic Arenosols
	Slope bases \& depressions: shallow calcrete	Calcic Solonetz
Sand plain with large pans	Low dune crests, mid slopes \& flat areas: shallow calcrete	Haplic Calcisols
	Higher sites \& crests of long gentle slopes: thin sand mantle	Ferralic Arenosols
	Pan zones	Haplic-xanthic Solonetz
Hard pan	Sand-drift plain: shallow calcrete	Calcaric Arenosols
	Convex crests: shallow calcrete	Hyper-Luvic Calcisols
	Pan zones	Petric Calcisols
Transitional system between hard pan \& sand plain with large pans	Crests of long rises \& eastern draining tributary base slopes	Luvic Calcisols / Haplic Alisols
	Pan zones	Petric Calcisols
Eastern omiramba	Omiramba crests	Haplic Arenosols
	Omiramba: mid \& base slopes	Cambic Arenosols
	Omiramba floors: shallow calcrete	Petric Calcisols
	Omiramba floors: pan zones	Calcic Solonetz
	Omiramba floors: thin sand mantle	Ferralic Arenosols
	Omiramba tributary floors: thick sand mantle	Cambic Arenosols

Calcrete deposits underlie the extensive sand plains of this region, and where they surface or lie at shallow depths in depressions, they are associated with numerous small and large pans. Depth of calcrete, relief gradients and local water transfer mechanisms play important roles in the formation of Calcisols and Solonetz soils in this region. Where gradients are lowest Calcisols tend to form in large faintly bowlshaped areas underlain by shallow calcrete, in association with large pans. Where relief is controlled by incipient dune formations and minor omiramba incisions through calcrete deposits, Solonetz soils tend to form in the more defined longitudinal depressions containing numerous small pans.

In the case of the omiramba draining eastwards towards Botswana, incision depths into underlying calcretes increase to the east, with the result that their valleys tend to narrow along their length. It is apparent that recent aeolian activity in addition to fluvial processes have influenced the form of these valleys and their environs. Dunes and drifts of wind blown-sand commonly fringe the eastern omiramba, being more pronounced on southern banks.

Basement formations comprising basalt and quartzite underlie areas in the southeast of this region but do not surface. The formations are capped by surface deposits of calcrete and consolidated aeolian sands forming a complex 'haropan' surface.

From a geomorphological point of view the hardpan land system represents a deflation zone in which the entire surface has been differentially denuded and eroded by aeolian processes. It is a residual landscape of inverted features where former dunes have been eroded down to lower positions, and now act as wind corridors between higher areas more resistant to denudation. On top of the higher areas lie the remains of former pans and their associated, now dessicating, soils. These soils are now perched on gently convex crests with ample opportunity for surface runoff as opposed to their original locations on flat, interdune floors with conditions more conducive to the collection of surface water.

The hardpan system loses its morphology towards the west in a broad transitional zone which merges with extensive sand plains and large pans east of the ephemeral catchment divide.

6 FACTORS CONTROLLING SOIL DEVELOPMENT

6.1 CLIMATE, PARENT MATERIAL AND GEOMORPHOLOGICAL PROCESSES

True desert soils (arid) are not found in Kavango, nor are the true semi-arid soils representative of dry woodlands, grasslands and savannas. On the one hand, the soils of the region indicate a greater aridity than would be expected from the present-day semi-arid climatic record. On the other hand, no other evidence could be found to support the existence of truely arid environmental conditions. Rocky outcrops occur, although weathering has not produced coarse regolith. The sorting action of moving water and wind has not differentiated the parent material into rocky, gravelly, and sandy areas that are consistent with present-day aridity, although the genetic history of the parent material includes hyper-arid paleo-climatic conditions.

The parent material is simply an almost complete surface coverage, a virtual blanket, of pre-weathered, non-cohesive sand, whether deposited by alluvial or aeolian processes. Such parent material would certainly arrest soil formation and favour arid soil moisture regimes; conditions which are repeatedly documented in the great majority of the soils analysed by the immaturity of profile development and lack of horizon differentiation.

6.1.1 A residual landscape

Basement formations comprising basalt and quartzite underlie areas in the southeast of Kavango but do not surface. The formations are capped by surface deposits of calcrete and consolidated aeolian sands forming a complex 'hardpan' surface.

From a geomorphological point of view the hardpan land system represents a deflation zone in which the entire surface has been differentially denuded and eroded by aeolian processes. It is a residual landscape of inverted features where former dunes have been eroded down to lower positions, and now act as wind corridors between higher areas more resistant to denudation. On top of the higher areas lie the remains of former pans and their associated, now dessicating, soils. These soils are now perched on gently convex crests with ample opportunity for surface runoff as opposed to their original locations on flat, interdune floors with conditions more conducive to the collection of surface water.

6.2 SOIL COLOUR, GENETIC INHERITANCE AND CATENARY SEQUENCES

The majority of soils in Kavango, in common with the neighbouring soils of northwest Botswana and south-central Angola, form on either sandy or loamy parent materials.

6.2.1 Soil colours and genetic inheritance

The older Tertiary parent materials are completely'recycled, having been thoroughly weathered and eroded before their present deposition. As a result, the soils developed on these substrates have not inherited the end-products of in situ weathering and individual soil particles of the present soils are therefore not commonly coated by oxidized iron. The only soils in which oxidized iron coatings would give the soils a red colour are the younger red aeolian sands blown in and deposited on top of the older Tertiary aeolian deposits, and the soils developed on top of the alluvial deposits of the Okavango river terraces.

Between these two soils the genetic chemical conditions favouring iron coatings are very different. In the case of the younger red aeolian sands, it is possible that previous weathering conditions did not completely remove the iron pigment which consequently remains coated on quartz grains giving a pale pink to red colouration. In the case of soils on alluvial terraces, the immature sediments forming the parent material would have originated in humid paleo-environmental conditions of central Angola and provide the source of iron.

The upward vertical movement of oxides in solution and subsequent precipitation as fine grained pigment throughout soil profiles are characteristic processes operating in the current climatic conditions of Kavango. These processes do give a distinct red colouration to soils, with the hues, values and chromas of soil colour indicating the concentration of the source material and the intensity of its redistribution processes. The iron oxides precipitated as pigment are, however, never quantitatively abundant enough to affect the total iron content of the soils.

6.2.2 Soil colour change, subsurface drainage and catenary sequences

Genetic inheritance together with the mobility of oxides in solution have produced a series of changes in soil properties from the upper to the lower members of catenas in all land systems. The variation in soil colour is one of the more obvious sequences, and this can be related to the subsurface drainage dynamics of the predominantly sandy upper slopes.

Upland, well-drained soils are usually reddish-brown, the colour showing the presence of non-hydrated iron oxides in the soil. The iron is well dispersed and usually partly attached to the clay fraction. of silicate clays are not common in Kavango due to the predominance of pre－
weathered aeolian parent material, the accumulation of bases is a common soil characteristic in both the Calcisols and Solonetz soils of the region.

The term 'base' is used for both the cations of the alkali metals (e.g. sodium and potassium) and alkaline earth (e.g. calcium and magnesium). The basic cations are very mobile and so tend to form soluble compounds (e.g. sodium chloride) more readily in the soil. The common denominator of Calcisols and Solonetz soils in Kavango is the accumulation of bases somewhere within the profile. The accumulation may occur in all horizons or in particular horizons, depending on the controlling processes.

The accumulation of bases in the soil profile takes two main forms. They may be found as free salts (sodium chloride, calcium carbonate) in combination with soil anions, or as cations adsorbed onto the soil colloids, e.g. silicate clays.

Bases in the form of adsorbed cations are only present in soils formed on alluvial deposits where clay particles are present in sufficient quantities to warrant a loamy texture. These soils are found on the Okavango river terraces and on interdune and omiramba floors. In the remaining areas of Kavango bases as adsorbed cations are not common due to the low proportion of colloidal particles in re-worked aeolian deposits. In these areas bases are found as free salts.

The formation of free salts presupposes that the soil colloids, where present, are base-dominated. That is, the presence of free salts of a certain base element indicates a concentration in the soil of that element in excess of what is required to exchange cations on the soil colloids.

6.3.1 Origin of bases in soils of Kavango region

The bases that accumulate in the soils of arid and semi-arid areas generally originate from parent material, invasion by saline water, and rainwater. In Kavango, the bases are primarily derived from the following sources:

1. Parent material (divided into non-coherent and coherent deposits)

1a. The mixture of materials comprising the alluvial deposits of the Okavango river terraces derive their bases from weathered origins in humid paleoenvironmental conditions of central Angola. Non-coherent.

1b. A greater part of the regional land surface is covered by deposits of preweathered and unconsolidated aeolian sand - a porous, non-equilibrium
assemblage of detrital materials, defined as loose, non-cohesive and granular, with grain sizes ranging from 0.0625 to 2.00 mm diameter.
1c. In numerous localities sand is cemented by calcium carbonate to produce a nodular to highly indurated near-surface layer of calcrete.

1d. In places, calcium carbonate cementation is replaced by silica cement giving rise to silcrete at shallow depths.

1e. Consolidated sands.
1g. Shallow buried sandstone. Possibly diagenetic with low porosity through compaction and cementation, loss of many unstable detritals, and gairs of stable authigenic precipitates.
2. Fire Effects

2a. Burnt organic mottles and fragments. The greater part of Kavango has been subjected to repeated, and over the last 15 years or so, increasingly frequent burning of vegetation. These are started naturally by lightning strikes on dry, easily combustible organic material, or artificially by man. Collections of burnt organic fragments on the soil surface, and burnt organic mottles dispersed down root channels are common.

2b. Ash. Thin surface deposits of nutrient-rich light coloured ash cover large areas of Kavango as a consequence of vegetation burning. Carbon detritus in the form of charcoal fragments, together with water-soluble bases released from volatilised organic compounds, are differentially deposited onto soil surfaces and subsequently incorporated into the solum. Both the rate and exact location of incorporation of these bases will depend on the timing and intensity of the first rainfall event subsequent to a burn. Prior to this event, wind may play an important role in their removal and re-deposition. Climatic records for Kavango region indicate that the frequency of high winds increases significantly from August onwards, reaching a maximum in November just prior to the onset of the rainy season. During the same period wind speeds also increase.
3. Water

3a. Saline groundwater
3b. Base-rich irrigation water. Base influx through application of fertilizer salts in solution

3c. Okavango river. Over-bank flow and seasonal inundation of nutrient-rich river water onto floodplain. Intrusion of salts in solution from river to shallow aquifers.

3d. Rainwater. Intrinsic salts.

6.3.2 The end-products of calcification

The most extreme form of the calcification process - salinization - is not evident in the soils of Kavango and therefore saline soils are not found. In terms of climatic zonation increasing humidity encourages leaching to 'set in' and the amount of available vegetation increases. Before the effect of vegetation becomes apparent however, a series of 'desert soils' occur in the following sequence of increasing wetness: solonetz - solodized-solonetz - solodic. Solonetz soils occur in eastern part of the region although neither solodized-solonetz nor solodic soils, more characteristic of humic conditions, have developed.

Climatic conditions experienced in Kavango rarely encourage the formation of humus, thus limiting the type of soils formed, whether sodic, calcic or not. Whereas climatic conditions do encourage the rapid growth of grasses and herbs, summer temperatures are hot rather than warm and only moderately humid. From early in the dry season onwards wind also encourages the rapid desiccation of dead organic matter, providing a ready supply of combustible material rather than an accumulation of nutritive organic matter for humus formation. Therefore, although the late summer droughts and winter frost conditions would normally arrest the decomposition of organic matter and keep it available for humus formation, most potential sources of organic matter are lost through dessication and fire well before the next rainy season, when humification processes would become effective.

6.4 SUB-SURFACE DRAINAGE AND SOIL DEVELOPMENT

The properties of Arenosols produce a high water transfer potential. Combining this with the spatial variability of these soils it is evident that the Arenosols act as an important agent in the rapid sub-surface transfer of water between top slopes and channels (catenary influence), local rises and depressions.

The Arenosols of the eastern drainage region in particular appear to be taking the role of main distributary from local rises to depressions where solonetz and calcisols develop, acting as the supplier of salts. As the medium through which leakage occurs, these soils are therefore able to act as catalysts of soil development in Solonetz soils and altering balance of sodium and calcium cations in Calcisols.

7 REFERENCES

Brady, C.N. (1974) The Nature and Properties of Soils 8th ed. Collier McMillan Publ.
Cashman, A.M., Harris, M., Plettenberger. \& Volkman, B. (1986): Preliminary Reconnaissance Report on Irrigation Possibilities Along the Okavango River in the Kavango. Internal Report, Planning Division, Department of Water Affairs, Windhoek. Contact: Library, Department of Water Affairs, MAWRD, Windhoek.

De Pauw, E. (1996): Agroecological Zones Map of Namibia (first approximation). Technical Report 1. FAO Technical Co-operation Project TCP/NAM/6611 (A).

Desert Research Foundation Of Namibia (DRFN) (1999): Land and Water Resource Evaluation for Development Planning in Northeast Otjozondjupa Region, Namibia. Report of the Summer Desertification Programme (SDPVII), Windhoek, January 1999.

Eklundh, L. (1996): AVHRR NDVI for Monitoring and Mapping of Vegetation and Drought in East African Environments. PhD Thesis; Dept. Physical Geography, Lund University/Swedish National Space Board, Sweden, March 1996.

FAO/UNDP (1984): Assessment of Potential Land Suitability - Namibia - Land Regions and Land-Use Potential. AG: DP/NAM/78/004 Technical Report 2, Food and Agriculture Organization of the United Nations, Rome, 1984. Contact: Soil Mapping and Advisory Services, Ministry of Agriculture, Gaborone.

FAO/UNESCO/ISRIC (1988): FAO-UNESCO Soil Map of the World, Revised Legend. World Soil Resources Report (60). FAO, Rome.

FAO (1990): Eighth Meeting of the East and Southern African Sub-Committee for Soil Correlation and Land Evaluation. World Soil Resources Reports (65). Harare, Zimbabwe, 9-13 October 1989.

FAO (1991): World Soil Resources - An explanatory note on the FAO World Soil Resources Map at 1:25000 000 scale. World Soil Resources Reports (66). Rome.
FAO (1991): Guidelines: Land Evaluation for Extensive Grazing. FAO Soils Bulletin (58). Soil Resources, Management and Conservation Service, FAO Land and Water Development Division, Rome.

FitzPatrick, E.A. (1991) Soils - their Formation Classification and Distribution Longman Scientific and Technical.

Geological Survey of Namibia (1980): Geological Map of Namibia. 1:1,000,000 scale. Compiled by Miller, R.McG., and Schalk, K.E.L.

Gerrard, J. (1992): Soil Geomorphology - An Integration of Pedology and Geomorphology. Chapman and Hall, London.

Landon, J.R. (ed.) (1984) Booker Tropical Soil Manual - a Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Sub-Tropics Booker Agricultural International Ltd.

Loxton, R.F., Hunting \& Associates (1971): Consolidated Report on Reconnaissance Surveys of the Soils of Northern and Central Soúth West Africa in terms of their Potential for Irrigation. Undertaken for the Department of Water Affairs, Windhoek. December, 1971. TS/30/71.

Hillel, D. (1998); Environmental Soil Physics. Academic Press, San Diego.
ISSS (1996): Proceedings of Soil Correlation Workshop. Institute of Soil, Water and Climate, Pretoria. Contact ISSS organiser: Professor Laker (e-mail: grondkl@scientia.up.ac.za)

Jamagne, P. (1990): Soils and Land Suitability of North West Ngamiland. AG:BOT/85/011 Field Document 26. FAO/UNDP/Govt. of Botswana. Gaborone, July, 1990.

Macvicar, C.N., Loxton, R.F., Lambrechts, J.J.N., Le Roux, J., De Villiers, J.M., Verster, E., Merryweather, F.R., Van Rooyen, T.H., and Von M. Harmse, H.J. (1977; updated 1991) : Soil Classification - A Binomial System for South Africa. The Soil and Irrigation Research Institute, Department of Agricultural Technical Services, Pretoria, RSA. Contact: Ms M. Coetzee, Land Evaluation Unit, MAWRD, Windhoek.

MINADER (1996): Angola - Agricultural Recovery and Development Options Review. Draft Report. Report No: 96/116 TCP-ANG. Ministry of Agriculture and Rural Development (MINADER) assisted by FAO/IFAD/UNDP/WB/WFP. 17 December 1996.

Mulders, M.A. (1987): Remote Sensing in Soil Science. Developments in Soil Science 15; Elsevier Science Publishers B.V., Amsterdam.

Namibian Groundwater Development Consultants (Interconsult Namibia (Pty) Ltd; 1991): Groundwater Investigation in Kavango and Bushmanland. Final report prepared for the Department of Fisheries and Water, Government of the Republic of Namibia, Windhoek.

Page, D. (1979): 'N Raamwerk Vir Ontwikkeling Van Kavango. Voume 2: Atlas. Kartografiese versorging deur Die Instituut vir Kartografiese Analise, Universiteit van Stellenbosch, Desember 1979.

Pettijohn, F.J., Potter, P.E., \& Siever, R. (1973): Sand and Sandstone. SpringerVerlag, New York.

Republic of South Africa (1976): Soil Loss Estimator for Southern Africa Development and Proposed Application of a Model. Proceedings of a workshop held at Cedera, November 1976. Natal Region, Dept. Agricultural Technical Services.

Retallack, G.J. (1977): A Colour Guide to Paleosols: John Wiley \& Sons, Chichester.
Ringrose, S., Vanderport, C. \& Matheson, W. (1997): Use of image processing and GIS techniques to determine the extent and possible causes of land management/fenceline induced degradation problems in the Okavango Area, Northern Botswana. Int. J. Remote Sensing, Vol.18, No.11, 2337-2364.

Schneider, M.B. (1987): Notes on the Terrace Soils of the Okavango River, northern S.W.A./Namibia. SWA Scientific Society Journal, Vol. XL/XLI - 1985/86, 1986/7.

Schneider, M.B. (1987): Soil Reconnaissance Survey on Proposed Development Scheme "Myl 30" Rundu, Kavango, SWA/Namibia. Rep. Sch. 111-05-87; Department of Agriculture and Nature Conservation, Windhoek.

Siderius, W. (1992): Soil Derived Land Qualities. Sol 48; ITC, Department of Land Resources and Urban Sciences, Soil Science Division, The Netherlands. March 1992.

Simmonds, A.L.E. \& Schumann, F.W. (1987): The Occurrence and Utilization of Groundwater in Kavango, S.W.A./Namibia. SWA Scientific Society Journal, Vol. XL/XLI - 1985/86, 1986/7.

Simmonds, E.B. (1997): The Soils of the Okavango River in Namibia and the Okavango Delta in Botswana. Specialist Report prepared for CSIR and Water Transfer Consultants. Initial Environmental Evaluation of the Okavango River Grootfontein Pipeline Link to the Eastern National Water Carrier in Namibia, January 1997. Contact: Library, Department of Water Affairs, MAWRD, Windhoek, or Water Transfer Consultants, c/o Parkman (Namibia), Windhoek.

Simmonds, E.B. (1998): Soils Overview. Report prepared for Okavango River Basin Preparatory Assessment Project (OKACOM), Windhoek, February 1998.

Trigg, S. (1997): Fire monitoring in the Caprivi. Report to the Environmental Profiles Project, Directorate of Environmental Affairs, Ministry of Environment and Tourism.

UNESCO (1986): Guidelines for Soil Survey and Land Evaluation in Ecological Research. MAB Technical Notes 17; Prepared in co-operation with the International Soil Reference and Information Centre (ISRIC).
van der Merwe, J.H. (1983): National Atlas of South West Africa. National Book Printers, Goodwood.

Walther, D. \& Shabaani, S. (1991): Large Scale Monitoring of Rangeland Vegetation Using NOAA/AVHRR LAC Data: Application to the Rainy Seasons 1989/90 in Northern Kenya. Range Management Handbook of Kenya Volume III/4, Ministry of Livestock Development (MOLD), Nairobi.

Yallon, D.H. (ed.) (1982): Aridic Soils and Geomorphic Processes. Catena Supplement 1; Catena Verlag.

APPENDICES

APPENDIX A.5.
WOOD UTILISATION

Table A.5.1.
Imports and Exports of Wood and Wood Consuming Articles (x000 UA)

	1981	1982	1983	1984
Wood and wood articles* (Art 44) Imports Exports**				
Net Imports				

* Mainly construction wood, planks and manufacturing wood.
** Note the rapid increase in export of wood (mostly railway sleepers) Source: External Trade Statistics, 1983/84.

Table A.5.2.
Preferred Fuelwood species included in Biomass Resources Assessment

Setswana Name	Scientific Name
Mhudioo Moduba/Modubana Mogotho/Mogot1ha Mohahu Mohudiri Mokabe/Mokabi Mokala/Mokale	$\frac{\text { Combretum apiculatum }}{\text { Combretum zeyheri/C.erytrophullum }}$
Mokgalo	$\frac{\text { Acacia erioloba }}{\text { Acacia fleckii/A. erubescens }}$
Mokgwelekgwele	$\frac{\text { Combretum apiculatum }}{\text { Mombretum herereoense }}$
Molota/Moloto	
Mongana	
Mophane	
Moselesele	
Mosetha/Mosetlha	
Motswiri/Motswere	

Source: ERL, 1985
Note: Surprisingly, some species are not mentioned (e.g. Acacia tortilis, Mosu)

Table A.5.3.
Location and Area of Woodlots and Plantations in Botswana

Table A.5.4.
Estimated Fuelwood Consumption

Country
Fuelwood Consumption Source
$\mathrm{m}^{3} \quad$ tonnes
PER CAPITA

Totswana (Rural)	0.57	0.51	ERL 1985
otswana (Rural)	0.70	0.63	USAID (1981)
Sotswana (Rural)	1.25	1.13	White (1979)
Iotswana (Rural)	0.42	0.38	Van Vegten (1981)
Botswana (Gaborone)	0.25	0.23	BRET (1985)
Botswana (Lobatse)	0.49	0.44	BRET (1985)
Bangladesh (Ohanishwar Village)	0.6	0.54	Mont.Eng. (1976)
Sudan (Basra)	4.4		Digernes (1980)
Gambia	1.2	1.08	Floor (1977)
Thailand	1.5	1.35	Openshaw (1976)
Tiberia (Monrovia)	1.3	1.17	Roitt (1970)
Kenya	1.1	0.99	Marquand (1978)
Kenya	1.0	0.9	Muchiri
Senya	1-2	0.9-1.8	Western (1978)
Canzania	2-1		Openshaw (1978)
Ipper Volta	0.8-1.1	0.7-0.99	Earnst (1977)
Upper Volta	0.7	0.63	Floor (1977)
India (Pura Village)	0.8	0.70	Reddy (1918)

Я. Conversion Factor used is $1.11 \mathrm{~m}^{3}$ per ton

Sources: ERL (1985)
Moss, R.P. and Morgan, W.B. (1980)

Table A.5.5.
Socio-Economic Level and Wood Consumption per day
Kg . of Wood Burning (1 kg) per household per day

Income State Gaborone S/Phikwe Lobatse Serowe M/polole Palapye Mean

Very low	3.6	6.2	3.1	5.8	3.5	6.1	4.6
Low	2.3	8.9	3.8	7.0	4.5	6.5	5.5
Middle	1.3	4.2	3.5	3.8	3.6	6.5	3.7
High	0.7	1.6	0.7	6.4	4.2	3.8	2.4
Very high	0	0.8	0.7	8.3	7.7	-	2.8
	1.5	5.6	2.6	5.7	4.0	5.8	4.0
Mean							

Source:
Gay and Zietlow (1985)

Table A.5.6.
Woodfuel Prices in Botswana in 1984

Good Hope	2-wheel donkeycart load	$\begin{array}{ll} \text { P } 6.00- \\ \text { P } 7.00 \end{array}$	3 t	price the same for villagers and strangers
	4-wheel donkeycart load	$\begin{aligned} & \text { P10.00- } \\ & \text { P16.00 } \end{aligned}$	$3, \mathrm{t}$	" " "
Mmankgodi	half a 2-wheel to donkey-cart load	P 7.00	7 t	sold on main road passing vehicles
	60 kg wheelbarrow load	P 6.00	10t	" " "
	sledge load	P 7.00	7 t	" " " "
	van 1oad	P20.00	7 t	collected on request for passing van
	2-wheel donkeycart load	$\begin{aligned} & \text { P 9.00-- } \\ & \text { P10.00 } \end{aligned}$	5 t	intra-village price for non-strangers
	4-wheel donkey-	P20.00	5 t	" " "
Lecheng	4-wheel donkeycart load	P10.00	$2.5 t$	price to locals
	4-wheel donkeycart load	$\begin{aligned} & \text { P18.00- } \\ & \text { P20.00 } \end{aligned}$	5 t	price to non-locals
	2-wheel donkeycart load	$\begin{aligned} & \text { P } 4.00- \\ & \text { P } 6.00 \end{aligned}$	$2.5 t$	price to locals
	2-wheel donkeycart load	$\begin{aligned} & \text { P10.00- } \\ & \text { P15.00 } \end{aligned}$	6 t	price to non-locals (at Palapye)
Bobonong	lorry load	P20.00	2 t	sold only to villagers
	2-wheel donkey-	P 5.00	$2.5 t$	" " "
Masunga	2-wheel donkeycart load	$\begin{array}{ll} \text { P } 5.00 \\ \text { P } 7.00 \end{array}$	3 t	```little trading and all intra-village```

Source: ERL, 1985

Table A.5.7.
Scenarios for Future Firewood Use
(x1000 tonnes)

Source: ERL, 1985.
*See Table 5.1. for Regions
Kgathi's estimates in 5 scenarios* for Botswana.

	1990	$\underline{\underline{2002}}$
Urban Areas	$59-101$	$96-343$
Rural Areas	$998-1176$	$668-1686$
Total Botswana $1099-1235$	$1011-1784$	

*Assumptions for population growth and urbanisation differ.
Source: Kgathi, forthcoming

Table A.5.8.
Calculated Biomass Yields for Vegetation Types

Vegetation Type	Biomass (tonnes/ha (Oven Dried)	Increment (tonnes/ ha/year)

1. Bare ground
2. Sparse vegetation
3. Low Density Woodland
4. Mid-Density Woodland
5. Higher Density Woodland

-	-
3.6 ± 4.3	0.3
18.9 ± 6.6	1.0
25.9 ± 12.7	1.4
48.0 ± 10.6	2.1

Table A.5.9.
Distances travelled for wood

APPENDIX A.6.
MINERAL PRODUCTION
Table A.6.1.
Botswana Mineral Production and Estimated value of Mineral Production

[^0]Table A.6.1. (continued)
Botswana Mineral Production and Estimated value of Mineral Production

YEAR	MANGANESE		GOLD		ASBESTOS		KYANITE		LIMESTONE	
	Production (tonnes)	$\begin{aligned} & \text { Value } \\ & \text { (P'000) } \end{aligned}$	Production (tonnes)	$\begin{aligned} & \text { Value } \\ & \text { (P'000) } \end{aligned}$	Production (tonnes)	$\begin{aligned} & \text { Value } \\ & \text { (P'000) } \end{aligned}$	Production (tonnes)	$\begin{aligned} & \text { Value } \\ & \text { (P'000) } \end{aligned}$	Production (tonnes)	$\begin{aligned} & \text { Value } \\ & \left(\text { P' }^{\prime} 000\right) \end{aligned}$
1950-1965	117714	1150	245.2	217	18114	3188	9366°	171	-	-
1966	913	10	-	-	913	10	-	-	-	-
1967	4253	19	-	-	-	-	-	-		
1968	9988	123	-	-	-	-	-	-		
1969	22244	400	-	-	-	-	-			
1970	48311	843	-	-	-	-	-	-	-	-
1971	35603	432	-	-	-	-	-	-		
1972	687	20	-	-	-	-	-		,	
1973	340	7	-	-	-	-		-	1 -	
1974	\| -	-	-		-	-			-	-
1975	1 -	-	-	-	-	-				-
1976	1 -	-	-	-	-	-				-
1977	1 -	-	-	-	-	-	-		-	
\|1978	-	-	-	-	-	-				-
1979	- -	-	-	-	-	-				
1980	-	-	-	-	-	-	-	-	-	-
1981	-	-	10.3	117	-	-	-	-	275	6
1982	-	-	14.9	168	-	-	-	-	275	6
1983	-	-	11.3	164	-	-	-	-	43	4
\| 1984	-	-	17.87	184	-	-				
TOTAL	204053	3004	299.57	850	19027	3198	9366	171	318	10

Table A.6.1. (continued)
Botswana Mineral Production and Estimated value of Mineral Production

YEAR	TALC		SEMI-PRECIOUS STONES		CRUSHED STONES		SAND AND GRAVEL		TotalValue Al1 Minerals $\mid\left(P^{\prime}, 000\right)$
	Prod. (Tonnes)	Value $\text { (} P^{\prime} 000 \text {) }$	Sales (Tonnes)	Value $\left(P^{\prime} 000\right)$	$\begin{aligned} & \text { Prod. } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$	Value $\dot{\mid}\left(P^{\prime} 000\right)$	$\begin{aligned} & \text { Prod. } \\ & 1\left(\mathrm{~m}^{3}\right) \end{aligned}$	Value $\left(P^{\prime} 000\right)$	
1950-1965	48	1	-	-	-	-	- -	-	4727
1966	-	-	-	-	-	-	-	-	20
\| 1967	73	1	-	-	-	-	-	-	26
\|1968	124	1	2	1	-	-	-	-	190
1969	51	1	6	4	24512	31	-	-	648
1970	36	-	13	5	15786	35	-	-	3587
1971	130	1	105	34	52698	235	-	-	6242
\|1972	-	-	100	33	68039	305	-	-	19818
\|1973	-	-	73	22	33476	133	6055	5	23526
\|1974	18	1	37	14	40071	206	56 655*	62	38586
\| 1975	142	14	45	22	53417	319	127226	211	52975
\| 1976	144	17	42	10	100684	382	151063	198	87741
\| 1977	288	34	50	16	127983	527	135840	227	94541
\| 1978	313	45	10	3	141415	1005	133553	274	133936
1979	104	15	5	1	228526	1657	229856	536	244692
1980	78	19	20	4	222033	1861	201925	769	303665
1981	-	-	-	-	184355	1839	156921	689	288403
1982	-	-	1	-	248671	3641	74367	499	478067
1983	-	-	13	3	441205	5082	135560	726	618015
1984	-	-	37	16	436604	2948	188498	762	961346
TOTAL	1549	151	559	188	2419475	20206	1597519	4958	3360028

Source: Department of Mines, Annual Report, 1984.

Table A.6.2.
Employment Mining Sector (Botswana)

	Diamonds	Copper/ Nicke1	Coal	Others	Total	As \% of formal Employment
1984	3,743	4,270	182	341	8,536	7.8
1983	3,527	4,172	176	383	8,258	8.2
1982	3,406	4,162	176	360	8,104	8.1
1981	3,062	4,273	162	325	7,822	8.0
1980	2,623	4,295	171	255	7,353	8.8
1979	1,918	3,715	164	323	6,120	8.1
1978	1,735	3,248	153	332	5,468	
1977	1,382	3,107	154	317	4,960	
1976					5,450	9.2
1975					4,525	7.9
1974					4,100	7.9
1973					3,525	7.5
1972					1,675	4.1
1968					825	3.3

Source: CSO, Department of Mines.

Table A.6.3.
Government Revenue from Mining Sectors
through Department of Mines

	Diamonds	Copper/ Nickel	Coal	Total	Total GoB	Total GoB as \% of GoB Revenue
1984/85	207.8	0	0.3	208.1		
1983/84	122.1	0	0.2	122.5		
1982/83	58.8	0	0.2	59.0	99.5	25.3
1981/82	14.8	0	0.2	15.3	114.9	37.2
1980/81	50.6	0.4	0.1	51.3	101.1	33.0
1979/80	50.1	1.8	0.1	52.1		
1978/79						
1977/78	12.7	0.8	0.9	13.6		
1976/77						

Sources: Department of Mines, Annual Reports; Statement of Accounts.

Table A.6.4.
Investments by Mining Sector (P mln; constant 1979/80 prices)

	Absolute	As \% of total investments
1981	150.5	
1980	109.8	45.3
1979	128.8	36.2
1978	87.5	43.3
1977	51.2	27.8
1976	12.9	9.6
1975	30.1	16.6
		50.2

Table A.6.5.
Total value of mining production GDP, exports

	(1) mine production	(1) as \% of GDP	(1) as \% of exports
1984	961.3		
1983	618.0	48.7	79.9
1982	478.1	46.7	67.6
1981	288.4	37.9	65.8
1980	303.7	39.8	64.5
1979	244.7	35.5	81.4
1978	133.9	26.6	68.8
1977	94.5	26.7	68.4
1976	87.7	28.2	57.1
1975	53.0	19.6	58.3
1970	3.6		51.5
1966	0	0	

Source: Department of Mines, CSO, Colclough and McCarthy, 1980.

Table A.6.6.
Production from Diamond Mines

	0	$\begin{gathered} \text { Tonnes Treated } \\ (x 1000) \end{gathered}$		Carats Recovered (x1000)		
		L	J	0	L	J
1970				538**		
1971	695			913*		
1972	2701			2446		
1973	2815			2453		
1974	2954			2718		
1975	3048			2414		
1976	3429			2361		
1977	3450	1087		2345	346	
1978	3515	1111		2454	331	
1979	6140	1304		4091	303	
1980	7330	2113		4700	401	
1981	7401	2229		4531	430	
1982	7751	2247	3341	4677	470	
1983	7686	2316	4817	4335	543	5853
1984	7703	2470	5000	4677	754	7451

$0=0$ rapa $L_{L}=$ Letlhakeng $J=$ Jwaneng $*=$ Including prospecting Source: Department of Mines, Annual Reports.

Table A.6.7.
Production of BCL

YTA Ore	$(1000$ tonnes)		
Phikwe	Selebi	Selebi	Total
underg.	Open	underg.	

Metal
Cu Co Exp underg. Open underg.
(1000P)

1974	393.3	267.3	0	661.5	2,577	2,752	0	7,857
5	509.2	620.9	0	1,130.1	6,447	6,564	0	22,185
6	1,112.3	1,001.5	0	2,122.8	12,581	12,473	0	51,586
7	1,115.4	748.1	0	1,900.5	12,094	11,788	0	43,000
8	1,476.7	627.5	0	2,104.2	16,049	14,615	261	51,315
9	1,531.3	596.4	98.8	2,266.6	16,173	14,563	294	74,068
1980	1,568.1	635.8	344.8	2,548.7	15,442	15,553	266	83,258
1	1,629.1	0	826.7	2,445.8	18,278	17,819	254	79,439
2	1,527.5	0	899.6	2,472.1	17,756	18,375	254	61,172
3	1,917.8	0	940.3	2,858.1	18,216	20,261	223	68,395
4	2,184.6	0	922.1	3,106.6	18,604	21,471	259	77,528

Exp estimated value of production
Source: Department of Mines, Annual Reports.

Table A.6.8.
Copper/Nickel Deposits in Selebi-Phikwe (x1000 tonnes ore)

	1977	1980	1984
Phikwe proven probable	22,205		
Selebi proven probable	9,311		

Source: Department of Mines, Annual Reports.

Table A.6.9.
Air Pollution Standards and Objectives ($\mathrm{ug} / \mathrm{m}^{3}$)

	Daily Average	Month1y Average	Annual Average
Botswana	90\% below 300	160	80
WHO	100-150		40-60
EEC (desired)	100-150		40-60
USA (health)	99\% below 365		80
Sweden	200		
Italy	390		
East Germany	150		
Taiwan	260		130
Botswana	$\frac{\text { TSP }}{90 \%}$ below 300	200	200
WHO	100-150		40-60
EEC (desired	100-150		40-60
USA	99\% below 260		75
Sweden	120		
Italy	300		
East Germany	150		

Table A.6.10
Selebi-Phikwe Sulphur Dioxide Data, 1976-1983
$\mathrm{ug} / \mathrm{m}^{3} \mathrm{SO}_{2}$ Determined by the Hydrogen Peroxide Absorption Method

Year	Criteria	BCL MONITORING STATION					
		1. Smelter West	2. Smelter East	4. Water Utili- ties	5. Botshabelo	6. Nata	7. High Density
1976	3 hr. max 24 hr . max Mean	$\begin{array}{r} 151900 \\ 22400 \\ 5,180 \end{array}$				$\begin{array}{r} 2,150 \\ 250 \end{array}$	
1977	3 hr. max 24 hr . max Mean	$\begin{array}{rr} 72500 \\ 13 & 200 \\ 1940 \end{array}$	$\begin{array}{r} 10900 \\ 3200 \\ 230 \end{array}$		$\begin{array}{r} 400 \\ 30 \end{array}$	$\begin{array}{r} 1350 \\ 120 \end{array}$	$\begin{array}{r} 520 \\ 70 \end{array}$
1978	3 hr . max 24 hr . max Mean	$\begin{array}{rr} 28 & 600 \\ 6 & 100 \\ 1 & 070 \end{array}$	$\begin{array}{r} 9180 \\ 1270 \\ 160 \end{array}$	$\begin{array}{r} 3,000 \\ 200 \end{array}$	$\begin{array}{r} 200 \\ 30 \end{array}$	$\begin{array}{r} 1100 \\ 140 \end{array}$	$\begin{array}{r} 470 \\ 60 \end{array}$
1979	$3 \mathrm{hr} . \max$ 24 hr . max Mean	$\begin{array}{r} 17700 \\ 4900 \\ 1280 \end{array}$	$\begin{array}{r} 5930 \\ 4510 \\ 230 \end{array}$	$\begin{array}{r} 2560 \\ 240 \end{array}$	$\begin{array}{r} 700 \\ 60 \end{array}$	$\begin{array}{r} 1670 \\ 140 \end{array}$	$\begin{array}{r} 990 \\ 80 \end{array}$
1980	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{array}{rl} 140 & 260 \\ 37 & 750 \\ 4 & 130 \end{array}$	$\begin{array}{r} 9870 \\ 3740 \\ \\ 290 \end{array}$	$\begin{array}{r} 1980 \\ 200 \end{array}$	$\begin{array}{r} 610 \\ 60 \end{array}$	$\begin{aligned} & 820 \\ & 110 \end{aligned}$	$\begin{aligned} & 670 \\ & 100 \end{aligned}$
1981	$3 \mathrm{hr} . \max$ 24 hr . max Mean	$\begin{array}{r} 359960 \\ 127550 \\ 5410 \end{array}$	14490 10080 330	$\begin{array}{r} 1890 \\ 100 \end{array}$	$\begin{array}{r} 1100 \\ 50 \end{array}$	$\begin{array}{r} 040 \\ 80 \end{array}$	$\begin{array}{r} 500 \\ 60 \end{array}$
1982	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{array}{ll} 7 & 770 \\ 1 & 000 \end{array}$	$\begin{array}{r} 1590 \\ 170 \end{array}$	$\begin{array}{r} 1720 \\ 250 \end{array}$	$\begin{array}{r} 630 \\ 60 \end{array}$	$\begin{array}{r} 1120 \\ 140 \end{array}$	$\begin{array}{r} 850 \\ 90 \end{array}$
1983	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{array}{ll} 6 & 010 \\ 1 & 170 \end{array}$	$\begin{array}{r} 2880 \\ 300 \end{array}$	$\begin{aligned} & 890 \\ & 200 \end{aligned}$	$\begin{array}{r} 940 \\ 90 \end{array}$	$\begin{array}{r} 1110 \\ 140 \end{array}$	$\begin{array}{r} 1360 \\ 140 \end{array}$

Table A. 6.10
(continued)
Selebi-Phikwe Sulphur Dioxide Data, 1976-1983
$\mathrm{ug} / \mathrm{m}^{3} \mathrm{SO}_{2}$ Determined by the Hydrogen Peroxide Absorption Method

BCL MONITORING STATION
GRB MONITORING STATION

Year	Criteria	8. Low Density	9. Railway Station	10. Slag Tap Floor	5. Hospital	6. Rai1way	9. Town- ship West	10. S/Phikwe Sec. School
1976	3 hr . max 24 hr . max Mean	\cdot	$\begin{array}{r} 4800 \\ 410 \end{array}$					
1977	$3 \mathrm{hr} . \max$ 24 hr . max Mean	$\begin{array}{r} 800 \\ 80 \end{array}$	$\begin{array}{r} 2350 \\ 140 \end{array}$					
1978	3 hr . max 24 hr . max Mean	$\begin{aligned} & 580 \\ & 100 \end{aligned}$	$\begin{aligned} & 680 \\ & 140 \end{aligned}$					
1979	$3 \mathrm{hr} . \max$ 24 hr . max Mean	$\begin{aligned} & 960 \\ & 100 \end{aligned}$	$\begin{array}{r} 2030 \\ 150 \end{array}$	$\begin{array}{r} 115870 \\ 42100 \\ 7430 \end{array}$	$\begin{aligned} & 350 \\ & 130 \end{aligned}$	$\begin{aligned} & 530 \\ & 190 \end{aligned}$	$\begin{aligned} & 650 \\ & 180 \end{aligned}$	
1980	3 hr . max $24 \mathrm{hr} \max$ Mean	$\begin{array}{r} 480 \\ 70 \end{array}$	$\begin{aligned} & 850 \\ & 130 \end{aligned}$	$\begin{array}{rrr} 1 & 231 & 340 \\ 360 & 650 \\ & 42 & 630 \end{array}$	$\begin{array}{r} 2100 \\ 190 \end{array}$	$\begin{array}{r} 3080 \\ 430 \end{array}$	$\begin{array}{r} 580 \\ 70 \end{array}$	
1981	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{array}{r} 1180 \\ \\ 100 \end{array}$	$\begin{aligned} & 870 \\ & 110 \end{aligned}$	$\begin{array}{rrr} 9 & 054 & 000 \\ 2 & 415 & 550 \\ & 75 & 210 \end{array}$	$\begin{aligned} & 600 \\ & 110 \end{aligned}$	$\begin{aligned} & 990 \\ & 140 \end{aligned}$	$\begin{array}{r} 460 \\ 50 \end{array}$	$\begin{array}{r} 850 \\ 80 \end{array}$
1982	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{array}{r} 1320 \\ 120 \end{array}$	$\begin{array}{r} 1200 \\ 200 \end{array}$	$\begin{array}{r} 930860 \\ 68 \quad 100 \end{array}$	$\begin{aligned} & 970 \\ & 100 \end{aligned}$	$\begin{array}{r} 1060 \\ 240 \end{array}$	$\begin{array}{r} 880 \\ 80 \end{array}$	$\begin{aligned} & 970 \\ & 130 \end{aligned}$
1983	$\begin{aligned} & 3 \mathrm{hr} \cdot \max \\ & 24 \mathrm{hr} \cdot \max \\ & \text { Mean } \end{aligned}$	$\begin{aligned} & 760 \\ & 130 \end{aligned}$	$\begin{array}{r} 2350 \\ 240 \end{array}$	$\begin{array}{ll} 68 & 410 \\ 11 & 870 \end{array}$	$\begin{aligned} & 890 \\ & 150 \end{aligned}$	$\begin{array}{r} 2230 \\ 460 \end{array}$	$\begin{aligned} & 850 \\ & 140 \end{aligned}$	$\begin{array}{r} 1280 \\ 230 \end{array}$

Source: Department of Mints, 1984.
Water Quality Indicators at Two monitoring points BCL (February)

Station 3a	1980		1981		1982		1983		1984		1985	
	M	SD										
pH	7.8	1.5	4.4	1.2	8.1	. 38	9.3	. 14	7.9	. 49	90	. 46
TSS	8.2	7.4	14.7	9.9	14.1	13.5	20.8	14.0	10.4	7.7	16.5	16.2
T/H	903	434	857	86.4	250	108	223	19.3	404	73.0	409	156
Ca / H	763	439	626	47.4	143	31.6	168	25.0	31.4	66.4	281	127
$\mathrm{SO}_{4}(\mathrm{~g} / 1)$	1.05	. 44	. 96	. 09	. 19	. 07	. 19	0.34	. 46	. 10	. 36	. 11
$\mathrm{Cu}^{4} \mathrm{ppm}$. 23	. 22	1.58	2.28							. 01	. 01
Ni. ppm	1.97	. 81	8,72	3.64			. 11	. 08	. 13	. 05	. 04	. 03
Fer ppm	1.0	5.3	8.15	11.0			. 06	. 14	. 23	. 63	. 06	0.05
Mn. ppm	. 41	. 27	2.39	. 75							0.01	0.04
Station 5	1979		1981		1982		1983		1984		1985	
	M	SD										
pH	2.9	2.1	. 06	2.3	. 26	2.6	. 27	2.4	. 13	2.3	. 15	
TSS		65.3	41.4	50.8	21.1	238	194	97.8	72.1	108	53.8	
TDS	2760	5830	190	5362	186	10186	1129	11450	506	12720	530	
T/H		2226	127	2837	469	2979	179	2935	317	3226	336	
Ca / H		1514	263	1492	280	2421	232	1817	295	1971	442	
SO_{4}	1.9	3.6	. 05	3.5	109	4.1	. 11	4.4	. 19	4.9	. 282	
Cu^{4}	0.3	. 97	. 59	. 25	. 06	. 83	. 10	. 99	. 75	2.3	2.08	
Ni	5.2	17.3	4.4	7.8	1.2	21.3	2.98	2.98	15.8	3.60	31.8	6.97
Fer	100.1	398	23.7	331	15.9	435.0	46.0	584.	156	514	19.9	
Mn	10.3	31.1	5.3	31.4	2.97	53.2	33.9	51.1	5.5	32.0	7.82	

APPENDIX A. 7
OTHER PRODUCTIVE ACTIVITIES AND HOUSEHOLD CONSUPPTION

Table A.7.1.
Household Consumption

Source: Lahmeyer International Cons. Eng., 1986

Figure A.7.1.
Water Demand and Resources in the Gaborone Cluster

Source: VIAK, 1985

Figure A.7.2.
Water Demand and Resources in the Central Cluster

1) Priority order based on investments
2) RSC-value at Palapye. Costs of pumping to Serowe will increase the value by some $7 \mathrm{M} \mathrm{Pula/100} \mathrm{l} / \mathrm{s}$.

Water Demand and Resources in the Francistown Cluster

Source: VIAK, 1985

Map A.7.2.

Regional Distribution of Recharge Values

APPENDIX A. 8

PRESSURE ON LAND AND WATER RESOURCES

Map A.B.1.
Potential Irrigation Areas
(Identified by the Ministry of Agriculture)

Source: VIAK, 1985

Table A.8.1.
Water Consumption in Gaborone (kl/day)

1984/85	9,634	1974/75	5,324
1983/84	9,006	1973/74	4,837
1982/83	16,911	1972/73	4,289
1981/82	13,291	1971/72	3,504
1980/81	11,728	1970/71	4,121
1979/80	11,120	1969/70	3,874 3,279
1978/79	9,178	1968/69	3,279
1977/78	7,659	1967/68	2,556
1976/77	6,796	1966/67	1,922
1975/76	5,522	1965/66	1,356

Source: Annual Reports, Water Utilities Corporation

Areas of Botswarna Showing Evidence of Range Degradation and Deser tifficition

\qquad
\qquad
\qquad
\qquad

APPENDIX 1

TERMS OF REFERENCE

 AND
EXCERPTS FROM PROPOSAL

Invitation to Tender

Natural Resource Mapping for the Kavango Region

The Directorate of Environmental Affairs of the Ministry of Environment and Tounism requires the services of a company to do natural resource mapping of the Okavango Region. Mapping will be based largely on the interpretation of existing digital, geo-corrected LandSat TM images and orthophotos of the region, in addition to field-work to collect sample data. Tenders will be evaluated on the estimated cost of the work and the approach to be taken.

Mapping of resources is required to contribute to the compilation of an Environmental Profile of the Kavango Region, which aims to document the major environmental processes and resources in the region, as well as the major demands placed on those resources. The products to be available on the completion of the Profile will consist of one or more publications which document major environmental issues and processes, as well as a set of environmental which can be used for further analysis and monitoring.

More specifically, resources mapping will do and comply with the following:

1. It will identify the most prominent and important vegetation and soil units in the Region.
2. These units will be delineated and mapped in one or more layers of polygons.
3. Fieldwork will be required to collect sample data for purposes of interpretation and documentation of units.
4. Detailed sets of quantitative descriptive or attribute data will be compiled and linked to the polygon layers in formats which will allow for interrogation and analysis of the data, both as a separate data set and in combination with other sets of data for the region.
5. The attribute data will emphasize the resources values of the units.
6. All data products to be provided by this project will be compatible in ERMAPPER and ArcView data formats.
7. All digital mapped data will conform to a co-ordiriate system and projection to be specified by the Envirorimental Profiles Project.
8. A detailed report on the vegetation and soils of the region will be submitted along with digital information.

Tenders should specify methods and approaches to be taken in the work, as well as describing the phases, timing and delivery of progress and final reports. All data to be collected during the project will become the property of the Ministry of Environment and Tourism. The project will be completed by the $15^{\text {th }}$ of March 1999.

Tenders will be submitted in two envelopes, the first containing details of the methods, approaches and products to be delivered, while the second will provide the tendered price.

Proposed Scope of Work

1 INTRODUCTION

1.1 Project Objectives

The Directorate of Environmental Affairs, Ministry of Environment and Tourism requires the services of a company to map the natural resources of the Kavango Region. Mapping will be based largely on the interpretation of existing digital, geo-corrected LandSat TM images and orthophotos of the region, in addition to field-work to collect sample data.
Mapping of the natural resources is required to contribute to the compilation of an Environmental Profile of the Kavango Region. The Profile aims to document the major environmental processes and resources in the region, as well as the major demands placed on those resources. The products to be available on completion of the Profile will consist of one or more publications documenting major environmental issues and processes as well as a set of environmental data for use in further analysis and monitoring.

1.2 Interpretation of ToR

1.2.1 Specific Requirements

The Consultant is requested to adopt an approach to the resource mapping to comply with and satisfy the following end-product requirements:

1. It will identify the most prominent and important vegetation and soil units in the Region;
2. These units will be defineafed and mapped in one or more layers of polygons;
3. Fieldwork will be required to collect sample data for purposes of interpretation and documentation of units;
4. Detailed sets of quantitative descriptive or attribute data will be compiled and tinked to the polygon layers in formats which will allow for interrogation and analysis of the data, both as a separate data set and in combination with other sets of data for the region;
5. The attribute data will emphasise the resource values of the units;
6. All data products to be provided by this project will be compatible in ERMAPPER and ArcView data formats;
7. All digital mapped data will conform to a co-ordinate system and projection to be specified by the Environmental profiles Project;
8. A detailed report on the vegetation and soils of the region will be submitted along with digital information.

1.2.2 Comments on the Terms of Reference (TOR)

The Terms of Reference for the Natural Resource Mapping of the Kavango Region presents a concise and generally clear overview of the requirements of the task. Several comments are, however, warranted.

- The Consultant understands from paragraph 3 of the Terms of Reference (points 1 to 8) that the principal focus of the natural resource mapping will be to map and provide quantitative descriptions and resource values for identified vegetation and soil units.
- Water resources are omitted from the list of natural resources to be mapped. Discussions between the Client and the Consultant have determined that water resources are intentionally excluded from the Terms of Reference.
- The identification, mapping and description of landform units are omitted from the Terms of Reference. The Consultant believes that particularly within the Kavango Region, a land systems approach based on identification of landforms would provide diagnostic information essential to the identification of vegetation and soil unit and to the delineation of boundaries. This point is discussed in Section 1.2.3 below.
- Points 3 and 4 of paragraph 3 state that "fieldwork will be required to collect sample data for purposes of interpretation and documentation of units" and that "detailed sets of quantitative descriptive or attribute data will be compiled...".

Proposed Scope of Work

It is understood that＂sample data＂refers to vegetation and soil samples．
With respect to the sampling and analysis of soils the Consultant would like to point out that determination of field sampling methodology and laboratory analytical methods both depend upon the type of classification system required by the Client．The Terms of Reference do not specify a classification system．This point is discussed in Section 1．2．3 below．
Although not specifically requested，the Consultant assumes that laboratory analysis of soil samples would be required for the identification and classification of soils at the soil unit level．An estimation of soil laboratory costs is therefore provided for in the proposed budget．
ㅁ Point 5 of paragraph 3 requires＂the attribute data（to）emphasise the resource values of the units＂．The term resource values is not defined in the Terms of Reference and is thus open to interpretation．The objective of the Client is to produce an Environmental Profile of Kavango Region，and in view of this the Consultant interprets resource values to be synonymous with those derived from a land evaluation study．The latter approach uses values calculated from single and combined vegetation and soil unit attributes to describe the current status of land resources in terms of limitations and potential for selected types and intensities of use．This point is discussed in Section 1.3 below．

1．2．3 Potential Difficulties

In preliminary discussion of the data capture and identification of vegetation and soil units to be described in the detailed reports，the Consultants have identified expected difficulties in obtaining data on a number of aspects of importance．

The time schedule anticipated for the field collection of plant specimens－October to January－poses a problem with respect to the satisfactory establishment of a vegetation baseline．Such a baseline should be established in the late wet season（late February，March）to ensure accuracy in sample identification and high levels of confidence in the estimation of plant diversity．The ideal time for the field investigation would therefore be after the expected completion of the field investigation phase．Little can be done about this problem unless commencement of the fieldwork is re－scheduled to fit in with the needs of the vegetation survey．
The Terms of Reference omitted to specify a soil classification system．The choice of classification system to employ for this project poses a number of difficulties，all of which have implications with respect to field methodology，cost structure and end－products of the proposed soils investigation．To summarise，

The Consultant understands the main thrust of this project to be aimed at the thematic mapping of land resource potential and its corollary，land vulnerability to extemal pressures．This being the case the Consultant intends using a land resource evaluation approach．To comply with such an approach the FAO／UNESCO／ISRIC Soil Classification Revised Legend（1991）would be the most appropriate framework to adopt for the provision of a systematic description of the region．Identification of soil units using the FAO Revised Legend for classification would also be required for further analysis which uses FAO procedural guidelines for land evaluation（FAO，1993）．
However，soil surveys of the Kavango Region have to date used the South African Binomial Soil Classification System（MacVicar et al，1977）and the earlier South African National Soil Series Classification System．It should be noted that published reports，data and maps of these soils lack detailed supporting soil profile information，and are in some cases incomplete（maps without legends， reports without supporting data）．Only one reconnaissance level survey provides comprehensive information on soil associations of the region（Loxton et al，1971）．
With the exception of the FAO－UNESCO Soil Map of the World（at a scale of 1：5000000），soils of the Kavango Region have not been classified according to the FAO／UNESCO／ISRIC Soil Classification Revised Legend（1991）．Furthermore，no methodology has been formulated for correiation of soils data between the South African and the FAO classification system for the following reasons：
－The systems were developed with different guidelines for soil profile description，
－Certain soil features receive a different emphasis on parallel definitions，
－Some of the laboratory procedures supporting the RSA systems used in the 1970 s were different to current FAO procedures．
In view of the above the options are distinct．If the FAO classification system is opted for，then the mapping of soil resources should be based in the first instance on an unsupervised classification of remotely sensed data to provide soil polygons．A reconnaissance soil survey would then be carried out

Proposed Scope of Work

over the region to transect the polygon boundaries using standard FAO guidelines for description. These samples would be analysed to provide representative profiles for classification and the signatures of these profiles would be employed in a digital image processing exercise for spatial extrapolation purposes. A further short field check should be carried out to verify boundaries.
If the South African Binomial Soil Classification System should be opted for, then available mapped material and reports could be used in conjunction with an unsupervised classification of remotely sensed data to provide a preliminary outline of soil polygons in digital format. This would require permission from Loxton, Venn \& Associates, the owners of this material. Copies of these maps are available in Namibia although the Consultant has found them to be stretched and in various scales. A reconnaissance level field survey would be carried out in much the same way to ground truth the polygon boundaries. If this approach is opted for, then further analysis using the FAO system of land evaluation would not be possible as the basic description of soil features do not comply with FAO standard requirements.

1.3 SUMMARY OF GENERAL APPROACH

A land systems approach will be used to map all factors of the physical environment simultaneously. Two principal mapping units will be employed, the land system and the land facet. The land system can be viewed as an area with a recurring pattem of topography, soils and vegetation within a relatively uniform climate. The land facet is an area within which, for most practical purposes, environmental conditions are uniform. Both definitions are rationalisations of units that anse naturally in the course of photo-interpretation; land systems are distinctive patterns extending across one or several photographs, whilst facets are the smallest areas that can be recognised and delineated. The facets within a system are not a random collection of contiguous areas, but are often causally linked by geomorphological processes, origin or groundwater flow.
To establish the mapping framework for the proposed project, a land system survey based on satellite imagery, in conjunction with field traverses and aerial and/or orthophoto interpretation will be conducted to produce a tabular legend showing landforms, vegetation and soils. Comparisons between soil boundaries initially based on satellite imagery with those subsequently derived from phot-interpretation have shown an acceptable measure of agreement. The defining features of each land system will be systematically noted. A high proportion of both defining features and boundaries will be based on landform. This will not only be for practical reasons. It is, in principal, desirable to identify, and as far as possible to define, land systems in terms of landforms in the interests of having a uniform basis to the mapping. In flat area in particular, vegetation will be used. Parametric methods will be used in the field to confirm land facets. The following individual elements will be measured and mapped: alitude, slope angle, profile curvature, plan curvature and aspect. These will be incorporated into a preliminary polygon database to identify landform elements, and further combined into landform patterns. Land facets and systems will thus be identified using an objective and uniform approach. These will be used in the first instance to derive base maps for soils and vegetation. Individual soil and vegetation parameters will be extracted for further analysis using FAO guidelines for land evaluation. Thematic representations of land potential and limitations will be extracted and mapped in consultation with the Client.

Proposed Scope of Work

2 METHODOLOGY

The following describes the various activities to be undertaken to achieve the objectives of the study in terms of objective; methodology; work-plan and anticipated results; and personnel to be used.

2.1 Remote Sensing and Image Processing Procedures.

The following activities are proposed for the remote sensing and image-processing specialist:

1. Check the geo-corrected satellite images for locational accuracy.
2. Choice of optimal band combination (3 bands) for production of false colour composite hardcopy (used for fieldwork and any visual interpretation of soils and vegetation) The best approach is to integrate the image processing classification and visual image interpretation procedures so that the strong points of each method can be used to classify an image.
3. Select appropriate bands for digital classification from cluster analysis.
4. Run unsupervised classification for approximately 24 classes.
5. Filter result to remove isolated pixels.
6. Ground truth classes (using transects, random GPS spot checks, etc) to identify vegetation and soil types for each class produced by the unsupervised classification.
7. Merge and split classes where appropriate.
8. Run supervised classification using selective classes from above observations to determine if improvements can be made to the existing classification.
9. Run accuracy assessment on resulting classification (by using GPS ground observations and field survey transects).
10. Convert resulting classes into GIS polygons and attributes to allow interrogation and analysis of important vegetation and soil types.
11. Production of hardcopy maps showing soils, vegetation and land systems.

As a result of the above process each polygon may only have a single attribute for soils and vegetation (i.e. a soil class or a vegetation type). It is important to investigate the other underlying natural, physical and human factors such as elevation, slope, erodibility, landuse, rainfall, etc. to improve the mapping units and to assign other attributes to the polygons.
The simplest form of spatial analysis is the "aggregation" of multiple polygon classes into single polygon classes by reclassifying the polygon attributes (merging). More complex spatial analysis involves the "disaggregation" of polygons into more complex polygons (splitting) by using multiple themes to generate a more complex resulting theme. This spatial analysis component is ideal for the production of land suitability and land use plans.

2.2 Vegetation Study Approach

2.2.1 Review of available information

All information on vegetation resources in the Kavango Region will be reviewed and summarised. This will include published data, reports and data held at government institutions such as the National Botanical Research Institute and Directorate of Forestry. This will allow to
a) develop an effective stratification for field sampling, and
b) place particular emphasis on areas hitherto botanically poorly collected.

2.2.2 Preparation of base maps and field sampling strategy

LandSat TM images and orthophotos will be prepared and compared to enable a preliminary interpretation of seemingly homogenous areas, referred to as mapping units. Published sources and data available from the recent forest inventory will be used for a first interpretation of satellite images and orthophotos. Several sampling points will be selected in each mapping unit for the field survey.

Proposed Scope of Work

2.2.3 Field work

Ideally fieldwork will coincide with the peak of the vegetation period. A reconnaissance survey of landforms and vegetation types through a number of predetermined mapping units will allow verification and fine-tuning of these units. Upon completion of the reconnaissance the predetermined mapping units will be revisited and the boundaries redrawn according to the findings in the field. The fina selection of several sampling points in each mapping unit for field data collection will then follow. At each sampling point date, GPS position, data to habitat, soil type, landform, potential disturbance and vegetation will be collected using a previously prepared data sheet. Vegetation structure and composition will be determined by estimating average height and, canopy cover for each stratum (herb, grass, shrub and tree), and listing of all plant species with corresponding estimate of cover abundance according the Braun Blanquet method (Kent \& Coker 1994). Voucher specimens of unknown plant species will be collected for later identification and deposition in the National Botanical Research Institute

2.2.4 Data analysis

Field data from several sites representing one mapping unit will be combined to present a species list with cover values characteristic for this mapping unit. An adapted version of Edwards vegetation structural classes (Edwards 1983; Hines \& Burke 1997) will be used to determine the vegetation type, while the final boundaries of the vegetation types will be digitised. Attribute tables will be prepared in EXCEL comprising the generalised field data for each mapping unit.

2.2.5 Reporting

The final report will contain a detailed description of vegetation types and interpretation of possible underlying factors determining the spatial distribution of vegetation types in the Kavango Region.

2.3 Landform and Solls Study

2.3.1 Objectives

To acquire first hand data pertaining to the character and distribution of soil and land unit parameters represented in the project area.

2.3.2 Methodology

Test pits and auger holes will be used to describe and sample the major soil associations within land units identified by remote sensing and from available maps. The ground surveys designed to verify map interpretations should coincide as far as possible.

A soil survey will be carried out to verify the accuracy of soil management units, associations, and complexes identified during map interpretation. The survey will be carred out at reconnaissance level in terms of observation density, and adopt a transect approach. Transects will run as perpendicularly as possible to expected boundaries between mapping units detected.

Three types of observation will be distinguished following FAO/UNESCO/ISRIC guidelines for soil survey and land evaluation in ecological research (1986), as follows:
\square shallow surface observations less than 50 cm deep to delineate erosion features, evidence of surface compaction, surface sealing, cracking, topsoil textures and colours, occurrence of boulders and rock outcrops, surface stones, and parent material.

- routine identification augers to 150 cm deep. Effective depth should be determined.
\square profile pits will be dug at least twice in each soil management unit and significant land fact identified, subject to limitations of accessibility.

All observations should be located by GPS. Soils will be described in accordance with the FAO Guidelines for Soil Description (1977), the FAO-ISRIC Soil Data Base and Munsell colour charts. Soil characteristics will be determined on representative samples of each shallow significant horizon in all soil pits. The determination of the following properties will be made by field and laboratory analysis:

* Texture by particle size analysis
* Colour (moist)
\% Structure

Proposed Scope of Work

* pH of saturation extract and $1: 5$ soil-water suspension
* Organic carbon percentage
* Cation exchange capacity ($\mathrm{mo} / 100 \mathrm{~g}$)
* Soil fertility status: total nitrogen, total phosphorous, available potassium
\div Exchangeable sodium percentage (ESP)
* Calcium carbonate percentage
* Electrical conductivity (ECe) of saturation extract
\% Porosity
* Bulk density
- Drainage class
* Erodibility class

At each observation location the average slope percent will be calculated and significant land facet
All physical, chemical and analytical soil survey results will be entered into a suitable database and presented in standard written and tabular formats.

2.3.3 Anticipated Results

From the soils and land unit field investigation the following themes will be compiled for the project area: land systems/soil management units; erosion status and potential. The function of these maps will be to provide a description of the current environmental status of land resources, and to determine land potential with respect to selected types and intensities of land use and pressure.

2.4 REPORTNG

During the normal course of the project the Client will be kept appraised of developments through Progress Reports. These reports will contain a summary of work carried out during the previous month, difficulties experienced, solutions to problems and work to be completed. In some cases material to be included in the draft Final Report will be included in the Progress Reports.

APPENDIX 2
 AGROECOLOGICAL ZONES

Map Symbol
KAL3-2

Map Name
Kalahari Sands Plateau, stabilized sand drift with few pans, average growing period 91-120 days

Summary of Landform Information

Landform type

General altitude range
Regional slope range
Relative relief
Drainage pattern
Geological substrata
Soter landform
Soter Lithology
$1 \quad$ Pläin
1050 m - 1400 m
1 -
< 10 m : very low selative relief
no preferred orientation
Kalahari sands
LP Plains
UE

Summery of Growing Period Information

Summery of Soils Information

Dominant
$\mathrm{ARh}, 40$ \% Se

Associated
ARo, 30 ㅇ, Seh

Included
CLp, 10 돔, $\mathrm{SRCb} / L \mathrm{Rdb}$
$\mathrm{SNH}, 10$ 号, Sn
SNg, 10 各, Sgn

Agricultural Potential

Rank

Suitability
Cropping Potential

2
Short-maturing crops; Livestock grazing
Mainly deep sandy soils; dependable growing period marginal even for drought-resistant crops, owing to the low moisture retention and fertility status of the soils.

Map Symbol	KAL3－3
Map Name	Kalahari Sands Plateau，stabilized sand drift with few pans，average growing period $61-90$ days，dependable growing 60% of average
Map Area（km2） 76504	

Summary of Landform Information

Landform type
General altitude range
Regional slope range
Relative relief
Drainage pattern
Geological substrata
Soter landform
Soter Lithology

1 Plain
1050 m － 1400 m
1 － ＜ 10 m ：very low relative relief no preferred orientation Kalahari sands
LP Plains UE

Summery of Growing Period Information

Dominant Associated Included

Growing Period Zones 3

Summery of Soils Information

Dominant
$\mathrm{ARh}, 40$ \％， Se

Associated
ARo， 30 \％，Seh

Included
CLP， 10 q，SRdb／LRdb
$\mathrm{SNh}, 10$ \％， Sn
$\mathrm{SNg}, 10$ 呂， Sgn

Agricultural Potential

Rank
Suitability
Cropping Potential

3

Livestock grazing
Unsuitable for crop production due to low dependable growing period combined with shallow soils．

Map Symbol KAL6

Map Name $\quad \begin{aligned} & \text { Kalahari Sands Plateau, terrace of the } \\ & \text { Okavango and Kwando river systems }\end{aligned}$

Map Area (km2) 1700

Summary of Landform Information

Landform type

General altitude range
Regional slope range
Relative relief
Drainage pattern
Geological substrata
Soter landform
Soter Lithology
Summery of Growing Period Information
Growing Period Zones

Dominant
1

```
la AlIuvial plain
    1000m - 1100m
1 -
< 10 m: very low relative relief
no preferred orientation
Kalahari sands
LP Plains
UF
```

1 2

Included 2

Summery of Soils Information

Fao Soils Units:

Dominant	Associated	Included
ARh, 25 \%, Se		
ARb, 25 号, Se		
ARI, 25 名, SLe		
CMe, 25 \%,L		

Agricultural Potential

Rank

Suitability
Cropping Potential

1

Short-maturing crops;Livestock grazing
Terrace system of the Okavango and Kwando rivers, probably the most suitable for irrigation. Soils, land slope, surface smoothness, nearness of a permanent water source, commandibility of the irrigable area, an alreasy intensive degree of cultivation in the area and potential to increase farmer incomes are factors that earmark this area as a prime target for irrigation development. The main limitation of this AEZ is that it is small.Given the fact that this AEZ is one of the most endowed in terms of rainfall, agricultural research and extension will need to develop and promote techniques of supplementary irrigation rather than full irrigation.

Map Symbol KAL8

Map Name Kalahari Sands Plateau，＇omuramba＇－dune association

Summary of Landform Information

Landform type
General altitude range
Regional slope range
Relative relief
Drainage pattern
Geological substrata
Soter landform
Soter Lithology

Summery of Growing Period Information

Growing Period Zones
Dominant
2
Associated
Included

Summery of Soils Information

Dominant
Fao Soils Units：
ARo， 40 号，Seh
ls Sand plain
1050 m － 1250 m
$1 \quad-2$
10－30 m：low relative relief
strongly oriented，parallel
Kalahari sands
LP Plains
UE

3／1

Associated	Included
ARI， 20 号，SLe	ARh， 10 名，Se

Agricultural Potential

Rank
Suitability
Cropping Potential

2

Short－maturing crops；Livestock grazing
Soils vary from red sands on dune crests to fairly heavy soils in drainage lines between dunes．Potential for cropping higher than indicated by the growing period zone owing to the presence of residual soil moisture in drainage lines．

APPENDIX 3 LABORATORY PROCEDURES

Summary of Laboratory Procedures used for Soils Analysis

Test	Description
SAMPLE PREPARATION	Soils are dried at a temperature not greater than 35 degrees C . The part of the sample retained on a 2 mm sieve, called the fine earth fraction, is used for the analysis. The fraction $>2 \mathrm{~mm}$ is referred to as stone and gravel.
TEXTURE and PARTICLE SIZE ANALYSIS (SAND, SILT and CLAY)	Dispersion of soil with sodium hexametaphosphate/sodium carbonate. Determination of silt and clay by pipette method. Sard fraction determined by sieving to retain >53 micron fration. Textural Class using the FAO classificaton system.
EXCHANGEABLE CATIONS \& CATION EXCHANGE CAPACITY(CEC)	Extraction with 1 M ammonium acetate at pH 7 if $\mathrm{pH}(\mathrm{H} 2 \mathrm{O})<6.8$ \& $\mathrm{EC}<0.4 \mathrm{mS} / \mathrm{cm}$. Extraction with $50: 50$ ammonium acetate (1M) and ethanol at pH 7 if $\mathrm{pH}(\mathrm{H} 20)>6.8$ \& $\mathrm{E} \subset>0.4 \mathrm{mS} / \mathrm{cm}$. Calcium, Magnesium, sodium and potassium measured by atomic absorption spectrophotometer.
EXTRACTABLE CATIONS (Available K. Mg. Ca, Na)	Extraction with 1 M ammonium acetate at pH 7 . Measurement of calcium, magnesium, potassium and sodium by atomic absorption spectrophotometry.
AVAILABLE MICRONUTRIENTS (Zinc, manganese, copper, iron)	Extraction with 0.5 M ammonium ecatate: 0.5 M acetic acid: 0.02 M EDTA at pH 4.65 at a 1:5 extraction ratio. $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cu}$ and Zn measured by atomic absorption spectroscopy. Available calcium, potassium and magnesium can also be measured in the extract.
ELECTRICAL CONDUCTIVITY (Soluble Salt Content)	Measurement in the supernatant of the $1: 2.5$ soil:water suspension prior to measurement of pH . Units of measurement are S / cm ($1 \mathrm{mS}=1000 \mathrm{US}$). High results indicating possible salinity hazard are repeated on the extract of the saturated soil paste.
$\mathrm{pH}(\mathrm{KCl})$	Measured in a $1: 2.5$ soil: 1 M potassium chlonide ratio suspension on a mass to volume basis.
pH (water)	Measured in a $1: 2.5$ soil: water ratio suspension on a mass to volume basis.
EXTRACTABLE ACIDITY	Extraction with 1 M KCl and titration of extract to determine acididty.
CARBONATE (field estimation)	Treatment of dry soil with 10\% hydrochloric acid and observation of efferyescence.
CARBONATE (as Calcium Carbonate)	Reaction of soil with hydrochloric acid and estimation of acid consumed by titration with sodium hydroxide.
SULPHATE (estimation)	Soil water extract from $\mathrm{pH} / \mathrm{EC}$ measurement made 0.01 M with respect to calcium by addition of 1 M calcium chloride. Filtered extract reacted with acid barium chloride and turbidity visually compared with standard solution of sulphate-S.
AVAILABLE SULPHUR (as Sulphate)	$1: 2$ weight:volume extraction of soil with 0.01 M calcium chloride. Sulphate-S estimated by measuring turbidity at 600 mm following treatment with acidified barium chloride.
CHLORIDE SPOT TEST	Soil water extract from pH/EC; amount of chloride estimated by reaction with silver nitrate.
ORGANIC CARBON (Organic Matter Content)	Walkley-Black; Standard and colourimetric methods using sulphuric acid-potassium dichromate oxidation. A factor is included in calculations to take account of incomplete oxidation. Organic matter content calculated as organic-C $\times 1.74$.
AVAILABLE PHOSPHOROUS	Ohlson method: Extraction with sodium bicarbonate. Phosphate measured spectrophotometrically using the phosphomolybdate blue method.
ORGANIC MATTER (Loss On Ignition)	Organic matter is estimated by measuring the weight loss when dried samples are heated in a muffle furnace at 360 degrees C for 4 hours. Further heating at $500^{\circ} \mathrm{C}$ to ash.
MOISTURE CONTENT \& DRY BULK DENSITY	Raw undisturbed samples extracted from profie face by cylindrical cutter of known volume. Samples weighed, oven dried at $105^{\circ} \mathrm{C}$ for 48 hours and weighed again. Weight loss assumed to be equivalent to pore water fraction. Dry weight assumed to be equivalent to solid fraction mass. Mass/volume calculated.

SOILS ANALYSIS: LABORATORY PROCEDURES

SAMPLE PREPARATION

Reference Method

None

Introduction

It is important that soils be prepared in a standard way for analyşis in the laboratory. Most analyses are carried out on air-dried soils that have been crushed and sieved to pass a 2 mm mesh sized sieve. This is often termed the "fine earth" fraction. Material greater than 2 mm in diameter is termed "stones and gravel". Some analyses give better results if a small sub-sample is ground more finely say to 60 mesh or $\sim<0.3$ to 0.4 mm . A few analyses may be carried out field soil that is mixed but not dried. Other physical analyses may be performed using undisturbed cores.

Scope

The procedures outlined may be used for all soils received in the laboratory. Special types of preparation related to analysis of moist samples or to particular methods of grinding should be worked out with the client.

Principle

Soils received in the laboratory are registered and then mixed and placed into pans to dry at room temperature or using mild heat. Dry samples are ground with a pestle in a mortar by hand or using a machine to break up the larger clods, sieved to a uniform size and stored in a plastic container. Stones and gravel are removed by sieving and weighed separately where they constitute a significant proportion of the sample.

Method Validation

Not applicable

Interference and Other Considerations

Drying at even modest temperatures is not recommended since it can affect the extraction of certain elements notably potassium in soils containing micaceous clays and/or vermiculite. Heat may stimulate biological activity and alter pH and measurements of available nitrogen, sulphur and phosphorus. Samples undergoing trace element or heavy metal analysis may require procedures that do not use metal grinding surfaces or containers. Nylon or stainless steel screens are recommended for micronutrient analysis. Certain analytical procedures may stipulate a finer grinding than standard or the use of field moist rather than dried samples. Certain physical measurements related to water holding, aggregation or permeability may need undisturbed soils for the test. Check the analysis request sheet to make sure that special types of preparation are not needed before the samples are subjected to the standard dry and grinding procedures. Moist samples should be stored at $4^{\circ} \mathrm{C}$ in a refrigerator or cold room in plastic bottles or bags.

Sample Requirements

Samples should be received by the laboratory in a state that is considered suitable for analysis. The following criteria should be met:

- Sample is of sufficient mass and volume for the analyses requested.
- Delivered sample does not show signs of damage or contamination.
- The laboratory and client labelling is sufficient to give it a unique identification.

Equipment and Supplies

- Pens, tape etc. for labelling
- Aluminium or plastic drying pans
- Sieves of various sizes and mesh, $2 \mathrm{~mm}, 0.5 \mathrm{~mm}$ as a minimum
- Large ceramic mortar with pestle
- Mechanically operated mortar or soil grinder
- Forced air drying oven set capable of being set at between room temperature and $60^{\circ} \mathrm{C}$
- Dust masks
- Extraction fan
- Range of plastic sample containers between 100 ml to 500 ml in size with screw caps

Reagents

- Solvents such as methanol and acetone or removing marking ink

Safety and Special Precautions

- Fine dust in the sample preparation area constitutes a significant health hazard. Personnel should wear dust masks while grinding samples. The area should be well ventilated. Air-born dust should be removed using a
strong extraction fan vented outside the grinding room. Gloves should be worn when handling samples suspected of being potentially hazardous due to acidity, alkalinity, salinity or contamination with agricultural or industrial or agricultural chemicals. Care should be taken when using mechanical grinding equipment. Always make sure that the appropriated guards are in place to protect you from any moving parts. Wash hands and vacuum the area to reduce personal contamination.

Test Procedure

- Remove the samples from the transporting bags or boxes and spread them out on clearly labelled drying trays.
- Ensure that the relevant information on tags, labels and bags has been transferred to the laboratory data sheet.
- Check that there is no contamination between samples or from sample containers themselves. Any discrepancies on the integrity of the sample should be noted down for the laboratory personnel.
- A decision for measuring the stone and gravel (the particles >2 mm) should be made now. The guidelines suggested are that if the apparent content of stones and gravel is greater than 20% of the weight then a separation should be carried out. This is important with irngated soils to give a better estimation of true water holding capacity of different horizons.
- Remove large plant residues and break the clods into small pieces less than 2 cm to accelerate the drying process. Allow the samples to air-dry on the shelves and avoid placing in direct sunlight rays.
- Urgent samples may require fast drying. This can be done by drying in a ventilated oven at a temperature less than $35^{\circ} \mathrm{C}$, although up to $60^{\circ} \mathrm{C}$ has been used in soil laboratories. Since heating influences the composition of the soil, this procedure is however discouraged. Some soils may require analysing in field moist condition.
- Mix very wet soil samples each day to expose the wet surfaces. This process accelerates drying and makes drying more uniform throughout the sample.
- The time taken for samples to dry vary widely depending on moisture, clay content, size of sample, humidity and prevailing room temperature. Many sandy samples taken duning the dry season are more or less air-dry on arrival while wet compacted clay soils may take over a week.
- If the stones and gravel content is not to be measured make sure that most fragments $>2 \mathrm{~mm}$ such as shells, organic debris, gravel, schist, weathered rock, calcareous nodules and other concretions are removed before grinding. If the stone and gravel content is to be measured then:
* Get the current "Stones and Gravel Analysis Sheet" and fill in the sample number.
* Enter the weigh an empty drying dish.
* Weigh the dish plus the whole dry soil sample.
* Separate out the stones and gravel on a 2 mm sieve, pour into the container and re-weigh.
* Calculate the stones and gravel as a percentage of the total weight.
* The sample < 2 mm is termed the "Fine Earth" fraction.
* Note the result on the "Laboratory Soil Analysis Data Sheet"
- A variety of grinding methods can be used to reduce the aggregates to $<2 \mathrm{~mm}$. Single grained sandy soils may not need any further grinding. Poorly aggregated soils may only need hand grinding using a large mortar and pestle. Well-aggregated or hard-set soils may be ground more easily using the mechanical mortar. Take care to add the sample slowly and empty the mortar when it is about one-half full. The mechanical mortar must be used when very fine grinding is needed. A wooden roller may be useful to crush samples with large hard aggregates.
- The ground sample can then be passed through a 2 mm sieve into an empty grinding dish. The objective should be to have at least 95% of the original sample pass through the sieve. The sample can then be mixed with a trowel or scoop and transferred into a labelled plastic container of suitable size. For samples destined for a general analysis the amount of ground sample should be about 500 g .
- Mortars and grinding machinery should be cleaned after every sample to reduce cross-contamination.
- After analysis, the samples must be stored. Farm samples should be stored for 3 months in case some reanalysis is required. Research samples may need to be stored for a year, or until the project is completed. No sample should be thrown away without authorisation from the laboratory supervisor or researcher concerned.
- Evidence suggests that in the dry state most soil characteristics do not change with time. Those most liable to be affected by storage, particularly under damp hot conditions, are nitrogen, phosphorus and pH .

Data Acceptance and Quality Control

There are no quality control criteria established for sample preparation. The temperature of drying ovens and refnigerators should be checked frequently.

Calculation and Presentation of Results

Stones and gravel or fine earth fraction should be quoted as a percentage to one decimal place.

Other References

None.

PARTICLE SIZE ANALYSIS BY THE PIPETTE METHOD

Reference method
This is an onginal method that generally follows the principles for particle analysis using a sampling pipette outlined in: Miller, W. P. and Miller, D. M. 1987. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal., 18: 1-15.

Introduction

Particle-size analysis (PSA) is the procedure for separation of the mineral part of the soil into vanious size fractions and the determination of the proportion of these fractions. The major features of PSA are destruction or dispersion of soil aggregates into discrete units by chemical, mechanical or ultrasonic means and the separation of particles according to size limits by sieving and sedimentation.
Soil particles cover an extreme size range, varying from stones and rocks (exceeding 0.25 m in size) down to clay particles of less than $2 \mu \mathrm{~m}$. Various systems of size classification have been used to define arbitrary limits and ranges of soil particle size. Soil particles smaller than 2 mm are generally divided into three major sizes: sand $(50-2000 \mu \mathrm{~m})$, silts $(2-50 \mu \mathrm{~m})$ and clays $(<2 \mu \mathrm{~m})$. Soil texture is based on different combinations of sand, silt and clay separates that make up the particle-size distribution of a soil sample. The proportions of sand, silt and clay together with the organic matter content are important characteristics of soil that affect soil structure, available nutrients and moisture holding and release.

Scope

The method is suitable to determine the proportion of sand, silt and clay in most mineral soils but treatments may be needed for soils with organic carbon contents $>2 \%$ and soils containing high concentrations of soluble salts and cementing agents such as calcium carbonate and gypsum. The method is not suitable for volcanic ash soils.

Principle

In general a comprehensive particle size analysis can involve several distinct procedures. Firstly it may be desirable to remove or inaclivate cementing agents. These may include treatments for organic matter and calcium carbonate and iron or aluminium oxides in some soils. These pre-treatments if carnied out are followed by dispersion of the soil sample in an alkaline medium. It may be agreed, however, that for agricultural purposes it is ofteri not relevant or even fundamentally wrong to remove these components. Thus, dependent on the aim of study, all pre-treatments are to be considered optional. For soil characterisation purposes the main methods of treatment involve removal of organic matter by $\mathrm{H}_{2} \mathrm{O}_{2}$ and carbonates by a mildly acid buffer of pH 5 .
The sample is dispersed by shaking with a sodium carbonate/sodium hexametaphosphate solution. Silt and clay sized particles are separated by sampling at a depth of 6 cm after time intervals determined using Stoke's Law of Sedimentation. Sand is separated by wet sieving through a 53 micron sieve. The sand can be further separated into fine, medium and coarse fractions by dry sieving. The amount of very fine sand may be important since it has very high moisture holding and release properties.
An altemative procedure using a hydrometer is also described which outlines different pre-treatment methods. Both the pipette and hydrometer methods are based on Stoke's Law which states that "the terminal velocity of a spherical particle settling under the influence of gravity in a fluid of a given density and viscosity is proportional to the square of the particle radius". For a soil particle falling through water, this equation can be expressed as follows:

$$
V=\frac{d^{2} g(P s-P W)}{18 \eta}
$$

Where:

$V=$ Settling velocity of the soil particle through water, $\mathrm{cm} / \mathrm{sec}$.
Ps $=$ Density of the soil particle, $\mathrm{g} / \mathrm{cm}^{3}$ (generally taken as $2.65 \mathrm{~g} / \mathrm{cm}^{3}$)
$\mathrm{Pw}=$ Density of water, $\mathrm{g} / \mathrm{cm}^{3}\left(0.998203 \mathrm{~g} / \mathrm{cm}^{3}\right.$ at $20^{\circ} \mathrm{C}$)
$\mathrm{d}=$ Diameter of the soil patticle, cm
$\mathrm{g}=$ Acceleration due to gravity ($980 \mathrm{~cm} / \mathrm{s}^{2}$)
$\eta=$ Viscosity of water, poise (1.0019×10^{-2} poise at $20^{\circ} \mathrm{C}$).
Values of viscosity and density of water different temperatures may be obtained from tables in The Handbook of Chemistry and Physics.

Method Validation

The method has been validated against ALASA soils.

Other Notes

Erors may arise due to the presence of organic matter. Soils high in sodium and clay may flocculate if not pretreated to remove salts. Some of these soils may form gels which may invalidate the results. The presence of
carbonates and cementing agents may provide different results if pre-treatments are not carried out. However, pre-treatment may not be used where comparisons with field hand texturing are required.

Sample requirements

Soils should be air-dried and ground to pass a 2 mm sieve. Samples may be stored at low humidity without significant change in the results of particle size analysis.

Equipment and Supplies

- 250 ml capacity leak proof polyethylene bottles such as the types with an inner liner and tight fitting screw cap.
- Sampling pipette (e.g. Eppendorf 1000-5000 μ l variable pipette)
- Aluminium weighing dishes
- Reciprocating shaker
- Set of sieves of $53,106,250,500,1000 \mu$ mesh size for sand fractionation)
- Analytical balance (to weigh to 0.0001 g)

Reagents

- Dispersing Agent: Dissolve 40 g sodium hexametaphosphate $\left(\mathrm{NaPO}_{3}\right)_{6}$ in about 800 ml of water and then dissolve 10 g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and make up to 1000 ml . The solution will be somewhat cloudy and contain a slight sediment. When adding the reagent to the soil suspension it should be agitated frequently to ensure uniformity in the aliquots dispensed.

Safety and Special Precautions

Take care to clean up spills of the alkaline dispersing solution and keep hands clean of this reagent. Bench areas should be cleaned well to avoid cross-contamination with sodium and phosphate.

Test Procedure

- Weigh 20.00 g of each soil into an identical 250 ml polyethylene bottle. Add 20 ml of dispersing agent followed by 100 ml of water (tap or de-ionised water). Prepare one blank with no soil. Shake for two separate 30 minute periods at 180 oscillations per minute during the day. Let stand over night. Shake again for 30 minutes in the moming.
- Weigh three sets of dry aluminium weighing dishes. One set for sand plus clay and another for clay should be weighed to 0.0001 g accuracy. The third set for the sand fraction need only be weighed to 0.001 g accuracy. No dish is needed for the blank with the sand set.
- Add 80 ml of water and stand bottles in a location at constant temperature and that is vibration free. Read the temperature from a thermometer placed in the blank bottle.
- Adjust the pipette and template so that it samples from a depth of exactly 6 cm . This done by inserting a plastic pipette tip, marked at 6 cm , through the styrofoam support until the mark is just at the fluid surface. Note that a bottle containing 208 ml should be used for this purpose. The extra 8 ml accounts for the volume occupied by the 20 g soil sample.
- Refer to the table on the following page to determine the sampling time for silt plus clay and for clay alone. It is desirable to carry out the measurements in a temperature controlled room preferably in the 20 to $25{ }^{\circ} \mathrm{C}$ range
- Mark the analysis sheet to show the exact sampling time for each bottle. Shake the bottle by hand for 30 seconds, place it rapidly onto the bench, carefully remove the inner lid and allow sedimentation to proceed for the correct time (which will probably be between 19 and 24 seconds). About one second ahead of this time place the sampling template firmly onto the neck of the bottle and withdraw a 5 ml sample at the designated time. Place the sample in the aluminium weighing dish and dry in an oven at $100^{\circ} \mathrm{C}$. The drying will take about 3 hours.
- Let the bottles sit undisturbed. In the same way sample the bottles again at the time designated for clay sedimentation. Put the second set of dishes containing the clay sample in the oven and weigh when dry.
- Separate the sand fraction by washing the contents of the bottle onto a 53μ sieve with several portions of tap water. Wash the sand free of silt, clay and dispersing solution by playing a fine jet of water over the sieve for about 60 seconds. Carefully transfer the washed sand into a weighed aluminium dish and dry at $100^{\circ} \mathrm{C}$ over night. Reweigh to determine the sand content.
- Additional separations can be carried out on the dry sand fraction by sieving to separate the following sand fractions:

53μ to 106μ	very fine sand
106μ to 250μ	fine sand
250μ to 500μ	medium sand
500μ to 2000μ	coarse and very coarse sand

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Sampling Time (sec) for Silt + Clay ($<50 \mu \mathrm{H}) @ 6 \mathrm{~cm}$	Sampling Time (min) for Clay ($<2 \mu) @ 6 \mathrm{~cm}$
10.0	34.9	363
12.0	33.0	343
14.0	31.2	325
16.0	29.6	308
17.0	28.9	301
18.0	28.1	293
19.0	27.4	286
20.0	26.7	279
21.0	26.1	272
22.0	25.5	265
23.0	24.9	259
24.0	24.3	253
25.0	23.7	247
26.0	23.2	242
27.0	22.7	236
28.0	22.2	231
29.0	21.7	226
30.0	21.3	221
31.0	20.8	217
32.0	20.4	212
33.0	20.0	208
34.0	19.6	204
35.0	19.2	199
36.0	18.8	196

Data Acceptance and Quality Control
Each batch of about 20 samples should contain a standard soil sample [Standard 8117] and one duplicate set. Blind samples such as verified ALASA samples should be included intermittently. Results for the standard sample should be within 2 standard deviations of the mean. Duplicates should agree within 5% of each other or within 2% absolute at lower readings. For low organic matter soils the total recovery of sand + silt + clay is normally in the 97 to 100% range. For soils with greater than 2% organic matter or high soluble salts more variable recovery may be expected. The organic matter extracted by the alkaline dispersing solution will tend to increase the clay and silt results while unhumified organic matter may be recovered with the sand fraction. This might give total recoveries of up to 105%. However, where little interference of this type is shown by the organic matter content you may get recoveries lower than 100% and in line with the amount of organic matter present.

Calculation and Presentation of Results

Calculations may be carried out using the SUNRISE.exl program. Note that since we deal with soils of generally very low organic matter content the results are expressed as a $\%$ of the sum of sand, silt and clay. Other ways of presenting the results may be more appropriate for soils with high organic matter contents. Manual calculation can be carried out using the following:

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Total weight of Silt }+ \text { Clay (SC) } & =((\mathrm{B}-\mathrm{A})-\mathrm{C} 1) \times(\mathrm{G} / \mathrm{F}) \\
\text { Total weight of Clay (Clay) } & =((\mathrm{E}-\mathrm{D})-\mathrm{C} 2) \times(\mathrm{G} / \mathrm{F})
\end{array} \\
& =(\mathrm{l}-\mathrm{H})
\end{array} \quad \begin{aligned}
& \text { Total weight of Sand (Sand) } \\
& \text { Recovery as sand, silt and clay (\%) }=(((\mathrm{SC})+(\text { Clay })+(\text { Sand })) / \mathrm{J}) \times 100 \\
& \text { Clay (\%) }=(\text { Clay }) /((\mathrm{SC})+(\text { Clay })+(\text { Sand })) \times 100 \\
& \text { Silt (\%) }=((\mathrm{SC})-(\text { Clay })) /((\mathrm{SC})+(\text { Clay })+(\text { Sand })) \times 100 \\
& \text { Sand }(\%)=(\text { Sand }) /((\mathrm{SC})+(\text { Clay })+(\text { Sand })) \times 100
\end{aligned}
$$

Where: \quad| $\mathrm{A}=$ | Weight of empty dish for clay and silt sampling |
| :--- | :--- |
| | $\mathrm{B}_{2}=$ |
| $\mathrm{C}_{1}=$ | Weight of dish + clay \& silt aliquot |
| | Weight of dispersant blank for clay + silt sampling |
| | $\mathrm{C} 2=$ |
| | Weight of dispersant blank for clay sampling |
| | |

$E=$	Weight of dish + clay aliquot
$F=$	Aliquot size (usually 5 ml)
$G=$	Total volume of water + dispersant (usually 200 ml)
$H=$	Weight of empty dish for sand fraction
$1=$	Weight of dish + sand fraction
$J=$	Weight of air-dry soil used (usually 20.00 g)

The results are thus expressed as percentages in terms of the amount of sand + silt + clay recovered. Thus sand, silt and clay will add up to 100%.

Other References

Day, P.R. 1965. Particle fractionation and particle-size analysis. Pages 545-567 in Methods of Soil Analysis, C.A. Black, Ed. Agronomy No. 9, Part I, American Society of Agronomy, Madison, WI.

CATION EXCHANGE CAPACITY AND EXCHANGEABLE BASES

Reference Method

van Reeuwijk, L.P. (edit.) 1992. Procedures for Soil Analysis pages 9-1 to 9-11, International Soil Reference and Information Centre, Wageningen, The Netherlands.

Introduction

Cation exchange capacity (CEC) is an important charactenstic of soil that is largely defined by the types of clay minerals present and the humus content. It is important as an indication of the capacity of the soil to hold and retain nutrients against leaching. The relationship with clay and organic matter content is an important feature in classifying soils and assessing potential agricultural usefulness. The base saturation, the proportion of the CEC occupied by basic cations, is also a diagnostic criteria for soil classification which indicates the extent of potential acidity in the soil. Once the contribution of organic matter to the CEC is taken into account the magnitude of the residual CEC relative to the clay content is useful in suggesting the type of clay present. The CEC is expressed in $\mathrm{meq} / 100 \mathrm{~g}$ of soil or cmol $(+) / \mathrm{Kg}$ of soil. Organic matter is generally considered top contribute $200 \mathrm{me} / 100 \mathrm{~g}$ of organic matter. Approximate values in me/ 100 g for different clays and amorphous oxides are as follows:

Iron oxide	<4
Kaolinite	$4-15$
Illite (mica)	$10-40$
Chlorite	$10-40$
Smectite	$80-120$
Vermiculite	$100-150$

Some saline and alkaline soils contain particular types of clay minerals, especially vermiculite. Allophones which are composed of poorly crystalline alumino-silicates are prevalent in soils derived from volcanic ash and have a CEC varying from 100 to 200 meq/ 100 g which is also pH -dependent. The CEC of the silt fraction can be considerable.

Scope

The method described here is may be used to estimate the CEC of most soils. The choice of saturating cation or pH of the equilibrating solution may be varied for soils containing certain clays or minerals. It may be difficult to differentiate between exchangeable and soluble cations in soils containing carbonates, gypsum or soluble salts.

Principle

A soil sample is leached with ammonium acetate to remove soluble bases and replace exchangeable bases with ammonium ions. Calcium, magnesium, sodium and potassium are measured in the effluent. The sample is then leached with sodium acetate to saturate the cation exchange complex with sodium ions. The excess sodium is removed by leaching with ethanol and the cation exchange capacity determined by measuring the sodium subsequently de-sorbed by a further leaching with ammonium acetate. A pre-washing step may be carried out to remove soluble salts in highly saline soils. The method described here uses an automatic extractor where the soils are mounted in plastic syringes for the leaching operations.

Method Validation

None.

Special Notes

Application of the described method to calcareous and gypsiferous soils may lead to apparently erroneous results. Dissolution of carbonates gives an over-estimation of exchangeable Ca but may not effect the CEC measurement. Results can be improved to some extent by raising the pH of the sodium and ammonium acetate buffer solutions to 8.2 where the solubility of calcium and magnesium carbonate is reduced. This can also be achieved by using a 1:1 acetate:ethanol buffer at pH 7 . However, since the solubility of the carbonates is never reduced to zero the results still remain unreliable. The determination of CEC of saline and alkaline soils also has some problems since such soils often contain cabonates and large amounts of other soluble salts notably sulphates and chlorides. Sodium acetate is a useful extractant since it dissolves less amounts of calcium and magnesium cabonates than does ammonium acetate.
Ammonium acetate at pH 7 has particular advantage for many soils but some saline and alkaline soils, especially those containing vermiculite, fix large amounts of ammonium $\left(\mathrm{NH}_{4}^{+}\right)$and potassium (K^{+}) under moist conditions. The fixation of ammonium does not interfere with the extraction of exchangeable bases, but the CEC values obtained by saturation with ammonium acetate for the CEC are low as a result. An inverse relationship exists between the CEC and the amount of ammonium fixed. Sodium seems to be the most appropriate cation for the determination of the CEC in these soils because it has a much smaller ionic radius than either the NH_{4} or the K^{+} ion and is more susceptible to being exchanged. The minerals of the mica family such as weathered biotite and vermiculite that often occur in the semi-arid regions can retain K^{+}and $\mathrm{NH}_{4}{ }^{+}$ions between their interlayers. These cations are strongly held and are not easily exchanged. Therefore if NH_{4}^{+}or K^{+}salts are used to saturate the cation exchange complex they can be fixed between the interlayers of these $2: 1$ minerals in an irreversible
manner. This hinders their replacement during the extraction and gives the value of the CEC much smaller than it actually is.

Equipment and Supplies

- SampleTex model 24VE programmable vacuum extractor
- Syringes to go with above extractor
- Volumetric flasks
- Filter pulp
- Pure sand (e.g. acid washed sea-sand, ignited to remove any organic matter)

Reagents

- Ethanol 96 \%: Also diluted to 80%.
- Ammonium Acetate Solution, 1 M : Dissolve 385.4 g NH 44 AC in de-ionised water. Adjust the pH to 7.0 with ammonium or 1 M acetic acid make to 5 litres. Altematively for each litre of solution use 58 ml of glacial acetic acid (99%) and 70 ml of concentrated ammonium hydroxide.
- Sodium Chloride. 10% Solution: Dissolve 100 g of NaCl in de-ionised water and make up to 1000 ml .
- Sodium Acetate Solution, 1 M : Dissolve 680.4 g of $\mathrm{NaAc} .3 \mathrm{H}_{2} \mathrm{O}$ in de-ionised water. Adjust the pH to 7.0 with 1 M sodium hydroxide or 1 M acetic acid and make up to 5000 ml .
- Sodium Hydroxide, 1 M : Dissolve 40 g of NaOH in de-ionised water and make up to 1000 ml .
- Acetic Acid, 1 M : Add 60.05 g or 57.5 ml of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ to about 500 ml of de-ionised water and make up to 1000 ml .

Note: If desired, both acetate solutions may be adjusted to pH 8.2 (for CEC pH 8.2 of calcareous soils). Alternately a mixture of $50: 50$ ammonium acetate 1 MpH 7 and ethanol could be used instead of $\mathrm{NH}_{4} \mathrm{AC}$ pH 7 for displacement of the bases.

Safety and Special Precautions

None identified.

Test Procedure

- Plug the bottom of the sample tube with approx. 1 g of filter pulp and compress with a plunger.
- Weigh 5.00 g air-dry < 2 mm soil into a plastic beaker, add 1 tea spoonful of sand and mix well with a spatula.
- In case of very clayey samples or samples with swelling clays (Smectites) two tea-spoonfuls of sand.
- Transfer quantitatively to sample tube and place tube in upper disc of extractor. If necessary, level sample to even thickness with a spatula.
- Prepare a blank sample with pure sand instead of soil.
- Connect sample tube with collecting syringe the plunger of which is inserted in slot of stationary disc of extractor.
- Soluble salt treatment: A distinction can be made on the basis of presence or absence of soluble salts using the conductivity of the $\mathrm{pH}-\mathrm{H}_{2} \mathrm{O} 2: 5$ suspensions to test this:

EC $2.5>0.4 \mathrm{mS}$: soluble salts need to be washed out first with 80% ethanol.
EC $2.5<0.4 \mathrm{mS}$: soluble salts negligible and therefore no pre-washing needed.

- Preliminary treatment for soluble salts
- Rinse wall of sample tube with some 80% ethanol from wash bottle.
- Carefully fill sample tube to the 25 ml mark with ethanol 80% and allow to stand for 20 minutes.
- Check tube for entrapped air-bubbles and, if necessary, try to remove these by light tapping against the tube. Should this fail, then carefully disturb soil/sand mixture by probing with a mounting needle.
- If necessary, fill to $25 \mathrm{~m} /$ mark again and place reservoir tube on top of sample tube.
- Add about $40 \mathrm{~m} /$ ethanol 80% to reservoir tube collecting syninge. Discard leachate and replace collecting syringe with a clean one. Proceed with test procedure as below.
- Rinse wall of sample tube with some $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$. Allow to stand for 20 minutes (omit standing for 20 minutes if pre-washed).
- Check tube for entrapped air-bubbles and, if necessary, try to remove these by light tapping against the tube. Should this fail, then carefully disturb soil/sand mixture with a mounting needie.
- If necessary, fill to 25 ml mark again and place reservoir tube on top of sample tube. Add about 40 ml 1 M $\mathrm{NH}_{4} \mathrm{OAc}$ to reservoir tube, start extractor and complete leaching in 4 hours.
- Disconnect collecting syringe, transfer contents quantitatively to 100 ml volumetric flask and make to volume with $1 \mathrm{M} \mathrm{NH} 4 \mathrm{OAc}^{\mathrm{OAc}}$ solution (Leachate A)
- Measure $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$, and Na in Leachate A .
- If CEC determination is to follow, remove reservoir tube, reset extractor in starting position and replace collecting syringe.
- Possible modification for carbonate/non-saline soils: If the pH of the $2: 5 \mathrm{H}_{2} \mathrm{O}$ water extract is >7 with carbonates present but EC $2.5<0.4 \mathrm{mS} / \mathrm{cm}$ then no pre-washing is needed, but use a 50.50 mixture of $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{pH} 7$ and ethanol to displace the bases instead of using $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{PH} 7$ alone, to obviate carbonate dissolution.
- Possible modification with carbonate/saline soils: If the pH of the $2: 5 \mathrm{H}_{2} \mathrm{O}$ water extract is > 7 with carbonates present but EC $2.5>0.4 \mathrm{mS} / \mathrm{cm}$ then do a pre-washing as above followed by a $50: 50$ mixture of $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{pH}$ 7 and ethanol to displace the bases instead of using $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{pH} 7$ alone, to obviate carbonate dissolution.
- The CEC procedure is done immediately following the determination of exchangeable bases using the same sample and tube.
- Rinse wall of sample tube with some $\mathrm{NaOAc} / \mathrm{NaCl}(0.9 / 0.1 \mathrm{M})$ from a wash bottle and carefully fill to 25 ml mark.
- Check tube for entrapped air-bubbles and, if necessary, try to remove these by light tapping against the tube. Should this fail, then carefully probe the soil/sand mixture with a mounting needle.
- Place clean reservoir tube on sample tube and add about $40 \mathrm{ml} \mathrm{NaOAc} / \mathrm{NaCl}$.
- Start extractor and leach in 4 hours. Discard the leachate.
- Remove reservoir tube, reset extractor in starting position and replace collecting syringe.
- Rinse wall and outlet of sample tube with ethanol 80% and carefully fill to 25 ml mark.
- Place clean reservoir tube and add about 40 ml ethanol 80%.
- Start extractor and leach for 2 hours. Discard the leachate.
- Remove reservoir tube, reset extractor in starting position and replace collecting syringe.
- Rinse wall of sample tube with about 10 ml ethanol 96% and leach this for 30 minutes (timer position: 2 hours) Discard the leachate.
- Repeat the step before the latter step before discarding leachate. Test this for chloride with a drop of 1 M AgNO_{3}. If no turbidity develops proceed. If tubidity develops repeat the above step. Remove collecting syringe from those samples that do not need extra washing.
- Reset extractor in starting position and place clean collecting syringe.
- Carefully add $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}$ solution to the 25 ml mark of sample tube.
- Start extractor and leach for 8 hours.
- Disconnect collecting syringe and transfer contents quantitatively to 100 ml volumetric flask and make to volume with $\mathrm{NH}_{4} \mathrm{OAc} 1 \mathrm{M}$ solution, mix. (Leachate B)
- Measure Na in this leachate.

Any anomaly observed in the extracts such as strong coloration (dissolution of humus) or turbidity (colloidal particles) should be recorded. Such anomalies, particularly the latter, may cause erroneous results. In some cases filtering or high-speed centrifuging may be necessary to obtain a clear solution.

Exchangeable $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$, and Na are measured by flame atomic absorption spectrophotometry (AAS) in percolate A . The CEC is measured through Na by AAS in percolate B . For measurement on the AAS La (5000 mg / l or 0.5%) is introduced to prevent formation of refractory compounds of Ca, Mg and ionization interference of K and Na in the flame.

Calculation and Presentation of Results

$$
\begin{aligned}
& \text { Exch. } \mathrm{Ca}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 10 \times 100 \times \mathrm{mcf}}{10 \times 20.04 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{Mg}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 10 \times 100 \times \mathrm{mcf}}{10 \times 12.15 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{K}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(a-b) \times 2 \times 100 \times \mathrm{mcf}}{10 \times 39.1 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{Na}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 2 \times 100 \times \mathrm{mcf}}{10 \times 23.00 \times \mathrm{S}}\right. \\
& \text { Base Saturation (\%) }=\frac{(\mathrm{Ca}+\mathrm{Mg}+\mathrm{K}+\mathrm{Na}) \times 100}{\mathrm{CrC}}
\end{aligned}
$$

- Possible modification for carbonate/non-saline soils: If the pH of the $2: 5 \mathrm{H}_{2} \mathrm{O}$ water extract is >7 with carbonates present but EC $2.5<0.4 \mathrm{mS} / \mathrm{cm}$ then no pre-washing is needed, but use a $50: 50$ mixture of $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{pH} 7$ and ethanol to displace the bases instead of using $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{PH} 7$ alone, to obviate carbonate dissolution.
- Possible modification with carbonate/saline soils: If the pH of the $2: 5 \mathrm{H}_{2} \mathrm{O}$ water extract is >7 with carbonates present but EC $2.5>0.4 \mathrm{mS} / \mathrm{cm}$ then do a pre-washing as above followed by a $50: 50$ mixture of $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{pH}$ 7 and ethanol to displace the bases instead of using $\mathrm{NH}_{4} \mathrm{OAc} \mathrm{PH} 7$ alone, to obviate carbonate dissolution.
- The CEC procedure is done immediately following the determination of exchangeable bases using the same sample and tube.
- Rinse wall of sample tube with some $\mathrm{NaOAc} / \mathrm{NaCl}(0.9 / 0.1 \mathrm{M})$ from a wash bottle and carefully fill to 25 ml mark.
- Check tube for entrapped air-bubbles and, if necessary, try to remove these by light tapping against the tube. Should this fail, then carefully probe the soil/sand mixture with a mounting needle.
- Place clean reservoir tube on sample tube and add about $40 \mathrm{ml} \mathrm{NaOAc} / \mathrm{NaCl}$.
- Start extractor and leach in 4 hours. Discard the leachate.
- Remove reservoir tube, reset extractor in starting position and replace collecting syringe.
- Rinse wall and outlet of sample tube with ethanol 80% and carefully fill to 25 ml mark.
- Place clean reservoir tube and add about 40 ml ethanol 80%.
- Start extractor and leach for 2 hours. Discard the leachate.
- Remove reservoir tube, reset extractor in starting position and replace collecting syringe.
- Rinse wall of sample tube with about 10 ml ethanol 96% and leach this for 30 minutes (timer position: 2 hours) Discard the leachate.
- Repeat the step before the latter step before discarding leachate. Test this for chloride with a drop of 1 M AgNO_{3}. If no turbidity develops proceed. If turbidity develops repeat the above step. Remove collecting syringe from those samples that do not need extra washing.
- Reset extractor in starting position and place clean collecting syringe.
- Carefully add $1 \mathrm{M} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ solution to the $\mathbf{2 5}$ mil mark of sample tube.
- Start extractor and leach for 8 hours.
- Disconnect collecting syringe and transfer contents quantitatively to 100 ml volumetric flask and make to volume with $\mathrm{NH}_{4} \mathrm{OAc} 1 \mathrm{M}$ solution, mix. (Leachate B)
- Measure Na in this leachate.

Any anomaly observed in the extracts such as strong coloration (dissolution of humus) or turbidity (colloidal particles) should be reconded. Such anomalies, particularly the latter, may cause erroneous results. In some cases filtering or high-speed centrifuging may be necessary to obtain a clear solution.

Exchangeable $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ and Na are measured by flame atomic absorption spectrophotometry (AAS) in percolate A. The CEC is measured through Na by AAS in percolate B. For measurement on the AAS La (5000 mg / h or 0.5%) is introduced to prevent formation of refractory compounds of Ca, Mg and ionization interference of K and Na in the flame.

Calculation and Presentation of Results

$$
\begin{aligned}
& \text { Exch. } \mathrm{Ca}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 10 \times 100 \times \mathrm{mcf}}{10 \times 20.04 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{Mg}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 10 \times 100 \times \mathrm{mcf}}{10 \times 12.15 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{K}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 2 \times 100 \times \mathrm{mcf}}{10 \times 39.1 \times \mathrm{S}}\right. \\
& \text { Exch. } \mathrm{Na}\left(\mathrm{cmol}(+) / \mathrm{kg} \text { soil }=\frac{(\mathrm{a}-\mathrm{b}) \times 2 \times 100 \times \mathrm{mcf}}{10 \times 23.00 \times \mathrm{S}}\right. \\
& \text { Base Saturation (\%) }=\frac{(\mathrm{Ca}+\mathrm{Mg}+\mathrm{K}+\mathrm{Na}) \times 100}{\mathrm{Cr}}
\end{aligned}
$$

Where:
$\mathrm{a}=\mathrm{mg} / \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$, or Na in the diluted sample leachate A
$10=$ the value 10 in the numerator for Ca and Mg represent the dilution factor.
$2=$ the value 2 in the numerator for K and Na represent the dilution factor.
$\mathrm{b}=\mathrm{mg} / \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ or Na in the diluted blank leachate A.
$\mathrm{S}=$ air-dry weight of soil ing
$\mathrm{mcf}=$ moisture correction factor (if used).
$10=$ the value 10 in the denominator is a factor to covert from mg / l to $\mathrm{cmol}(+) / \mathrm{kg}$
$100=$ the value 100 in the numerator is the total volume of the percolate: change this

The values $20.04,12.15,39.10$ and 23.00 are the equivalent weights of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$, and Na , respectively.
$\operatorname{CEC}\left(\mathrm{cmol}(+) / \mathrm{kg}=\frac{(\mathrm{a}-\mathrm{b}) \times 10 \times 100 \times \mathrm{mcf}}{10 \times 23 \times \mathrm{S}}\right.$

Where:

$a=\mathrm{mg} / \mathrm{Na}$ in $10 \times$ diluted sample leachate B
$b=m g / \mathrm{Na}$ in 10x diluted blank leachate B
$\mathrm{s}=$ air-dry sample weight in $\mathrm{g}(5 \mathrm{~g})$.
mof $=$ moisture correction factor (if used)
Data Acceptance and Quality Control
Each batch of samples should contain one blank, two duplicate samples and one quality control standard. The results are accepted if the results from the standard sample are within two standard deviations of the historical mean. Duplicate results should be within 10% of each other.

Other References

Rhoades, J.D. 1982. Cation exchange capacity. Pages 149-157 in A.L. Page et al., Eds. Methods of soil analysis, Agronomy No. 9. $2^{\text {nd }}$ ed. American Society of Agronomy, Madison, WI.
Thomas, G.W. 1982. Exchangeable cations. Pages 159-165 in A.L. Page et al., Eds. Methods of soil analysis, Agronomy No. 9. $2^{\text {nd }}$ ed. American Society of Agronomy, Madison, WI.

CATIONS EXTRACTABLE BY 1M AMMONIUM ACETATE AT PH 7

Reference Method
Adapted from: Soil Science Society of South Africa (1992). Handbook of Standard Soil Testing Methods for Advisory Purposes. Pages 8-1 to 8-3. P.O. Box 30030, Sunnyside 0132, Pretoria, RSA.

Introduction

The status of available calcium, magnesium and potassium as well as the ratios of these elements and sodium is important in maintaining optimum plant growth. Extraction of these cations with neutral ammonium acetate reflects their nutrient status in the soil.

Scope

The method is applicable to most soils. The procedures described here just outline the extraction step. The measurement of individual cations is the subject of another SOP.

Principle

Soils are extracted with neutral 1 M ammonium acetate at an extraction ratio of $1: 10$. The soluble and exchangeable cations are brought into solution by the high concentration of ammonium ions. The concentration of individual cations can be determined by atomic absorption spectroscopy.

Method Validation

By direct reference to results of ALASA soil samples.

Notes

It is important that extracts of clear of any sediment or fine particulate material. Cloudy extracts may be treated by filtration through fine filter paper (e.g. Whatman No. 42), by standing overnight in a refrigerator or by centrifugation (e.g Beckman centrifuge $3,000 \mathrm{rpm}$ for 30 minutes).

Sample Requirements

Soils should be air-dried and ground to pass a 2 mm mesh sieve. Samples may be stored at low humidity indefinitely without significant change in sodium, calcium, magnesium or potassium. The amount of extractable potassium may increase on drying.

Equipment and Supplies

- Balance to measure to 0.01 g
- 250 ml extraction flasks
- Reciprocating shaker
- Filtering rack, filter funnels and test tubes
- Medium fineness filter paper (Whatman 40)
- Volumetric flasks and pipettes
- Atomic absorption/emission spectrophotometer

Reagents

- Ammonium Acetate, 1 , pH 7.0: On a magnetic stirrer in a fume cabinet, dilute 570 ml glacial acetic acid (99.5%) with about 5000 ml of de-ionised water. Add 690 ml concentrated ammonia solution gradually with stirring to the diluted acetic acid. Add 2000 ml of de-ionised water. Allow to cool. Adjust to pH 7.00 with acetic acid or ammonia. Make up to 10000 ml . If made directly from ammonium acetate use 77.8 g per litre and adjust pH with ammonium hydroxide or acetic acid.
- Standard solutions of calcium, sodium, potassium and magnesium, lanthanum solution: (see separate SOP).

Safety and Special Precautions

Take precautions when handling strong acids and alkalis in prepaning the ammonium acetate solution.

Test Procedure

- Weigh 5.00 g of air-dry $<2 \mathrm{~mm}$ soil into extraction flasks.
- Add 50 ml ammonium acetate solution from a reagent dispenser and shake at 180 oscillations per minute for 30 minutes.
- Allow to stand for a few minutes and then filter into test tubes.
- Carry out further filtration or centrifugation steps if the extract is not clear.
- Store over night in refnigerator
- Make up suitable dilution in lanthanum and analyse the filtrate for $\mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$ and Na .
- AA method see separate SOP

Data Acceptance and Quality Control

Quality control samples should fall within two standard deviations as calculated on the control sheets. Duplicates will fall within 5% of each other

Calculation and Presentation of Results

Farm soil results should be quoted to an accuracy of three significant figure. Research samples may be quoted to four significant figures.

Other References

Knudsen, D., Paterson, G.A., and Pratt P.F. 1982. Lithium, sodium and potassium. Pages 225-246 in A.L. Page et al., Eds. Methods of soil analysis, Part 2., $2^{\text {nd }}$ ed. Agronomy No. 9. American Society of Agronomy, Madison, WI. Lanyon, L.E. and Heald, W.R. 1982. Magnesium, calcium, strontium and barium. Pages 247-262 in A.L. Page et al., Eds. Methods of soil analysis, Part 2., $2^{\text {nd }}$ ed. Agronomy No. 9. American Society of Agronomy, Madison, WI.

ELECTRICAL CONDUCTIVITY IN A SATURATED PASTE OR 2:5 WATER:SOIL EXTRACT

Reference Method

Adapted from: Bower, C.A. and Wilcox L.V. 1965. Soluble Salts, pages 933 to 951 in Methods of Soil Analysis, C.A. Black (ed.), Agronomy No. 9, American Society of Agronomy, Madison, WI.

Introduction

Electrical conductivity (EC) is the property of a liquid medium to transmit an electrical current. EC increases with the concentration of the ions that liquid contains and varies with the nature of the ions. In the soil, the determination of the EC serves to give an idea of the total quantity of soluble salts and the degree of salinity of the soil.

Scope

The method for the measurement of electrical conductivity is applicable to soils, composts, manures and water samples. The saturated extract method is used for saline and/or sodic soils (see SOP Soil-110).

Principle

EC is measured with a conductivity meter with two electrodes placed in a sample of the liquid at a set distance from each other. EC is the inverse of electrical resistivity and is quoted in units based on "mhos" or siemens for example mmhos $/ \mathrm{cm}, \mu \mathrm{mhos} / \mathrm{cm}$ or $\mathrm{S} / \mathrm{m}[1 \mathrm{~s} / \mathrm{m}=10 \mathrm{mmhos} / \mathrm{cm}=1000 \mu \mathrm{~S} / \mathrm{cm}]$. The EC of an aqueous salt solution increases with increase in temperature (about 2% per degree ${ }^{\circ} \mathrm{C}$) hence EC is referenced to a standard temperature (e.g. 20 or $25^{\circ} \mathrm{C}$).
The content of soluble salts in a soil can be estimated by measuring the EC in a saturated paste, or an extract from a saturated paste or in extracts prepared at varying ratios of soil to water. To prepare a saturated paste extract, water is added to a soil sample until a given mechanical property of the soil is attained equivalent to the liquid limit. The amount of water held at saturation is called the saturation percentage

Method Validation

Not done

Interference and Other Considerations

The results provide readings relative to $25^{\circ} \mathrm{C}$ for a standard potassium chloride solution at room temperature. Care should be taken that the sample extracts are also at the same temperature of the standard solution. When pH is to be determined on the same solution, EC is determined first to eliminate the possibility of KCl leaking from the pH electrode into the samples.

Sample Requirements

Soils should be air-dried and ground to pass a 2 mm mesh sieve. Samples may be stored at low humidity with little alteration of electrical conductivity results.

Equipment and Supplies

- 100 ml beakers and containers suitable for mixing up to 1 kg of soil.
- Spatula or glass stirring rod
- Analytical balance (0.1 g precision)
- Conductivity meter

Reagents

- Potassium chloride (0.1M): Dissolve 7.456 g of dried KCl in distilled water and make up to 1 L . Store in a refrigerator.
- Potassium chloride (0.01 M): Pipette 50 ml of the 0.1 M stock KCl solution into a 500 ml volumetric flask and bring to volume with distilled water. Store refrigerated.

Safety and Special Precautions
 None

Test Procedure

- Preparation of $2: 5$ soil:water extract : Weigh 20 g of air dried $<2 \mathrm{~mm}$ soil into a 100 ml beaker. Add 50 ml of distilled water and stir three times over the course of one hour.
- Preparation of exiract from a saturated soil paste: The procedure is outlined in greater detail in SOP Soil-109 (Salinity Analysis). Weigh 200 to 1000 g of air dried < 2 mm soil into a strong plastic or metal container. The amount of soil needed depends on the texture of the soil and the amount of extract needed for various analyses. Add distilled water to the soil and stir the mixture until a thick paste is formed which is almost saturated with water. Stir several times over a two hour period, adding extra water if needed. The water content should be adjusted until the soil reaches saturation. This point is marked by three characteristics: (1) the paste glistens as it reflects light, (2) it flows slightly when the container is tipped and (3) it slides cleanly
off a spatula for all soils except those of high clay content. After standing for at least four hours (or ovemight) the water content is readjusted if needed and a small sample recovered to determine the moisture content and saturation percentage. The rest of the sample is transferred to a Buchner filter funnel with fine retention filter paper (e.g. Whatman No. 42) and filtered using vacuum. Part of the filtrate is used to determine EC. The remaining filtrate may be used for pH and cation and anion analyses.
- Calibration of the conductivity meter. Add about 30 ml of the 0.01 N KCl calibrating solution to a 50 ml beaker, dip the cell in this solution and adjust reading of the meter to $1.412 \mathrm{~ms} / \mathrm{cm}$ with the calibration dial This reading is the specific conductivity of the 0.01 M KCl solution at $25^{\circ} \mathrm{C}$. The meter is now set to make readings.
- Taking Readings: Insert the cell into the extract and read the conductivity. The range scale may need to be changed to obtain the exact EC reading. Rinse the cell with distilled water and dry with paper tissue. Make further readings as above. After all the samples have been determined, wash and dry the cell and store it away.

Data Acceptance and Quality Control

Each run of 24 samples should include one duplicate and one standard soil. Salinity standard 83535 should be used for saturated extracts while the same standard as used for pH should be run with all other soils (812342 or 821834). The meter should be checked with the 0.01 M KCl solution every 10 samples and reset if needed. Quality control samples should fall within two standard deviations as calculated on the control sheets. Duplicates will fall within 5% of each other or within $10 \mu \mathrm{~S} / \mathrm{cm}$ for solls of low salinity.

Calculation and Presentation of Results

Results should be quoted in $\mu \mathrm{S} / \mathrm{cm}$ (as whole numbers) or $\mathrm{mS} / \mathrm{cm}$ (to 0.01 units) for saline soils. To convert results EC $\mathrm{C}_{(1: 2,5)}$ extract into saturated paste value multiply by 2 to 2.5 (more precise conversion should be worked out for local soils. The conversion become inaccurate (normally too low) when $E C_{(1: 2.5)}$ is above $\sim 1000 \mu \mathrm{~S} / \mathrm{cm}$ and the EC should be measured on a saturated extract.

Other References

Van Reeuwijk L.P. Procedures for Soil Analysis. $3^{\text {rd }}$ Edition, pages 3-1 and 13-1. Intemational Soil Reference and 1992 Information Centre, Wageningen, The Netherlands.
Richards, L.A. (Editor). (1954). Diagnosis and Improvement of Saline and Alkaline Soils. U.S. Dep. Agric. Handbook. No. 60.

PH OF SOIL IN WATER OR 1M POTASSIUM CHLORIDE

Reference Method

Adapted from: Hendershot, W.H., Lalande, H. and Duquette, M. (1993). Soil reaction and exchangeable acidity. Pages 141-145 in Soil Sampling and Methods of Analysis, M.R. Carter (editor). Canadian Society of Soil Science and Lewis Publishers.

Introduction

The pH in water (pHw) gives a measurement of dissociated H^{+}ions present in the soil solution and in equilibrium with the other ions. Exchangeable or reserve acidity is represented by the H^{+}ions fixed on the colloidal particles and may be estimated by measuring the pH in a soil: 1 M potassium chloride extract (pHk). The pHk is normally more acidic than pHw except in some tropical soils containing sesquioxides.

Scope

The method for the measurement of pH is applicable to soils, composts, manures and water samples. Soluble salts in the soil can be estimated by measuring the electrical conductivity of the water extract (see SOP Soil-112). Exchangeable acidity in soils can be measured by titration of a 1 M KCl extract with standard acid (see SOP Soil113).

Principle

The pH of the soil is potentiometrically measured in the supernatant suspension of a $1: 2.5$ soil: liquid mixture. The liquid is either water (pHw) or 1 M KCl solution (pHk).

Method Validation

By direct reference to results of ALASA soil samples.

Interference and Other Considerations

Buffer solutions should not be stored at room temperature for too long. Any contamination of the buffer container with soil particles may make readings unreliable. The pH 9 and 10 buffer solutions are sensitive to CO_{2} and once opened may soon become unreliable. Soils containing carbonates often give unstable readings due to equilibrium reactions with the solution phase and carbon dioxide. In such cases where the pH drifts the reading should be recorded after a set period such as 2 minutes. For the identification of a sulphuric horizon a $1: 1$ soil : water ratio is used.

Sample Requirements

Soils should be air-dried and ground to pass a 2 mm mesh sieve. Samples may be stored at low humidity without significant change in pH . Moisture, high organic matter content and high temperature may change pH on storage.

Equipment and Supplies

- pH meter with glass-calomel combination electrode
- Glass rods, 100 ml plastic beakers
- Analytical balance with 0.1 g precision
- Absorbent papertissues
- Graduated cylinders (50 ml) or reagent dispenser

Reagents

- Commercial buffer solutions, $\mathrm{pH} 4.00,7.00$ and 9.00: Or made as below.
- Buffer solution pH 4.00: ($20^{\circ} \mathrm{C}$: Dissolve 11.8060 g citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$ and 10.9468 g disodium phosphate ($\mathrm{Na}_{2} \mathrm{HPO}_{4} .12 \mathrm{H}_{2} \mathrm{O}$) in pure de-ionised water and dilute to 1 litre. Or dissolve 2.0423 g of potassium hydrogenphthalate $\left(\mathrm{KHC}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)$ in 200 ml of de-ionised water.
- Buffer solution $\mathrm{pH} 7.00\left(20^{\circ} \mathrm{C}\right)$: Dissolve 3.3910 g of potassium dihydrogen orthophosphate $\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$ and 4.4500 g disodium phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in de-ionised water and dilute to 1 litre. Or dissolve 0.680 g of potassium dihydrogen - phosphate $\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$ and 0.8900 g of disodium hydrogen-phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 200 ml of de-ionised water. This give a pH 6.88 buffer.
- Buffer solution pH $9.22\left(20^{\circ} \mathrm{C}\right)$: Dissolve 0.7627 g of sodium tetraborate $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .10 \mathrm{H}_{2} \mathrm{O}\right)$ in 200 ml of deionised water.
- Potassium chlonide (1M): Dissolve 74.6 g of dried KCl de-ionised water and make to 1 L .
- Commercial electrode filling solution: Or a saturated potassium chloride solution: Pour 50 ml of de-ionised water into a 100 ml beaker, add KCl crystals, stir, add more crystals until a saturated solution is obtained.

Safety and Special Precautions
 None

Test Procedure

- Preparation of electrode

Check to see if the liquid level in the outer section of the electrode is close to the filling hole. If not, detach the electrode carefully, shift the rubber cover down so that the small opening comes free and fill with reference electrode filling solution or a saturated potassium chloride solution.

- Calibrating the pH meter

The pH -meter may be left with power on in standby mode. Otherwise turn it on 30 minutes before use. The electrode and temperature sensor are kept in de-ionised water. Remove the pH calibration standard solutions from the refrigerator sufficiently in advance in order for them to reach ambjent temperature. Adjust the temperature regulation to room temperature, remove the combination electrode (or the reference and glass electrodes) from the conservation solution, rinse it with water and wipe with absorbent paper. Put the electrode into the pH 7.00 buffer, set the meter to the calibration mode and adjust the value of the display to that of the buffer. Set the calibration. The second calibration can be done with the pH 4.00 or the pH 9.00 buffer depending upon the expected range of the soil pHs to be measured.

- Preparation of water suspension or potassium chloride suspension

Weigh 20.0 g soil on a top loading balance into 100 ml beaker.
Add 50 ml de-ionised water or 1 M KCl from a measuring cylinder or reagent dispenser.
Stir for about 20 seconds three times over a one hour period.

- Reading the pH

Introduce the electrode(s) into the suspension, wait for the reading to stabilise and record the pH on the data sheet to an accuracy of 0.01 unit. The reading is considered stable when it does not change more than 0.1 units per 30 seconds (or 0.02 units per 5 sec .). With neutral and acidic samples this normally takes less than two minutes. With calcareous soils stabilisation may be difficult to achieve, because of non-equilibrium conditions and reaction with atmospheric carbon dioxide. After reading, lift the electrodes out and wash with de-ionised water (wiping with tissue paper is not necessary).

Data Acceptance and Quality Control
In each run of 24 samples include one duplicate and one standard soil (pH Standard 1997 Red, 812342 or 821834). Check the drift of the pH meter with the pH 7.00 solution every 10 samples and reset the meter if needed. Measure the pH of a fresh standard pH solution once during the run. Quality control samples should fall within two standard deviations as calculated on the control sheets. Duplicates will fall within 5% of each other or within 0.2 pH units.

Caiculation and Presentation of Results

Farm soil results should be quoted to an accuracy of 0.1 pH unit. Research samples may be quoted to 0.01 pH units.

Other References

Peech, M. 1965. Hydrogen-Ion Activity, pages 914-926 in C.A. Black (ed.) Methods of Soil Analysis, Agronomy No. 9, American Society of Agronomy, Madison, WI.

SOIL ACIDITY

Reference Method

Van Reeuwijk L.P. 1992. 11-1 to 11-2, Soil Acidity in Procedures for soil Analysis. $3^{\text {rd }}$ Edition. Int. Soil Reference and Information Centre, Wageningen, The Netherlands.

Introduction

In very acid soils the Al^{3+} ions that constitute part of the clay layers become exchangeable. They are fixed on the exchange complex and together with H^{+}ions they form the group of exchangeable cations that cause soil acidity. Exchangeable acidity is due largely to Al^{3+} ions. When the Al^{3+} from the exchange complex passes into the solution, H^{+}ions are produced which raise the active acidity and hence decrease the pH .

$$
\mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}^{+} .
$$

Since aluminium becomes toxic to plants at high concentrations it is necessary to determine exchangeable acidity $\left(\mathrm{Al}^{3+}+\mathrm{H}^{+}\right)$in order to estimate the lime requirement of soils needed to increase soil pH to the point where aluminium is no longer soluble. Exchange acidity is also an important parameter for the classification of acidic soils.

There are fundamentally two different methods for the determination of soil acidity.
Exchangeable acidity as acidity $\left(\mathrm{H}^{+}+\mathrm{Al}^{3+}\right)$ released upon exchange by an unbuffered KCl solution. This may be used to determine the effective cation exchange capacity (ECEC) which is defined as sum of bases $+(\mathrm{H}+\mathrm{Al})$, When the exchangeable acidity is significant, the Al may be determined separately in the extract as it may be toxic to plants. Because the contribution of H^{+}is often (but not always) negligible, some laboratories only determine exchangeable AI. In that case the ECEC is calculated as (sum of bases + AI). This method is described here.
Extractable acidity is the acidity extracted by a BaCl_{2}-TEA (triethanolamine) buffer solution at pH 8.2 . It may be also be called potential acidity, maximal acidity, or titratable acidity and is sometimes is also confusingly referred to as exchange acidity. It may be used to calculate the CEC as the sum of bases + extractable acidity.

Scope

The method is useful to measure exchangeable acidity and aluminium in acid soils with pHw of <5.5. Acidity above this pH is less likely to be a problem to plant growth and little soluble aluminium will be present.

Principle

A neutral $1 \underline{N}$ potassium chloride solution is used to leach a soil sample of exchangeable hydrogen and aluminium ions. The acidity brought into solution from various sources in the soil is measured by titration with a standard alkali solution, the amount of alkali used being equivalent to the sum of hydrogen and aluminium ions or exchangeable acidity :

When aluminium is complexed with sodium fluoride, an equivalent quantity of alkali is released:

$$
\mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{NaF}=\mathrm{Na}_{3} \mathrm{AlF}_{6}+3 \mathrm{NaOH}
$$

The exchangeable aluminium may then be measured by titrating the released alkali with standard acid.

Method Validation

None carmed out.
Interference and Other Considerations
None identified.

Equipment and Supplies

- Burettes
- Pipettes
- 250 ml Erlenmeyer flasks
- Analytical balance (0.01 g accuracy)
- Volumetric flasks (100 ml)
- Filter paper - Whatman No. 41.

Reagents

- Potassium chloride solution, 1 M : Dissolve 74.6 g KCl in deionised water and make up to 1000 ml .
- Sodium Hydroxide Solution, 1 M : Dissolve 20 g of NaOH in de-ionised water, cool and make up to 500 ml with de-ionised water in a volumetric flask.
- Sodium Hydroxide Solution, 0.02 M : Dilute 20 ml of 1 M NaOH to 1000 ml with de-ionised water and standardise with 0.05 N oxalic acid. Note: sodium hydroxide standard solutions have a limited life and need to be standardised after storage.
- Hydrochloric acid 1 M : Pipette 42 ml concentrated $\mathrm{HCl}(37 \%)$ into a 500 ml volumetric flask containing about 400 ml of de-ionised water and make to volume with de-ionised water.
- Hydrochlonic Acid Solution 0.02 M : Dilute 20 ml of 1 M HCl to' 1000 ml with de-ionised water and standardise against 0.02 M NaOH .
- Sodium Fluoride Solution, 1 M : Dissolve 41.99 g of NaF in 800 ml de-ionised water and dilute to 1000 ml with de-ionised water. Filter the solution if turbid. Keep in a polyethylene bottle.
- Phenolphthalein indicator solution, 0.1% : Dissolve 100 mg phenolphthalein in 100 ml ethanol 96%.

Safety and Special Precautions

None identified.

Test Procedure

Leaching

- Transfer 10 g air-dried soil < 2 mm (accuracy 0.05 g) to a dry filter paper in a funnel placed in a 100 ml volumetric flask. Include two blanks and a reference sample.
- Add 10 portions of 10 ml 1 M KCl solution at 15 minute intervals so that the leaching takes about 2.5 hours.
- After the last portion has leached, remove the funnel and fill the volumetric flask to the mark with 1 M KCl solution and mix.

Determination of Exchangeable Acidity.

- Pipette a 25 ml aliquot of leachate into a 250 ml Erlenmeyer flask and add 5 drops of phenolphthalein solution.
- Titrate with 0.02 M NaOH until the colour turns just permanently pink, wait for 1 minute, record the amount of NaOH used. Weakening of the pink colour can be caused by the hydroxy-Al precipitate. This can be remedied by adding another drop of phenolphtha/ein.
- Save the solution for the determination of exchangeable aluminium as below.

Determination of Exchangeable Aluminium

- Add 10 ml of 1 M NaF to the solution in the Erlenmeyer flask saved as above.
- Titrate with 0.02 M HCl until the pink colour disappears. Set aside while other samples are titrated and see if end point is completely lasting. If there is a considerable amount of aluminium the pink colour may return. If so, add a few more drops of phenolphthalein and continue titrating with acid until the colour goes permanently.

Data Acceptance and Quality Control

Each batch of 24 samples or less should contain two blanks, a set of duplicate samples and one standard soil. At present no in-house standard soil is available. One of the old ALASA samples which has a pHw between 4 and 5 can be used as a standard.

Calculations and Data Presentation

$$
\text { Exchangeable acidity }(\mathrm{meq} / 100 \mathrm{~g} \text { soil })=\frac{(a-b) \times 4 \times \mathrm{M} \times 100 \times \mathrm{mcf}}{\mathrm{~s}}
$$

Where:
$\mathrm{a}=\mathrm{ml} \mathrm{NaOH}$ needed for percolate (sample)
$\mathrm{b}=\mathrm{ml} \mathrm{NaOH}$ needed for blank
$\mathrm{M}=$ molanity of NaOH solution
$\mathrm{s}=$ air-dry sample weight in $\mathrm{g}(10 \mathrm{~g})$.
$4 \quad=$ aliquot factor
mcf $=$ moisture correction factor (if needed)

The "effective CEC" can then be calculated:
"Effective CEC" (ECEC in meq/100 g soil) $=$ Exch. $(\mathrm{Na}+\mathrm{K}+\mathrm{Ca}+\mathrm{Mg} \div$ acidity $)$

Exchangeable $\mathrm{Al}(\mathrm{meq} / 100 \mathrm{~g}$ soil $)=(\mathrm{a}-\mathrm{b}) \times \mathrm{M} \times 4 \times 100 \times \mathrm{mcf}$
\mathbf{S}

Where:
$a=\mathrm{ml} \mathrm{HCl}$ needed for the leachate sample
$b=\mathrm{ml} \mathrm{HCl}$ needed for blank
$\mathrm{M}=$ molarity of HCl solution
4 = aliquot factor
$\mathrm{s}=$ air-dry sample weight in $\mathrm{g}(10 \mathrm{~g})$
$\mathrm{mcf}=$ moisture correction factor (if needed)

Other References

Thomas, G.W. 1982. Exchangeable cations. Pages 159-165 in A.L. Page et al., Eds. Methods of soil analysis.
Agronomy No. 9, $2^{\text {nd }}$ ed. American Society of Agronomy, Madison, WI.

CALCIUM CARBONATE ESTIMATION

Reference Method

Landon, J.R. Ed. (1991). Booker Tropical Soil Manual, Longman Scientific, Harlow, UK.

Introduction

Calcium carbonate accumulates in soils of semi-arid and arid regions due to insufficient leaching of salts from the soil profile. The zone of accumulation generally lies at the depth of moisture penetration during the rainy season. The rising of the water table during the rainy season may result in calcium carbonate accumulation or mobilisation of more soluble carbonates such as magnesium and sodium carbonate. The source of salts are usually the ground water, weathered primary minerals and sometimes liming materials added to reduce soil acidity.

Scope

The method may be used to estimate the carbonate content of soils in the field or laboratory to assist in classification and the interpretation of other analyses related to the fertility.

Principle

The sample is treated with 10% hydrochloric acid to decompose carbonates. The extent of visible and audible effervescence is used to estimate the carbonate content. Most of the reaction will be due to calcium carbonate but also other carbonates such as dolomite (rich in magnesium carbonate) and sodium carbonate will also react with the acid. Magnesium carbonate tends to react less vigorously.

Method Validation

None.

Interference and Other Considerations

Results should be considered as very approximate due to the variable reaction of different carbonates and the effect of particle size. Care should be taken in cleaning the spotting plate well after each completed batch of samples since dried residues from high carbonate soils from previous tests may give acid reactions due to the contaminant residues. Soils that have become hydrophobic may not wet up when treated with acid. This problem may be overcome by applying a few drops of methanol before the hydrochloric acid.

Sample Requirements

Samples should be air-dried and ground to < 2 mm . More finely ground samples may give more consistent results. Dried samples stored under low humidity will show no measurable change in free carbonate with time.

Equipment and Supplies

- Porcelain spotting plate.
- Small spoon or measure

Reagents

- Hydrochloric acid 10\%: Carefully add 10 ml of concentrated hydrochloric acid to 90 ml of distilled water in a dropping bottle.

Safety and Special Considerations

Take care to clean up any spills of hydrochloric acid. Violent reaction of acid with carbonates tends to produce a fine acidic spray which may spread outside the confines of the spotting plate.

Test Procedure

- Add a small amount of each ground soil (about 1 g) to the wells of the spotting plate.
- Add enough 10% hydrochloric acid to just saturate the soil.
- Observe the amount of effervescence and listen to the bubbling.
- Refer to the table on the next page to score each soil.

Lab. Description	Field Description	Estimated CaCO_{3} Content	Observations
None	Non-calcareous	$<0.5 \%$	None
Very Low (0)	Barely calcareous	0.5 to 1.0%	Slight fizzing sound
Low (+)	Slightly calcareous	1 to 2%	Slight effervescence confined to individual grains, bubbling moderately audible
Medium (++)	Moderately calcareous	2 to 5%	More general effervescence with bubbling easily audible
High (+++)	Calcareous	5 to 10%	Moderate effervescence with bubbles up to 3mm in diameter, easily audible
Very High (++++)	Very calcareous	$>10 \%$	Strong effervescence with large bubbles up to 7 mm in diameter, easily audible.

Data Acceptance and Quality Control
Reference samples may be included that are known to contain a range of concentrations such as $1 \%, 5 \%$ and $>10 \%$ calcium carbonate equivalent.

Calculation and Presentation of Results

The method gives a rough approximation of carbonate content. Other methods are available to measure carbonate concentration more precisely. Results should be expressed in terms of the 6 categories outlined above as the laboratory description.

Other References
 None

SULPHATE-S BY TURBIDOMETRY

Reference Method

Adapted from: Bardsley, C.E. and Lancaster, J.D. 1960. Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Am. Proc., 24: 265-268.

Introduction

Sulphur is an important plant nutrient that occurs in both organic and inorganic form in soils. It is an important component in many surface waters. Soil sulphate soluble in water or dilute salt solutions gives a reliable indication of the available sulphur status of the soil.

Scope

The method described may be used to estimate the sulphate-S content of soil extracts, water samples and plant extracts or acid digests. Soil sulphate status can be estimated by measuring the sulphate in dilute calcium chloride or water extracts.

Principle

Soil is shaken with 0.01 M calcium chloride at a $1: 2$ extraction ratio for 30 minutes and the sulphate-S content in the fillered extract determined by estimating the turbidity produced by the precipitation of barium sulphate under acidic conditions. The same sulphate assay can be used to estimate sulphate in water and in plant extracts and digests.

Method Validation

None

Interference and Other Considerations

The detection limit is about $1 \mathrm{ppm} \mathrm{SO}_{4}-\mathrm{S}$ and the working range about 100 ppm . The method gives a reasonably reliable estimate of potential sulphur deficiency in soils and the sulphur status of plant leaf tissue if the procedure is carried out carefully. Care must be taken to develop the turbidity in a consistent way each time and to take measurements within a narrow time frame. The inclusion of calcium in the extracting solution helps to give colourless and clear soil extracts. With some saline or fine textured soil refiltering or centrifugation may be needed to ensure that extracts are initially free of turbidity. Measurements made with the $2: 5$ water extracts from the pH and electrical conductivity test are often cloudy unless treated with calcium chloride. In the future this method may be superceded by one where the sulphate is measured colourimetrically.

Sample Requirements

Soil samples should be air-dried and ground to < 2 mm . When stored at low humidity in cool conditions the amount of extractable sulphate should be stable over time.

Equipment and Supplies

- Analytical balance
- 125 ml Erlenmeyer extraction flasks
- Filter funnels, Whatman No. 40 or 42 filter paper
- Plastic or glass test tubes and test tube rack
- Volumetric flasks, plastic storage bottles
- Shaker set at 120 oscillations per minute
- Automatic dispensing and sampling pipettes

Reagents

- Calcium chloride (0.01 M): Dissolve 1.47 g of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or an equivalent amount of the anhydrous salt per litre of de-ionised water.
- Stock sulphate standard (100 ppm): Dissolve 0.5435 g of dried potassium sulphate $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$ in about 800 ml of de-ionised water, add a few drops of concentrated hydrochloric acid and dilute to 1000 ml . Store unrefrigerated.
- Working sulphate standards: Make up working standards of 5, 10, 20, 30, 40, 50 ug SO4-S/ml by adding 5, $10,20,30,40$ and 50 ml of $100 \mathrm{ppm} \mathrm{SO}_{4}-\mathrm{S}$ standard to 100 ml volumetic flasks and making up to 100 ml with deionised water. Store refrigerated (good for 3 months).
- Acid Seed $\left(20 \mathrm{ug} / \mathrm{m} / \mathrm{SO}_{4}-\mathrm{S}: 10 \% \mathrm{HCl}\right)$: Add 20 ml of $100 \mathrm{ppm} \mathrm{SO}_{4}-\mathrm{S}$ standard to a 100 ml volumetric flask, add 10 mL concentrated hydrochloric acid and make up to 100 ml with de-ionised water. Store unrefrigerated.
- Barium Chloride ($20 \% \mathrm{w} / v ; \sim 0.82 \mathrm{M}$): Dissolve $20.0 \mathrm{~g} \mathrm{BaCl} 2.2 \mathrm{H}_{2} \mathrm{O}$ to 100 ml in de-ionised water. Store unrefrigerated.

Safety and Special Precautions
 None identified.

Test Procedure
 Soil Extractions

- Weigh 10.00 g of air-dry <2 mm soil into an Erlenmeyer flask
- Prepare two blank flasks without soil
- Add 20 ml 0.01 M calcium chloride extractant
- Shake at 120 oscillations per minute for 30 minutes.
- Allow to settle for 15 minutes and filter through filter paper
- Add 2 mil of extract or standards to test tubes
- Add 0.5 ml of acid seed solution
- Add 0.5 ml of banium chloride solution
- Mix on Vortex mixer
- Allow to sit for 5 minutes
- Read absorbance at 620 nm within 10 minutes
- Samples giving readings higher than the top standard should be diluted in calcium chloride and re-run. This is best done by preparing extra tubes with acid seed and 1.8 ml of calcium chloride. To these may be added 0.2 ml of the concentrated extracts (representing a 10 times dilution of the original extract). This can be done during the 5 minutes "sitting" period by which time the likely high readings can be noted. High soil sulphate is invariably correlated with EC $2: 5$ readings $>500 \mathrm{uS} / \mathrm{cm}$.

Plant Digests and Water Samples

- A similar procedure may be carried out but using dilutions of acidic extracts of plant ash or undiluted or diluted water samples. With plant measurements be sure to include appropriate blanks as well as blanks spiked with sulphate to test recovery.

Data Acceptance and Quality Control

With each set of 24 or less samples include two blanks, one set of duplicates and one soil standard (Sulphate Standard 8215). The soil standard should be within 2 standard deviations of the mean value and the duplicates within 10% of each other or within 2 ppm at low levels. Blank readings should be within a range encompassing
the historical mean. the historical mean.

Calculation and Presentation of Results

The concentration of sulphate-S in solution is calculated from the calibration curve which should be almost linear. The spectrophotometer gives more stable readings if it is blanked using distilled water. The 0 ppm standard then gives a slightly positive reading due to the presence of sulphate in the acid seed. The results for soil sulphur are:

Where:

A	$=$ SO4-S $/ \mathrm{ml}$ equivalent to absorbance reading for sample
B	$=$ SO4-S $/ \mathrm{ml}$ equivalent to absorbance reading for blank
D	$=$ Extra dilution factor
20	$=$ ml in original extract $(20 \mathrm{ml})$
10	$=$ sample weight $(10 \mathrm{~g})$

Other References
None.

CHLORIDE SPOT TEST

Reference Method

None.

Introduction

Chloride is required in small amounts for plant growth but can be toxic at high concentrations. Most soils do not contain excessively high concentrations of chloride. However, chloride may be a dominant soluble anion in certain saline soils. Poor quality irrigation water may contain chloride at concentrations detrimental to plant growth.

Scope

The method may be used to estimate the amount of chlonide present in soil, water, manure or plant tissue samples in order to assess the likelihood of problems from high salinity in growth media. It is also helpful in crosschecking sample results to balance cations and anions (chloride, sulphate, carbonate, bicarbonate etc.).

Principle

Soil, manure or plant tissue samples are extracted with water and the amount of chloride estimated by reaction with silver nitrate. Chloride in soil samples can be estimated by filtering the water phase from pH and EC tests. Manure should be extracted at a 5:100 ratio when the total salt concentration can be estimated by an EC measurement. Plant tissue (0.5 g) may be extracted with 25 ml of de-ionised water.

Method Validation

None.

Interference and Other Considerations

Similar reaction is given by iodides and bromides. The test provides a rough approximation of chloride content. Other methods are available to determine chloride concentration more precisely.

Sample Requirements

Soil samples should be air-dried and ground to pass a 2 mm sieve. Plant and manure samples should dried at no more than $80^{\circ} \mathrm{C}$ and ground to 40 mesh or 1 mm . Soil, plant and manure samples may be stored in the dry state without significant change in chloride content. Water samples should be stored refrigerated.

Equipment and Supplies

- Suitable extraction flasks, beakers etc.
- Plastic funnels and filtration rack
- test tubes
- Filter paper such as Whatman 40,41 or 42 .
- Dilutor
- Sampling pipettes

Reagents

- Silver Nitrate 2\%: Dissolve 2 g of silver nitrate in de-ionised water, make up to 100 ml and store in brown glass dropping bottle.
- Chloride Standard 1000 ppm: Dissolve 0.525 g of dry potassium chloride in de-ionised water and make up to 250 ml .

Safety and Special Precautions

Due care should be taken in view of the toxicity of soluble silver salts.

Test Procedure

- Prepare water extracts.
- Allow to stand preferably overnight in a refnigerator..
- Filter into test tubes.
- Take a 2 ml aliquot and add 0.5 ml of silver nitrate.
- Compare the turbidity visually with a dilution series containing 10 to 2000 ug of chloride. Dilutions of samples may be needed to get a more precise estimate. The dilution series can be made by adding e.g. 10, 20,50, $200,500,2000 \mathrm{ul}$ of the 1000 ppm standard and making up to 2000 ul . This will provide concentrations, relative to the original extract of $5,10,25,100,250$ and 1000 ppm chloride.
- The method can be made semi-quantitative at the lower end by measuring turbidity at 620 nm . The dilution series should be in the 0-100 ppm range.
Data Acceptance and Quality Control
No specific quality control standards or procedures are available.
Calculation and Presentation of Results
Results may be expressed in terms of a high, medium, low scale or may be expressed as a rough approximation.
Other References
None.

ORGANIC CARBON (COLOURIMETRIC WALKEY-BLACK METHOD)

Reference Method

Adapted from: Sims J.R. and Haby V.A. 1971. Colorimetric determination of soil organic matter. Soil Science 112:137-141.

Introduction

Measurement of organic carbon content gives a way of estimating the organic matter content of the soil. The amount and type of organic matter can be directly related to moisture holding capacity, the reserves of exchangeable cations, storage and supply of plant nutrients such as nitrogen and phosphorus, and the maintenance of stable soil structure and aeration.

Scope

To measure the content of organic carbon in soil to give an estimate of organic matter content and the $\mathrm{C}: \mathrm{N}$ ratio The method is suited to the measurement of the organic carbon content of soils low in organic matter content. The method can also be used to measure the organic carbon content of humus extracts, soil water or polluted waters.

Principle

Organic matter is oxidised with an excess of a concentrated oxidising mixture containing sulphuric acid and potassium dichromate. The amount of unused $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is determined colourimetrically at 600 nm . Results are calibrated against glucose.

Method of validation

By sample exchange through the Agri Laboratories Association of Southem Africa (ALASA).

Interference and Other Considerations

Inorganic constituents that are in a reduced state will also be oxidised by the dichromate and cause the resull to be too high. The sample weigh must be adjusted to contain no more than $2.8 \mathrm{mg}-\mathrm{C}$ per sample. The amount taken normally varies between 100 and 500 mg for surface soils and 300 to 600 mg for sub-surface soils or soils with very low organic matter content. A linear response occurs up to about $2.8 \mathrm{mg}-\mathrm{C}$.

Sample Requirements

Soils should be aid-dried and ground to pass a 2 mm sieve. Samples may be stored at low humidity without sigrificant change in the result. More consistent results may be obtained if a small sub-sample is ground to 60 mesh ($\sim 0.4 \mathrm{~mm}$).

Equipment and Supplies

- Test tubes and test tube racks.
- Digital pipettes or reagent dispensers.
- Spectrophotometer
- Cuvettes (1 cm light path, square, polycarbonate disposible).

A dedicated set of test tubes should be reserved for this analysis. Samples are conveniently done in batches of 48 anid held in racks holding 60 test tubes. Glassware and cuvettes should be washed in tap water immediately after use and rinsed in de-ionised water.

Reagents

- Potassium dichromate solution, 1 N : Dissolve $49.04 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (dried at $105^{\circ} \mathrm{C}$) in de-ionised water in a 1 litre volumetric flask and make to volume with de-ionised water ; store in a glass stoppered bottle.
- Concentrated sulphuric acid (Sp. Gr. 1.84) $98 \%(w / w)$.
- Glucose calibration standard ($10 \mathrm{mg} / \mathrm{ml}$): A stock solution is prepared by dissolving 1.000 g of dried glucose in a small amount of de-ionised water in a 100 ml volumetric flask and making up to 100 ml with de-ionised water. The stock solution may be stored deep frozen and thawed out when needed.
- Working glucose standards: Batches of calibration standards are prepared by adding 0.1, 0.2, 0.3, $0.4,0.5$ and 0.7 ml of the thawed stock solution to test tubes and drying ovemight at $80^{\circ} \mathrm{C}$. The tubes contain equivalent of $1,2,3,4,5$, and 7 mg of glucose or $0.4,0.8,1.2,1.6,2.0$ and 2.8 mg of glucose-C.

Safety and Special Precautions

Care should be taken in handling the sulphuric acid-potassium dichromate mixture. Additions should be made in a fume cabinet. Suitable protective clothing should be wom.

Test Procedure

- Weigh samples of air-dry soil ($<2 \mathrm{~mm}$) to 0.001 g accuracy and transfer to $16 \times 120 \mathrm{~mm}$ test tubes. Tissue culture tubes with screw caps and teflon or PTFE liners are prefered since they can be mixed by hand without leaking. Samples should contain $<2.8 \mathrm{mg}-\mathrm{C}$. In practice this means $\sim 500 \mathrm{mg}$ for samples of $<0.5 \%$

C to $<100 \mathrm{mg}$ for samples $>2 \%$ C. A default weight of $\sim 250 \mathrm{mg}$ should be used where there is no reliable visual way of estimating the carbon content. Sandy soils should be weighed initially at $\sim 350 \mathrm{mg}$ while soils with more clay or visible organic litter should be weighed at 150 to200 mg .

- Add exactly 1 ml of $1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{7}$ solution from a pipette or accurate dispenser.
- Carefully add 2 ml concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ down the side of the tube, carry this out in a fume hood using a pipette or dispenser. Considerable care is needed as the reaction may be quite violent.
- Mix well using a vortex mixer set at low vibration speed. At this time note any samples that will obviously give a reading in excess of the high standard. They will have a distinct turquoise-green colour. These samples can be re-weighed immediately and treated as above.
- Place the test tubes rack on a piece of thick cardboard in an oven and heat at $80^{\circ} \mathrm{C}$ for 60 minutes.
- Take the test tubes out and allow to cool. Add 7 ml of de-ionised water. Allow to cool again. Cap and mix carefully by inverting the tube a few times. Place in a refnigerator overnight to allow sediment to settle. The caps should be removed to prevent undue disturbance when aliquots are removed later.
- Remove a sample of $\sim 2.75 \mathrm{ml}$ using a sampling pipette and place into a spectrophotometer cuvette. It is important not to disturt the sediment. Marking the plastic pipette tip to adjust the depth of penetration into the tube will help in this regard. Measure the absorbance at 600 nm . Standard curve shows little variability between runs and readings are very stable. It is important to sample each tube only once as sediment usually appears if tubes are re-sampled.
- The results are calculated from a calibration curve using the glucose standards. Calculations may be done manually or using the SUNRISE spread sheet. The blanks are used to set zero absorbance. The calibration curve is linear with the top standard giving an absorbance of about 0.600 using 1 cm square cuvettes.

13. Quality Control and Data Acceptance

Within each run of 24 samples or less include two blanks, one set of duplicates and one standard soil. The results are accepted if the result for the standard soil is within two standard deviations of the mean and the duplicates are within 5% or 0.05% for samples with very low carbon contents.

14. Calculation and Presentation of Results

A calculation program is available in SUNRISE.XLS

$$
\text { Organic-C }(\%)=\mathrm{mg}-\mathrm{C} \text { in sample/mg sample } \times 100
$$

Conversion of \% carbon to \% organic matter is done with the following empirical factor of 1.724:

$$
\% \text { Organic matter }=1.724 \times \% \text { carbon }
$$

Other References

Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29-38.
DeBolt D.C. 1974. A high sample volume procedure for the colonimetric determination of soil organic matter. Commun. Soil Sci. Plant Anal. 5:131-137.

ORGANIC CARBON (STANDARD WALKEY-BLACK METHOD)

Reference Method

Nelson D.W and Sommers L.E. 1982. Total Carbon. Organic Carbon and Organic Matter, pages 539-579 in A.L. Page et. al. Methods of Soil Analysis Part 2, $2^{\text {nd }}$ ed., Agronomy No. 9, American Society of Agronomy, Madison, W.

Introduction

Measurement of organic carbon content gives a way of estimating the organic matter content of the soil. The amount and type of organic matter can be directly related to moisture holding capacity, the reserves of exchangeable cations, storage and supply of plant nutrients such as nitrogen and phosphorus, and the maintenance of stable soil structure and aeration.

Scope

To measure the content of organic carbon in soil to give an estimate of organic matter content and the $\mathrm{C}: \mathrm{N}$ ratio The method is suited to the meaşurement of the organic carbon content of all soils except those classified as organic (e.g. $\rightarrow>20 \%$ organic matter). The method can also be adapted to measure the organic carbon content of humus extracts and the soluble carbon content of soil water using a colourimetric variation.

Principle

Organic matter is oxidised witi an excess of a concentrated oxidising mixture containing sulphuric acid and potassium dichromate. The amount of unused $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is determined by titration with ferrous ammonium sulphate or ferrous sulphate using a diphenylamine indicator to detect the first appearance of unoxidized ferrous iron. Phosphoric acid is added to form a complex with ferric iron providing a sharper colour change of indicator.

Method validation

By sample exchange through the Agri Laboratories Association of Southern Africa (ALASA).

Interference and Other Considerations

inorganic constituents that are ir a reduced state will also be oxidised by the dichromate and cause the result to be too high. The sample weigh must be adjusted so that between about 35 to 75% of the dichromate is used. The amount taken normally varies between 0.25 g to 2.5 g for surface soils and 2 g to 10 g for sub-surface soils or soils with very low organic matter content. Note that in the method it is assumed that only 77% of the organic matter is oxidised and a factor is included in the calculations to take this into account. The efficiency of oxidation will vary between different soils and this introduces an error.

Sample Requirements

Soils should be aid-dried and ground to pass a 2 mm sieve. Samples may be stored at low humidity indefinitely. More consistent results may be obtained if a small sub-sample is ground to 60 mesh ($\sim 0.4 \mathrm{~mm}$).

Equipment and Supplies

- Burettes, 500 ml Erlenmeyer flasks
- Reagent dispensers 10 ml and 20 ml .

Reagents

- Potassium dichromate solution, 1 N : Dissolve $49.04 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (dred at $105^{\circ} \mathrm{C}$) in distilled water in a 1 litre volumetric flask and make to volume with distilled water; store in a glass stoppered bottle.
- Concentrated sulphuric acid (Sp. Gr. 1.84) 98% (w/w).
- Concentrated orthophosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ (Sp. Gr. 1.75).
- Banium diphenylamine sulphonate indicator, 0.16% : Dissolve 0.16 g of barium diphenylamine sulphonate in 100 ml of distilled water.
- Ferrous sulphate solution 0.5 N : Dissolve $139 \mathrm{~g} \mathrm{FeSO} 4.7 \mathrm{H}_{2} \mathrm{O}$ in 750 ml of water, add 20 ml concentrated H_{2} SO_{4}, transfer to a 1 litre volumetric flask and make to volume with distilled water.
- Or Mohr's salt ($\left.\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$: Dissolve 196.10 g of pure ferrous ammonium sulphate in 800 ml of distilled water in a 1 litre volumetric flask, add 20 ml concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and make to volume with distilled water.

Safety and Special Precautions

Care should be taken in handling the sulphuric acid-potassium dichromate mixture.

Test Procedure

- Weigh between 0.25 and 5.0 g of air-dry soil ($<2 \mathrm{~mm}$) and transfer to a 500 ml Erlenmeyer flask. During the reaction with ferrous sulphate, it is necessary that the drop in the burette reading should be between 7 and 15 ml . All samples in which less than 7 ml or greater than 15 mf of ferrous sulphate 0.5 N were consumed should be repeated.
- Add $10 \mathrm{ml} 1 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution from a dispenser. Include two blanks (Erlenmeyer flasks without soil) to standardise the ferrous sulphate solution.
- Carefully add 20 ml concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ with measuring cylinder in the fume cupboard and swirl the flask and allow to stand on an asbestos or cork pad for 30 minutes.
- Then add 200 ml distilled water and allow to cool.
- Add 10 ml conc. Orthophosphoric acid and just before titration, add 0.5 ml of bariurn diphenylamine sulphonate indicator.
- Titrate with 0.5 N ferrous sulphate solution the colour changes to purple or blue then add ferrous sulphate solution drop by drop until the colour flashes to green then continue to a light green end point. The end-point is easily overshot, in that case add 0.50 ml of the dichromate solution and titrate again dropwise (change calculation accordingly).
- Carry out a blank titration the same way as for the sample.

Quality Control and Data Acceptance

Within each run of 24 samples or less include two blanks, one set of duplicates and one standard soil. The results are accepted if the result for the standard soil is within two standard deviations of the mean and the duplicates are within 5% or 0.05% for samples with very low carbon contents.

Calculation and Presentation of Results

A calculation program is available in SUNRISE.XLS
In this method it is assumed that about 77 percent of the C is oxidised by potassium dichromate, so a correction factor of $100 / 77=1.33$ is used in the calculation.

$$
\% C=N \times \frac{V_{1}-V_{2}}{s} \times 0.39 \times \mathrm{mcf}
$$

Where:
$\mathrm{N}=$ normality of ferrous sulphate solution (from blank titration).
$V_{1}=\mathrm{ml}$ ferrous sulphate solution used for blank.
$V_{2}=\mathrm{ml}$ ferrous sulphate solution used for sample.
$\mathrm{S}=$ weight of dry-air sample in gram
$0.39=3 \times 10^{3} \times 100 \% \times 1.3$ ($3=$ equivalent weight of carbon $)$.
$\mathrm{mcf}=$ moisture correction factor (if used).

Conversion of $\%$ carbon to $\%$ organic matter is done with the following empincal factor of 1.724:
$\%$ Organic matter $=1.724 \times \%$ carbon

Other References

Soil Science Society of South Africa. 1990. Handbook of Standard Soil Testing Methods for Advisory Purposes, pages 34-1 to 34-2.
Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29-38.

AVAILABLE PHOSPHORUS IN SOIL (OLSEN METHOD)

Reference Methods

Shoenau, J.J. and Karamanos, R.E. 1993. Sodium Bicarbonate-Extractable P, K and N, pages 51-58 in Soil Sampling and Methods of Analysis, M.E. Carter Ed., Canadian Society of Soil Science, Lewis Publishers. Soil Science Society of South Africa. 1990. Pages 24-1 to 24-3 in Handbook of Standard Soil Testing Methods for Advisory Purposes, SSSSA, Pretoria, RSA.

Introduction

Phosphorus is an essential element for plant nutrition and prediction of the availability of phosphorus in the soil is vital for optimum crop yield. A number of methods have been propdsed for the determination of available phosphorus which appear to give rational estimates of the plant available phosphorus under different soil conditions. The Olsen Method is described here is recommended for alkaline to neutral soils.

Scope

The extraction method is recommended for neutral to alkaline soils. As long as criteria for pH control are in place, the colourimetric method can be used to measure phosphate-P in other soil extracts, water samples and acidic extracts or digests of plant tissue and manure.

Prínciple

The sample is extracted with a 0.5 M sodium bicarbonate solution at pH 8.5 . Phosphate in the extract is determined colounimetrically by the blue ammonium molybdate method of Murphy and Riley using ascorbic acid as reducing agent.

Method Validation

By direct reference to results of ALASA soil samples.

Sample Requirements

Soils should be air-dried and ground to pass a 2 mm mesh sieve. Samples may be stored at low humidity with little change in available-P. Extractable phosphate may be less stable under hot moist storage condition.

Interference and Other Considerations

None identified.

Equipment and Supplies

- Spectrophotometer suitable for measurement at 882 nm .
- Extraction flasks
- Reciprocating shaking machine
- Funnel racks, filter funnels and collecting containers such as plastic or glass test tubes ($16 \times 120 \mathrm{~mm}$)
- Whatman No. 40 or 42 filter paper, volumetric flasks and pipettes

Reagents

- Sodium Bicarbonate Solution, $0.5 \mathrm{M}, \mathrm{pH} 8.5$ (extracting solution): Dissolve 420 g NaHCO 3 in distilled water and make to 10 litres. Adjust to pH 8.5 by adding $50 \% \mathrm{NaOH}$ ($10 \mathrm{~g} / 20 \mathrm{ml}$). Check and readjust the pH if the extracting solution has been stored for some time.
- Sulphuric Acid, 4 M : Slowly add 56 ml conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(96 \%$) to about 150 ml of cold distilled water in a 250 ml volumetric flask make up to 250 ml with distilled water.
- p-nitrophenol indicator. Dissolve 0.1 g of p -nitrophenol in 100 ml ethanol.
- Stock Colour Reagent; Dissolve 12 g of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{7} \mathrm{O}_{24} .4 \mathrm{H}_{2} \mathrm{O}$ in 250 ml of de-ionised water. Dissolve
0.291 g of potassium antimony tartrate $\left(\mathrm{KSbOC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$ in de-ionised water and make to 100 ml . Carefully add, with stiming, 148 ml of concentrated sulphuric acid to 1000 ml of de-ionised water. Add the ammonium molybdate solution and then the potassium antimony tartrate solution to the sulphuric acid and make up to 2000 ml . Store at room temperature. Replace every three months.
- Working Colour Reagent (made up daily): Dissolve 1.056 g of ascorbic acid in 200 ml of the stock colour reagent. If the reagent has any blue colour discard and make up again.
- Washed activated charcoal: Shake 100 g of activated charcoal with 200 ml of sodium bicarbonate extracting solution. Filter under slight suction through a Buchner funnel. Rinse with fresh extracting solution until free of phosphate (if needed, test portions of filtrate with colour reagent). Oven dry and store in a wide-mouthed plastic container.
- Standard Phosphate solution, 100 mg 月 P: Dissolve $0.4390 \mathrm{~g} \mathrm{KH}_{2} \mathrm{PO}_{4}$ (dried at $110^{\circ} \mathrm{C}$ for 2 hours in an oven) in distilled water in a 1 litre volumetric flask and make to volume with distilled water. Also diluted standards can be made from commercial standards.
- Standard Phosphate Solution, 4 mg A P: Pipette 10 ml of the $100 \mathrm{mg} / \mathrm{IP}$ standard solution into a 250 ml volumetric flask and make to volume with extracting solution.
- Working Standard series: Pipette into 100 ml volumetric flasks $0-10-20-30-40-50 \mathrm{ml}$ of the $4 \mathrm{mg} / \mathrm{P}$ standard solution. Make to volume with extracting solution. The standard series is $0,0.4,0.8,1.2,1.6,2.0 \mathrm{mg} / \mathrm{I}$. Store refrigerated. New working standards should be prepared each month.

Safety and Special Precautions

None identified.

Test Procedure

Soil extracts

- Weigh 5 g of air dry < 2 mm soil (accuracy 0.01 g) into a 125 ml flask. Prepare one blank without any soil.
- Add 1 scoop (about 0.3 g) of activated charcoal and 50 ml of extracting solution and shake for 30 minutes.
- Filter through a Whatman No. 40 or 42 filter paper into clean containers (test tubes or flasks).
- Determine the amount of 4 M sulphuric acid needed to change 5 ml of extracting solution from pH 8.5 to pH 5 to 5.5 (colour change of p-nitrophenol from yellow to colourless). This should be about 300 uL .
- Pipette 5 ml of the standard series, the blanks and the sample extracts into 25 ml volumetric flasks.
- Add about 10 ml de-ionised water and 1 drop of p-nitrophenol indicator.
- Add the determined amount of sulphuric acid and carefully mix (CO_{2} evolution).
- If the solution is still yellow add more acid drop-wise until the yellow colour changes to colourless.
- Add 4 ml of colour reagent and mix well to release any more bubbles of carbon dioxide. Add de-ioinised water to almost fill the bulb of the flask. Shake again and allow the blue colour to develop for about 30 minutes.
- Fill each flask to the mark with de-ionised water and read absorbance on spectrophotometer at 882 nm . Blank the spectrophotometer with the zero standard.
- Samples that give readings greater than the highest standard should be diluted 5 times (1 part in 4 parts of sodium bicarbonate) and the colour developed as previously described.

Water Samples

- Carry out analysis as for soil extracts.

Plant Leaf Digests

- Use 50 to 200 uL of the original nitric acid extract from the ashing process. The pH should be adjusted with a few drops $\sim 0.5 \mathrm{M}$ sodium hydroxide until the p-nitrophenol indicator tums yellow. Dilute the 4 M sulphuric acid and add drops until the indicator just turns colourless again. Proceed with the colour development as outlined for soil extracts. Carry out the same procedure with the "ash blank" and an "ash blank" spiked with phosphate-P to test the recovery.

Data Acceptance and Quality Control

In each run of 24 samples include one reagent blanks, one duplicate and one standard soil (P Standard 821834). Check the drift during the colour measurement by inserting the $4^{\text {th }}$ standard between every 12 samples. Quality control samples should fall within two standard deviations as calculated on the control sheets. Duplicates will fall within 5% of each other.

Calculation and Presentation of Results

Results may be calculated manually or using the calculation facilities on the spectrophotometer. Whatever the method, a calibration graph of absorbance against P concentration should be prepared and filed with the results.

$$
P(p p m \text { or } \mathrm{mg} / \mathrm{Kg} \text { soil })=(a-b) \times \underline{50} \times \frac{1000}{1000} \times \underset{\mathrm{m}}{\mathrm{mcf}}=(a-b) \times \underline{50} \times \mathrm{mcf}
$$

Where:

$\mathrm{a}=\mathrm{mg} / / \mathrm{P}$ in the sample extract
$\mathrm{b}=\mathrm{mg} / / \mathrm{P}$ in blank
$\mathrm{s}=\mathrm{sample}$ weight in gram $(5 \mathrm{~g})$
mcf $=$ Moisture Correction Factor (if determined)
$50=$ ml of extracting solution.

Farm soil results should be quoted to the nearest ppm. Research samples may be quoted to 0.1 ppm . Conversion factor $\mathrm{P}_{2} \mathrm{O}_{5}=2.31 \times \mathrm{P}$

Other References

Murphy, J. and Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27: 31-36.
Olsen, S. R., and L. A. Dean. 1965. Phosphorus pages 1044-1046, in C. A. Black (ed.). Methods of Soil
Analysis, Agronomy No. 9. American Society of Agronomy, Madison, WI.

ORGANIC MATTER BY LOSS-ON-IGNITION

Reference Method

Schulte, E.E., Kaufmann, C., and Peter, J.B. 1991. The influence of sample size and heating time on soil weight loss-or-ignition. Commun. Soil Sci. Plant Anal. 22: 159-168.

Introduction

The determination of soil organic matter content is an important since it is directly related to moisture holding capacity, the reserves of exchangeable cations, storage and supply of plant nutrients such as nitrogen and phosphorus, and the maintenance of stable soil structure and aeration. The different components that make up the organic matter in soils are very varied and include plant, animaf and microbial residues as well as stabilised products of decomposition generally termed humus. The range of compounds that may be identified include carbohydrates such as simple sugars, fats, and oils as well as more complex polymers in the form of hemicellulose, cellulose, lignin, waxes and resins. Nitrogen containing compounds include proteins, nucleic acids as well as individual amino acids and amines. It is difficult to measure the soil organic matter content precisely due to this complexity. An approximation of organic matter content is given by measuring the weight loss when soil organic matter is removed by burning in a muffle fumace. Other indirect measurements invoive separation into fractions using proximate analysis techniques, extraction of humus fractions using strong acids and alkalis, or measuring the organic carbon content and converting this to organic matter using a suitable multiplication factor.

Scope

The method can be used to estimate the organic content of mineral soils, organic soils, manure and plant tissue. Results with mineral soils may require calibration against the results of organic carbon analysis from soils of similar origin using methods that measure the release of carbon dioxide during sample combustion.

Principle

A soil sample is dried at $150^{\circ} \mathrm{C}$ and then heated in a muffle furnace at $360^{\circ} \mathrm{C}$. The loss in weight between 150 ${ }^{\circ} \mathrm{C}$ and $360^{\circ} \mathrm{C}$ gives an approximation of the total soil organic matter content. Errors may anise when soils contain inorganic constituents that are volatile at the temperature used or do not loose all their bound water at $150^{\circ} \mathrm{C}$. The presence of carbonates should not interfere at the combustion temperature used. A higher combustion temperature of $500^{\circ} \mathrm{C}$ is used to ash plant and manure samples for elemental analysis.

Method Validation

Calibration against carbon content measured by the Walkley-Black method and using a high temperature induction furnace is underway using ALASA samples and a set of typical local soils.

Interferences and Other Considerations

Even though a relatively low combustion temperature is used there is still some loss in weight from non-organic soil components. A regression equation should be established to relate the loss-on-ignition results of local soils that have a range of organic matter contents encompassing that in the unknowns with the results of organic carbon analysis using other standard methods such as Walkley-Black oxidation or infra-red detection of carbon dioxide following high temperature combustion for example using a Leco Carbon Analyser. Different calibration curves may be needed for soils originating from different areas.

Sample Requirements

Soils should be air-dried and ground to pass a 2 mm sieve. Samples may be stored at low humidity indefinitely without significant loss of organic matter.

Equipment and Supplies

- Porcelain crucibles of about 50 ml capacity
- Drying oven
- Muffle furnace
- Analytical balance (0.001 g sensitivity)

Reagents

None.

Safety and Special Precautions

Care should be taken when removing samples from the hot muffle fumace. Use gloves and long-handled tongs.

Test Procedure

- Add between 5 to 10 g of sieved soil ($<2 \mathrm{~mm}$) into the crucible that has been previously dried and weighed. Reweigh the soil plus crucible to 0.001 g .
- Dry the sample over-night at $150^{\circ} \mathrm{C}$, cool in a desiccator and reweigh.
- Place the crucible into a muffle fumace and bring the temperature to $360^{\circ} \mathrm{C}$. Ash in the fumace at $360^{\circ} \mathrm{C}$ for 4 hours. Allow to cool over-night.
- Place warm crucibles in a dessicator and reweigh when cool.

Data Acceptance and Quality Control

With each set of 24 or less samples include one standard soil (1997 Red) and one set of duplicates. ALASA samples of verified LOI may be included intermittently as blind samples

Calculation and Presentation of Data

Organic matter content should be expressed as a \% to the accuracy of 2 decimal places. The percent organic matter in the soil is determined by the formula:

$$
\% \text { Organic Matter (OM) }=\frac{[W 150-W 360]}{W 150} \times 100,
$$

Where: $\quad W 150=$ weight of soil at $150^{\circ} \mathrm{C}$
W360 $=$ weight of soil at $360^{\circ} \mathrm{C}$
The moisture correction factor (mcf) can be determined from the weight difference between air-dry and oven dry weights. This can be used in other analyses to convert results from an air-dry to an oven-dry basis. All these calculations may be found in the excel file SUNRISE.XLS.

Other references
David, M.B. 1988. Use of loss-on-ignition to assess soil organic carbon in forest soils. Commun. Soil Sci. Plant Anal. 19:1593-1599.
Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Amer. Proc 38:150-151.

BULK DENSITY

Bulk density is defined as the mass (weight) of a unit volume of dry soil. This volume refers to both the solids and the pores, where:

$$
\begin{array}{ll}
\text { Bulk density }= & \frac{\text { weight of oven dry soil (solids only) }}{\text { volume of soil (solids }+ \text { pores) }}
\end{array}
$$

Bulk density measurements are made gravimetrically on soils sampled in undisturbed field conditions.

Test procedure

- A cylindrical steel sampling ring with a bevelled cutting edge is inserted into the profile face at known depths, and carefully extracted without disturbing the contents. Excess soil is sliced off the top and bottom of the ring with a thin blade and the contents are stored in a sealed plastic bag.
- The bag and contents are weighed using a scale of 0.0001 g accuracy before opening. The contents are then removed.
- The empty bag together with the sealing material, and the contents emptied out of it, are separately weighed to cross-check the combined weight of the soil solids and pores occupied by water. This measurement is referred to as the 'wet weight'.
- The sample in its 'wet weight' condition is placed in a pre-weighed crucible, oven-dried at $105^{\circ} \mathrm{C}$ for 48 hours, cooled and re-weighed. The weight of the container is subtracted from the total weight. It is assumed that the oven-dried sample is free of moisture and therefore provides a reliable estimation of the weight of soil solids only.
- The oven-dry weight of the sample is subtracted from the 'wet weight' to determine moisture content under field conditions.
- The volume of the soil sampling ring is calculated to determine a known volume occupied by the soil sample in field conditions.
- The bulk density of each sample is calculated using the oven-dry weight in the equation above.

Soils with a high proportion of pore space to solids have lower bulk densities compared to those that are more compact and contain less pore space. Thus, fine textured surface soils such as silt loams, clays, and clay loams generally have lower bulk densities than sandy soils. The solid particles of fine-textured soils tend to be organised in porous grains or granules, especially if adequate organic matter is present. This condition assures high total pore space and low bulk density. In sandy soils, however, organic matter contents are generally low, solid particles are large relative to the spaces between them, and bulk densities are commonly higher than in the finer textured soils.

Bulk densities of clay, clay loam and silt loam surface soils range from 1 to $1.6 \mathrm{~g} / \mathrm{cm}^{3}$, depending on their condition. Sands and sandy loams vary from 1.2 to $1.8 \mathrm{~g} / \mathrm{cm}^{3}$. Compact sandy subsoils may have bulk densities of $2.0 \mathrm{~g} / \mathrm{cm}^{3}$ or greater.

There is a tendency for the bulk density to rise with profile depth. This can result from a lower organic matter content, less aggregation and root penetration, and compaction caused by the weight of the overlying layers.

Bulk density measurements are used to estimate levels of soil compaction and in the calculation of soil porosity values. The results can be used as reliable indicators of problems relating to root penetration and soil aeration. Factors such as moisture content, organic matter level, root penetration, soil texture and cattle trampling can all affect the bulk density. Trampling for example can increase the bulk density, whereas an increase in organic matter will decrease it. An increase in buik density of soil may impose stresses on plant root systems insofar as mechanical resistance to root penetration will increase. Air-porosity of the soil will also decrease, possibly restricting air supply to plant roots and facilitating the accumulation of toxic products. Permeability also decreases with increasing density.

Systems of crop and soil management on a soil will also influence its bulk density, particularly of the surface layers. Crop residues or animal manure in large amounts tends to lower the weight figure of surface soils; in contrast intensive cultivation produces the opposite effect (cropping increases the bulk density of top soils).

WATER CONTENT (WEIGHT \%)

Knowledge of soil-water relations are essential for a number of reasons: (i) large quantities of water must be supplied to satisfy requirements of growing plants and crops since water is lost by evapo-transpiration. The water must be available when plants need it, and most of it must come from come from the soil; (ii) water plus dissolved nutrients make up the soil solution; (iii) soil moisture helps control two other important components essential to normal plant growth and crop production.- soil air and soil temperature.

Soil-water content is determined by gravimetric methods. This is the weight of soil samples before and after oven drying for 48 hours at $105^{\circ} \mathrm{C}$; the loss in weight on drying is expressed as a percentage of the weight of the oven-dry
soil ($w / w \%$). This test is combined with measurements of bulk density (bulk density is calculated by dividing the volume of the sample into the oven-dry weight).

TOTAL POROSITY

The quantity of pores and their size distribution in a soil (as reflected in estimates of total pore space, coarse porosity and air-filled porosity) are useful general indicators of the physical condition of soils. Apart from quantity and distribution, the tortuosity and continuity of pores are important features influencing aeration, water movement as well as root penetration in soils. However, pore characteristics change with seasons and they are not readily quantifiable in their influence on crop productivity.

For the evaluation of soil potential, a system devised by Jongerius (1957) has been widely employed, using the following classes to describe observations of pore size.

1. Coarse (macro) pores - macropores have diameters greater than 0.1 mm , and their main function is aeration and drainage by gravity flow. They are the pores in which roots proliferate and are visible to the naked eye.
2. Medium (meso) pores - mesopores have diameters from 0.03 to 0.1 mm , and their main function is the conduction of water by rapid capillary flow. They are visible at 10 x magnification.
3. Fine (micro) pores - have diameters less than 0.03 mm , and their main function is water retention and slow capillary flow. Micropores are not visible, but their presence can be inferred from observations made from the face of aggregates: when the aggregates have a rough surface, there are many micropores.

For the soil to allow good root penetration, it should contain an adequate number of pores of $>0.25 \mathrm{~mm}$ diameter, to allow free drainage, at least 10% by volume of the soil in the rooting depth should be composed of interconnected pores $>0.05 \mathrm{~mm}$; and for storage of available water, at least 10% by volume of water should consist of pores with diameter ranging from 0.005 and 0.05 mm

The total porosity (total pore space) of a soil is calculated from the bulk density and the particle density. The bulk density is obtained from the weight of dry soil over the volume of the cylindrical cutter. The particle density of most soils is normally assumed to be $2.65 \mathrm{~g} / \mathrm{cm}^{3}$. The total porosity is normally expressed as a volume percentage and is equal the volume \% water content at saturation, where:

$$
\text { Total porosity (volume } \%)=1-(\text { dry bulk density } / \text { particle density }) * 100
$$

Total porosity values usually range between 30 and 70% and may be used as a very general indication of the degree of compaction in a soil in the same way as bulk density is used. For example, sands with a total pore space of less than about 40% are liable to restrict root growth due to excessive strength, whilst in clay soils limiting total porosities are higher, and less than 50% can be taken as a corresponding value. Unlike bulk density values however, porosity values can not be used as conclusive evidence for over-compaction problems in soil, but rather as indicators of likely risk. The porosity calculation only gives the overall volume percentage of the pore space and does not characterize the size of the individual pores.

APPENDIX 4 SAMPLE SITE LOCATION DATA

Site No.	Site Type	degs	mins	LATITUDE	degE	minE	LONGITUDE
A1	Test Pit	18	33.263	-18.554383	18	33.453	18.557550
A2	Test Pit	18	32.210	-18.536833	18	12.240	18.204000
A3	Test Pit	18	32.570	-18.542833	18	18.940	18.315667
A4	Test Pit	18	24.560	-18.409333	19	18.070	19.301167
A5	Test Pit	17	37.813	-17.630217	18	8.323	18.138717
A6	Test Pit	17	36.613	-17.610217	18	7.968	18.132800
A7	Test Pit	17	53.741	-17.895683	20	12.740	20.212333
A 8	Test Pit	17	53.511	-17.891850	20	15.043	20.250717
A9	Test Pit	17	54.264	-17.904400	20	10.572	20.176200
A10	Test Pit	18	8.900	-18.148333	20	46.335	20.772250
A11	Test Pit	18	9.691	-18.161517	20	46.183	20.769717
A12	Test Pit	18	10.907	-18.181783	20	45.740	20.762333
A13	Test Pit	18	16.526	-18.275433	20	44.836	20.747267
A14	Test Pit	18	22.764	-18.379400	20	43.187	20.719783
A15	Test Pit	18	29.976	-18.499600	20	44.615	20.743583
A16	Test Pit	18	30.049	-18.500817	20	44.469	20.741150
A17	Test Pit	18	30.255	-18.504250	20	44.460	20.741000
A18	Test Pit	18	30.389	-18.506483	20	45.251	20.754183
A19	Test Pit	18	30.300	-18.505000	20	47.912	20.798533
A20	Test Pit	18	32.777	-18.546283	20	56.144	20.935733
A21	Test Pit	18	35.416	-18.590267	20	52.685	20.878083
A22	Test Pit	18	55.293	-18.921550	20	56.345	20.939083
A23	Test Pit	18	58.527	-18.975450	20	55.551	20.925850
A24	Test Pit	18	59.270	-18.987833	20	54.870	20.914500
A25	Test Pit	19	0.905	-19.015083	20	53.194	20.886567
A26	Test Pit	19	6.431	-19.107183	20	42.432	20.707200
A27	Test Pit	19	1.750	-19.029167	20	30.589	20.509817
A28	Test Pit	19	2.120	-19.035333	20	51.150	20.852500
A29	Test Pit	19	2.864	-19.047733	20	19.305	20.321750
A30	Test Pit	18	50.048	-18.834133	20	13.709	20.228483
A31	Test Pit	18	44.098	-18.734967	20	16.753	20.279217
A32	Test Pit	18	42.564	-18.709400	20	9.178	20.152967
A34	Test Pit	18	52.440	-18.874000	19	40.603	19.676717
A35	Test Pit	18	52.124	-18.868733	19	40.940	19.682333
A36	Test Pit	18	51.840	-18.864000	19	37.490	19.624833
A37	Test Pit	18	51.436	-18.857267	19	31.858	19.530967
F1	Test Pit	17	28.964	-17.482733	18	26.814	18.446900
F2	Test Pit	17	30.746	-17.512433	18	23.722	18.395367
F3	Test Pit	17	30.735	-17.512250	18	23.698	18.394967
B1	Auger	17	29.005	-17.483417	18	26.507	18.441783
B2	Auger	17	29.280	-17.488000	18	25.804	18.430067
B3	Auger	17	29.965	-17.499750	18	24.829	18.413817
B4	Auger	17	33.808	-17.563467	18	19.212	18.320200
001	Auger	17	33.263	-17.554383	18	56.799	18.946650
002	Auger	17	36.949	-17.615817	18	16.31	18.271833
003	Auger	17	10.821	-17.680350	18	17.68	18.294667
PHA11	Auger	17	47.992	-17.799867	18	33.425	18.557050
PHA12	Auger	17	48.689	-17.811483	18	43.628	18.727133
004	Auger	17	47.681	-17.794683	18	36.765	18.612750
NCl	Auger	17	47.343	-17.789050	18	50.431	18.840517
005	Auger	17	57.702	-17.981700	18	44.292	18.738200
006	Auger	17	55.384	-17.923067	18	45.251	18.754183
007	Auger	17	59.738	-17.995633	18	43.946	18.732433
008	Auger	18	3.719	-18.061983	18	43.84	18.730667
PHA13	Auger	18	4.4181	-18.073635	18	43.877	18.731283
009	Auger	18	3.404	-18.056733	18	43.884	18.731400
010	Auger	18	11.387	-18.188783	18	43.895	18.731583
011	Auger	18	13.566	-18.226100	18	44.009	18.733483
012	Auger	18	14.558	-18.242633	18	44.014	18.733567
013	Auger	18	19.549	-18.325817	18	44.444	18.740733
014	Auger	18	20.015	-18.333583	18	44.475	18.741250
015	Auger	18	24.005	-18.400083	18	44.789	18.746483
016	Auger	18	29.287	-18.488117	18	44.943	18.749050
017	Auger	18	34.196	-18.569933	18	51.254	18.854233

Soil Samples：Unique ID Listing

		\％	${ }^{\circ}$	웅	0	¢ ${ }^{\text {¢ }}$	$\frac{8}{\hat{8}} \underset{寸}{\dot{8}}$	${ }^{\circ} \mathrm{O}$		\％	궁	dion		$\stackrel{n}{6} \stackrel{0}{9}$	\mathfrak{l}	5	$\stackrel{?}{9}$	$\frac{n}{e}$	$\stackrel{\sim}{\circ}$								
											$\begin{aligned} & \hat{a} \\ & \mathbf{0} \\ & \hline \end{aligned}$				$\frac{8}{e}$		e	은	a	（							
$\begin{aligned} & \frac{2}{2} \\ & \frac{1}{3} \end{aligned}$	呂	8	产	\％${ }^{\text {¢ }}$	${ }_{4}^{\text {¢ }}$	产	奖	\％	\％${ }_{4}^{4}$	\％					든	은	\％	든	\％	안							
	筬	䫆	吉皆	号迢	盛	吕		吕		\％		啝葸	吕㗐	豈：	咢	号	合	N00	去	\sim							
		品	or	옹웅	${ }^{\text {c }}$	\％	\％	${ }_{\circ}^{\circ}$	웅웅	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	：	$\stackrel{\circ}{2}$	\％	${ }^{\circ}$?	웅				${ }^{\circ}$	¢		$\%$		N	1	$\stackrel{\square}{\square}$
	$\begin{aligned} & \frac{1}{9} \\ & \mathbf{m} \\ & \mathbf{c} \\ & \hline \end{aligned}$	$\frac{a}{a} \frac{0}{4} \frac{0}{\frac{m}{c}}$		$\begin{array}{c\|c} \frac{6}{9} \\ \frac{9}{9} \\ \frac{9}{4} \\ \hline \end{array}$		$\begin{aligned} & \text { en } \\ & \frac{3}{4} \\ & \frac{1}{4} \\ & \frac{10}{4} \\ & 4 \end{aligned}$	$\frac{a}{9}$			$\begin{gathered} a \\ 0 \end{gathered} \frac{a}{2}$	$\frac{0}{9} \frac{0}{\frac{0}{4}}$		$\begin{array}{l\|l} \substack{9 \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \end{array}$				2 9 9 4		즤								0 0 0 先
$\frac{2}{\frac{2}{5}}$	$\frac{9}{4}$	$\frac{9}{4}$	年 $\frac{7}{8}$	爱 $\frac{7}{4}$	$\frac{7}{4}$	$\frac{\square}{4}$	$\stackrel{1}{4}$	$\frac{1}{4}{ }^{1}$	윤	产	－	$\stackrel{\oplus}{4} \frac{\infty}{4}$	$\frac{\square}{4} \frac{9}{8}$	9	울	장	－	둥		$\overrightarrow{4}$	$\frac{3}{2} \frac{9}{8}$		4		\％	A	4
was	－	可	（	\％	式	¢	N	刃 ${ }_{0}$	900	¢		\％	帯通	¢	${ }^{\text {n }}$	易	\％	암	言等	\％	老		$\begin{aligned} & \text { 思 } \end{aligned}$		朆	罱	品
器弇		0	050	\bigcirc	\bigcirc	8	0	－	40	0	4	\bigcirc	\％${ }_{\circ}^{\circ}$	\bigcirc	${ }^{3}$	$\stackrel{\square}{\circ}$	$\stackrel{\Gamma}{\Gamma}$	$\stackrel{\rightharpoonup}{j}$		品	O	i	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{y}{2} \end{aligned}$		－	－	－
						$\frac{0}{4} \frac{0}{4} \frac{0}{2}$	훈	손	은 은	$\frac{0}{3}$						$\begin{aligned} & \text { a } \\ & \frac{a}{2} \\ & 0 \\ & 0 \end{aligned}$	高			an 0 8		寺	会		$\frac{1}{4}$	a	$\frac{9}{\frac{9}{4}}$
$\frac{2}{\frac{2}{5}}$	管		${ }^{3}$	商	디다	［핀	N	IN	단	¢	［1		\％${ }^{1}$	年を	8	8	8		罗	8	알		$\frac{\overline{8}}{8}$		$\frac{\mathrm{N}}{4}$	$\frac{\sim}{4}$	$\frac{1}{8}$
紫	$\stackrel{\sim}{0}$	3	¢	\bigcirc	${ }^{\circ}$	$\stackrel{\circ}{9}$	O	\％	9	\＃	$\stackrel{0}{3}$	－	\％	¢ ${ }_{0}$	品	\％	¢	\％	8	－	$\stackrel{\sim}{\square}$	¢	\pm		응	－	$\stackrel{(1)}{\square}$
	\bigcirc	\cdots	\％	20°	\bigcirc	$\stackrel{\sim}{\sim}$	No	0	\bigcirc	\％	$\stackrel{\sim}{\sim}$	$\stackrel{H}{\square}$	$\stackrel{\sim}{\circ}$		\bigcirc	$\underline{\sim}$	\bigcirc						$\stackrel{1}{\square}$		N	ํ	$\stackrel{1}{1}$
		$\frac{a}{9} \frac{a}{9}$		可	a	$\stackrel{y}{9} \frac{1}{4}$	高	$\begin{aligned} & 0 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\frac{0}{4}$		$\frac{5}{5} \frac{\tilde{y}}{\frac{\pi}{2}}$			$\frac{9}{9} \frac{9}{4} \frac{9}{4}$		$\frac{8}{8}$	$\frac{1}{2}$	$\begin{gathered} 0 \\ \hline \end{gathered}$			甡		苞			高	$\begin{array}{\|c\|c\|} \hline \mathbf{0} \\ \hline \end{array}$
$\frac{2}{\frac{0}{6}}$	¢	有	¢ 8	［9］	919	年妿		8	$\overline{4}$	$\bar{\square}$	$\frac{N}{4}$	$\frac{9}{4}$	妾	$\frac{7}{4}$	$\frac{1}{4}$	人	\％	\％${ }^{\circ}$					笑	\％	${ }^{2}$	\％	产
$\sqrt{\mathrm{w}} \mathrm{~g}=$	5	5	3	\＃	9	5		9	亏	간	$\stackrel{5}{5}$	$\stackrel{ \pm}{5}$	$\stackrel{1}{5}$	익		¢	S	N		寺	发	$\stackrel{\circ}{5}$	N			\％	$\overline{5}$

APPENDIX 5

SOIL CHEMISTRY
AND

PHYSICAL PROPERTIES

			$\begin{array}{c\|c} 8 \\ 0 \\ 0 \end{array}$		$\begin{array}{c\|c\|} \stackrel{\rightharpoonup}{N} & \stackrel{\rightharpoonup}{0} \\ \mathrm{Ni} \end{array}$	$\begin{array}{l\|l\|} 0 \\ 0 & \stackrel{N}{n} \\ \\ \hline \end{array}$	$\begin{array}{l\|l\|} \substack{y} & \stackrel{9}{3} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{a}} \end{aligned}$	$\stackrel{\text { 易 }}{\stackrel{2}{\circ}}$	$\begin{aligned} & \text { Nod } \\ & \text { No } \end{aligned}$	$\stackrel{8}{p}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{M}{0} \end{aligned}$	$\begin{aligned} & \text { 萢 } \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \text { 呙 } \\ & \stackrel{0}{0} \end{aligned}$	蒀	品 N	8			N		9	$\stackrel{\text { 另 }}{\substack{2}}$	$\begin{aligned} & \stackrel{0}{\square} \\ & \stackrel{1}{2} \end{aligned}$	骂	$\stackrel{\rightharpoonup}{\vec{N}}$			$\frac{9}{\square}$	$\begin{aligned} & \stackrel{9}{\mathbf{N}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{\square}{\infty}$	－
	菏	$\stackrel{\stackrel{\rightharpoonup}{9}}{\dot{8}}$	$\begin{aligned} & \text { 罝 } \end{aligned}$	$\begin{aligned} & \text { 只 } \\ & \mathrm{g} \end{aligned}$	$\begin{array}{l\|l\|} \mathbf{g} \\ \mathrm{m} & \mathbf{\omega} \\ \mathrm{~g} \\ \hline \end{array}$		$\left.\begin{aligned} & \mathbf{m}_{0} \\ & \dot{n} \end{aligned} \right\rvert\,$		$\begin{aligned} & \stackrel{0}{\tilde{8}} \\ & \stackrel{\circ}{8} \end{aligned}$	$\begin{aligned} & \text { 哭 } \\ & \end{aligned}$	$\stackrel{\mathrm{N}}{\underset{\mathrm{~N}}{\mathrm{~N}}}$	$\begin{aligned} & \tilde{N}_{\mathrm{m}}^{2} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\mathbf{0}} \\ & \underset{\Phi}{2} \end{aligned}$	$\underset{\mathscr{G}}{\mathbf{g}}$	$$	$\begin{gathered} \text { 品 } \\ \hline ⿷ ⿱ ㇒ ⿸ ⿻ 日 丿 乚 厶 力 \end{gathered}$	$\begin{gathered} \text { M } \\ \text { M } \\ \hline \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \text { \% } \end{aligned}$		$\begin{aligned} & \text { 品 } \\ & \text { 菏 } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \underset{\sigma}{c} \end{aligned}$	$\begin{aligned} & \stackrel{8}{7} \\ & \dot{\oplus} \end{aligned}$		$\begin{aligned} & \underset{M}{\circ} \\ & \underset{\sim}{3} \end{aligned}$	$\begin{aligned} & \dot{\boldsymbol{j}} \\ & \dot{\mathrm{o}} \end{aligned}$		$\stackrel{\text { 品 }}{\substack{0}}$	$\begin{aligned} & n_{0} \\ & \dot{S} \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \dot{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \boldsymbol{m} \\ & \boldsymbol{j} \end{aligned}$	\％
	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \dot{\rightharpoonup} \\ & \dot{0} \end{aligned}$	$\underset{\sim}{N}$	$\stackrel{8}{8}$	$\stackrel{\stackrel{q}{4}}{\stackrel{\circ}{4}}$	$\stackrel{\Gamma}{\dot{n}}$	$\stackrel{\rightharpoonup}{\mathbf{D}}$	荷	$\left\|\begin{array}{l} \mathbf{0} \\ \mathbf{0} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 8 \\ & \stackrel{8}{n} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \underset{\sim}{\mathbf{O}} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{0}{c}}$	$\stackrel{8}{4}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { ̣ }}{\underset{\sim}{c}}$	$\underset{\substack{\infty}}{\infty}$	$\begin{gathered} \mathrm{N} \\ \underset{\sim}{c} \end{gathered}$	$\stackrel{8}{8}$		買	$\sqrt[3]{6}$		$\stackrel{n}{\sim}$	嵩	$\underset{\sim}{\infty}$	$\stackrel{\mathrm{c}}{\mathrm{~N}}$	in	罝	\hat{F}	$\stackrel{9}{9}$	$\stackrel{\bar{\circ}}{\mathbf{\circ}}$	$\underset{\sim}{\text { ¢ }}$
	$\begin{gathered} \vec{~} \\ \dot{\circ} \end{gathered}$	$\stackrel{\substack{0 \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \frac{9}{\circ} \\ & \text { 品 } \end{aligned}$	$\stackrel{\stackrel{7}{7}}{\sim}$		$\begin{array}{l\|l\|} \hline \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & \text { 므́ } \\ & \text { in } \end{aligned}$	$\stackrel{\overleftarrow{4}}{\mathbf{N}}$	$\begin{gathered} g \\ \stackrel{\circ}{i} \end{gathered}$	$\frac{\mathrm{C}}{\mathrm{C}}$	$\stackrel{\mathrm{N}}{\stackrel{\rightharpoonup}{\mathrm{~N}}}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \end{aligned}$	$\stackrel{M}{O}$	导	$\left.\begin{aligned} & \bar{n} \\ & 0 \end{aligned} \right\rvert\,$	$\stackrel{9}{\square}$	品		$\underset{\sim}{\mathbf{N}}$	$\stackrel{\substack{\mathrm{C} \\ \stackrel{1}{2}}}{ }$	$\stackrel{99}{7}$	$\stackrel{9}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{N}{⿳ 亠 口 冋}$	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{n}{n} \end{aligned}$		$\underset{\sim}{N}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{\|c} \stackrel{4}{4} \\ 0 \\ 0 \end{array} \right\rvert\,$	へ
	$\hat{\circ}$	$\stackrel{N}{\mathrm{O}}$	$\begin{aligned} & \stackrel{8}{0} \\ & \oplus \end{aligned}$	$\underset{\square}{\square}$	$\begin{array}{l\|l\|} \hline \end{array}\left\|\begin{array}{l} \circ \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \mathrm{g} \\ & \hline \end{aligned}$	$\stackrel{\text { 문 }}{\stackrel{1}{c}}$	$\frac{2 n}{0}$	$\stackrel{F}{5}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	8	哭	哭	잉	$\begin{aligned} & \text { 吅 } \\ & 0 \end{aligned}$	$\underset{0}{7}$	O		$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \end{aligned}$		$\stackrel{M}{9}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{7}{3}$	$\overrightarrow{i n}$		$\begin{aligned} & \mathrm{F} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 号 } \end{aligned}$	品	응	$\stackrel{0}{0}$
号	$\begin{aligned} & \text { gig } \\ & \hline 0 \end{aligned}$	$\stackrel{\check{\mathrm{H}}}{\mathrm{O}}$	$\stackrel{\stackrel{y}{0}}{\stackrel{0}{0}}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	\sqrt{n}	$\stackrel{M}{0}$	M	$\stackrel{\square}{\circ}$	$\underset{0}{-}$	음	$\frac{n}{5}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{y}{\infty}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{O} \end{aligned}$	$\frac{N}{\square}$	$\underset{\mathrm{O}}{\mathrm{~N}}$	N		$\stackrel{O}{0}$	$\stackrel{7}{0}$	N0	$\begin{gathered} 9 \\ 0 \end{gathered}$	$\left.\begin{gathered} \mathbf{8} \\ \mathbf{0} \end{gathered} \right\rvert\,$	$\stackrel{\square}{0}$	$\left\|\begin{array}{c} n \\ 0 \end{array}\right\|$	$\frac{\stackrel{n}{0}}{\dot{c}}$	$\frac{m}{\square}$	$\begin{gathered} \text { 妿 } \\ \hline \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{4}{\circ}$	$\stackrel{m}{\square}$
$\begin{aligned} & \text { 品 } \\ & \text { in } \end{aligned}$	$\underset{\text { in }}{\mathrm{N}^{2}}$	$\stackrel{\text { 品 }}{\stackrel{1}{n}}$	$\left\|\begin{array}{l} \text { 買 } \end{array}\right\|$	$\begin{aligned} & 8 \\ & \end{aligned}$	$\stackrel{9}{9}$	$\stackrel{\stackrel{V}{\varphi}}{\underline{\varphi}}$	$\underset{\sim}{\underset{\sim}{n}}$	$\left\|\begin{array}{c} \mathbf{g} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \bar{\circ} \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} F \\ i \end{gathered}\right.$	$\left\|\frac{0}{\mathrm{v}}\right\|$	$\stackrel{\leftrightarrow}{\mathbf{n}} \stackrel{\rightharpoonup}{\mathbf{n}}$	$\stackrel{g}{\sim}$	$\left\lvert\, \begin{gathered} \text { n } \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} 9 \\ \underset{n}{n} \\ \stackrel{n}{2} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\mathbf{m}} \\ & \stackrel{9}{2} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{3}{4} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { 品 } \\ & \mathrm{o} \end{aligned}\right.$		$\left\lvert\, \begin{gathered} \stackrel{n}{n} \\ \stackrel{n}{2} \end{gathered}\right.$	$\stackrel{\text { P }}{\sim}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{g} \\ \mathrm{ri} \end{array}\right\|$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\square}{0}$	$\underset{\boldsymbol{\omega}}{\boldsymbol{\sigma}}$	$\stackrel{\rightharpoonup}{4}$	器	崇	召	$\stackrel{\text { N}}{\sim}$	N
	$\underset{u n}{e}$	$\stackrel{\circ}{n}$	$\begin{gathered} 9 \\ \hline 0 \\ \hline \end{gathered}$	$\begin{aligned} & \underline{q} \\ & \stackrel{y}{*} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \varphi \end{array}\right\|$	$\stackrel{9}{9}$	$\stackrel{\oplus}{\oplus}$	$\begin{gathered} 9 \\ \hline \end{gathered}$	$\stackrel{\text { 吕 }}{1}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \hline \infty \end{aligned}$	$\left\|\begin{array}{c} 4 \\ 5 \\ 10 \end{array}\right\|$	$\left\|\begin{array}{c} \overline{\mathrm{n}} \\ \hline 1 \end{array}\right\|$	$\stackrel{8}{\stackrel{0}{ }}$	$\stackrel{8}{0} \mid$	$\begin{aligned} & \text { 品 } \\ & \dot{\sim} \end{aligned}$	$\left\|\begin{array}{c} g \\ 9 \\ 9 \end{array}\right\|$	$\begin{gathered} \frac{9}{n} \\ \stackrel{n}{6} \end{gathered}$	$\stackrel{g}{\dot{q}} \dot{\stackrel{1}{*}}$		$\stackrel{9}{\dot{\omega}}$	$\stackrel{\tilde{\omega}}{\stackrel{\omega}{\omega}}$	$\begin{aligned} & 8 \\ & \nabla \end{aligned}$	$\left.\begin{aligned} & \hat{0} \\ & \bullet 0 \end{aligned} \right\rvert\,$	$\stackrel{\rightharpoonup}{6}$	分\|	$\stackrel{9}{\sim}$	$\frac{42}{5}$	品	O	$\stackrel{9}{9}$	$\stackrel{\mathrm{g}}{\mathrm{~V}}$	$\stackrel{\square}{4}$
	응	8	$\stackrel{4}{\stackrel{\circ}{0}}$	$\stackrel{\text { NO}}{\substack{0}}$	옹	$\stackrel{m}{0}$	응	$\stackrel{\rightharpoonup}{0}$	\mid	$\left\lvert\, \begin{aligned} & \hat{y} \\ & \dot{0} \end{aligned}\right.$	$\frac{\infty}{\circ}$	$\stackrel{\stackrel{N}{0}}{0}$	$\stackrel{\infty}{0}$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{d} \end{aligned}\right.$	$\stackrel{0}{0}$	$\stackrel{m}{0}$	$\begin{gathered} 8 \\ \stackrel{y}{c} \end{gathered}$	$\stackrel{9}{0}$		$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{q}{9}$	$\begin{aligned} & \square \\ & 0 \end{aligned}$	$\stackrel{m}{c}$	$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\frac{n}{0}$	$\stackrel{9}{9}$	$\stackrel{\square}{\square}$	$\stackrel{\pi}{0}$	－	管	$\stackrel{\square}{\square}$
	O	$\begin{aligned} & \mathbf{d} \\ & 0 \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\left\lvert\, \begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}\right.$	品	$\begin{gathered} \mathbf{m} \\ \mathbf{0} \\ \mathbf{0} \end{gathered}$	$\left\lvert\, \begin{aligned} & \hat{m} \\ & \mathbf{n} \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\circ}$	$\overline{\text { 품 }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pi \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{\square}$	8	8	0	品	뭄	$\begin{gathered} \text { 吕 } \\ \hline \end{gathered}$		$\left\|\begin{array}{c} \hat{0} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 7 \\ \dot{0} \end{array}\right\|$	8	$\underset{0}{5}$	吕	－	$\begin{aligned} & 9 \\ & N \end{aligned}$	O्व	$\begin{gathered} 0 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \text { y } \\ & 0 \end{aligned}$	B	N	O
$\begin{aligned} & \text { 令 } \\ & \text { 总品 } \\ & \text { 品 } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \mathbf{N}_{N} \end{aligned}$	$\left.\begin{gathered} \infty \\ \infty \\ \mathbf{\infty} \\ \mathbf{x} \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \text { 이 } \\ & \infty \\ & \infty \end{aligned}\right.$		$\stackrel{n}{n}$	$\left\|\begin{array}{l} \mathbf{g} \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \vec{~} \\ \stackrel{\rightharpoonup}{\mathbf{a}} \end{array}\right\|$		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\omega}{0} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{9}{n} \\ \stackrel{n}{n} \end{array}\right\|$	$\begin{gathered} \stackrel{9}{\mathrm{~N}} \\ \stackrel{n}{2} \end{gathered}$	$\stackrel{8}{\sim}$	$\left\lvert\, \begin{gathered} \underset{\sim}{x} \\ \stackrel{y}{2} \end{gathered}\right.$	$\begin{array}{\|c} \text { 훙 } \\ \stackrel{5}{2} \end{array}$	$\left\|\begin{array}{c} 8 \\ \dot{8} \\ \dot{\infty} \end{array}\right\|$		$\begin{array}{\|c\|c\|} \substack{n \\ \text { in } \\ \hline} \end{array}$	$\begin{aligned} & n \\ & N \\ & \text { N } \end{aligned}$		$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\oplus}{\sim}}$	¢	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{y}{?} \\ & \stackrel{\rightharpoonup}{\top} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \stackrel{9}{n} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { 웅 } \\ & \text { 百 } \end{aligned}\right.$	$\stackrel{\leftrightarrow}{m}$	$\begin{gathered} \stackrel{\rightharpoonup}{\stackrel{0}{\sim}} \\ \hline \end{gathered}$	N N N	$\stackrel{\substack{\mathrm{N}}}{1}$	$\stackrel{山}{\mathbf{\omega}} \underset{\sim}{\mathbf{N}}$	$\stackrel{5}{\square}$
	$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\sim}{i} \end{gathered}$	$\left\lvert\, \begin{gathered} \mathbf{0} \\ \stackrel{0}{\infty} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ n \\ n \end{array}\right\|$	$\underset{N}{N}$	$\underset{N}{N}$	$\left\|\begin{array}{c} \underset{\sim}{N} \end{array}\right\|$	$\left\|\begin{array}{c} 9 \\ 6 \end{array}\right\|$	$\stackrel{\sharp}{\otimes}$	얶	$\begin{aligned} & \text { 荷 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{(0}{\circ}$	$\begin{gathered} 7 \\ \dot{x} \end{gathered}$	$\left\lvert\, \begin{aligned} & 9 \\ & \stackrel{n}{i} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 8 \\ 0 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\left\|\begin{array}{c} 8 \\ 6 \\ 6 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \hline \end{array}\right\|$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	8	$\stackrel{x_{0}}{\substack{0}}$	$1 \begin{gathered} N \\ 0 \end{gathered}$	$\stackrel{0}{+}$	$\stackrel{!}{\square}$	8	$\stackrel{\sim}{4}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 4 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\Gamma}{T}$	$\underset{d}{d}$	p	¢
		$\overline{0}$	$\stackrel{8}{8}$		$\begin{gathered} n \\ \hline 0 \\ \hline \end{gathered}$		$\stackrel{N}{0}$			$\stackrel{\sim}{\circ}$				$\stackrel{7}{4}$	$\stackrel{9}{8}$	$\stackrel{9}{8}$		$\stackrel{\mathrm{M}}{0}$				吕		$\stackrel{\sim}{\square}$		$\stackrel{4}{\square}$		응	$\stackrel{\square}{0}$	－	¢	
$\begin{aligned} & 8 R \\ & \frac{8}{0} \\ & \frac{T i}{0} \end{aligned}$	$\stackrel{N}{4}$	－	$\stackrel{\square}{0}$	4	$\stackrel{\circ}{\circ}$	©	\pm	0	\cdots	$\stackrel{m}{\infty}$	－		$\stackrel{\square}{\square}$	응		5	$\stackrel{\square}{\square}$	$\stackrel{10}{7}$		$\stackrel{n}{0}$	\bigcirc	$\stackrel{m}{v}$	${ }_{6}$	${ }_{\sim}^{*}$	\cdots	$\stackrel{4}{8}$	\％	$\stackrel{\square}{7}$	${ }_{6}^{4}$		号	\％
	$\frac{n}{6}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{5} \end{gathered}$	号	$\begin{array}{r} 6 \\ 3 \end{array}$	$\stackrel{8}{8}$	움	$\stackrel{\substack{\underset{\sim}{c} \\ \hline}}{ }$	문	$\stackrel{\sim}{0}$	$\begin{aligned} & \text { 茍 } \\ & \text { \| } \end{aligned}$	8	$\stackrel{10}{6}$	号	\bigcirc	$\stackrel{N}{\infty}$	$\begin{gathered} N \\ N \\ N \end{gathered}$	$\frac{0}{d}$	$\stackrel{9}{4}$		$\stackrel{9}{\square}$	$\stackrel{7}{0}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	8	$\begin{aligned} & \stackrel{̣}{\grave{N}} \\ & \stackrel{C}{2} \end{aligned}$	앙	$\begin{aligned} & 9 \\ & \stackrel{0}{0} \end{aligned}$	ก	－${ }_{\text {a }}^{\text {a }}$	\％	둔		？
\square	은 m $\frac{0}{4}$	？ $\mathbf{8}$ $\mathbf{4}$ 4	$\begin{aligned} & \frac{\text { 合 }}{\text { 品 }} \\ & \hline \end{aligned}$	0 0 0 0	氮				稒			忽			오 0 0 0	$$		$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 8 \end{aligned}$			$\begin{gathered} \text { 高 } \\ \text { 器 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 哥 } \\ & \stackrel{0}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{3}{9} \\ & \frac{9}{9} \\ & \hline \mathbf{9} \end{aligned}$	$\stackrel{(a)}{4}$		21	a $\stackrel{\rightharpoonup}{\mathbf{4}}$ $\stackrel{y}{4}$		$\begin{aligned} & 0 / 8 \\ & 9 \\ & \hline 1 \end{aligned}$		呂
\sum_{i}^{0}	$\frac{\infty}{4} \frac{\infty}{4}$	毎	$\stackrel{\square}{4}$	\％	운	－${ }^{4}$	戒	¢ ${ }^{4}$	2 ${ }_{4}$	N	\％	等	9	$\stackrel{9}{4}$	$\stackrel{\otimes}{\mathscr{C}}$	\％	缶	N	©	$\underset{\sim}{2}$	9	8	$\overline{4}$	－	\％	兴 ${ }^{\text {\％}}$	安	言	年		S	8
5	\％${ }_{4}^{4}$	\％	帯	\％	気	\％	¢	号	产	哭	（\％）	离	詈	¢	¢	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	䫆		浻	答	鲾	呙	\％		留	㐭	品	\％	區	8	

Unlque ID	Site No.	Field Sample 10	Sample Depth (cm)	Ca	$\begin{gathered} \mathrm{Ca} \text { (me/100g) } \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ (\mathrm{ppm}) \end{gathered}$	$(\mathrm{me} / 100 \mathrm{~g})$	$\begin{gathered} \mathrm{K} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \mathrm{ma} / 100 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \text { (me/100g) } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \text { (me/toog) } \end{gathered}$	$\begin{gathered} \mathrm{Zn}, \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ (\mathrm{me} / 100 \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ (\mathrm{p} \cdot \mathrm{t}) \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ (\mathrm{me} / 100 \mathrm{~g}) \end{gathered}$	$(\mathrm{Mn}$	$\underset{(m e / 100 \mathrm{~g})}{\mathrm{Mn}}$
858	A34	A34日 (a)	0-42	73	0.365	31	0.254	15	0.038	6	0.026	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
859	A34	A34B (b)	42->100	45	0.225	31	0.254	13	0.033	6	0.026	0.49	0.002	0.19	0.001	0.49	0.003	2.20	0.008
860	A35	A35B (a)	0.35	2217	11.085	343	2.811	98	0.251	12	0.052	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
B61	A35	A35B (b)	35-70	1953	9.765	292	2.393	63	0.161	16	0.070	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
B62	A35	A35B (c)	> 70	1526	7.630	128	1.049	21	0.054	11	0.048	0.49	0.002	0.19	0.001	0.49	0.003	0.50	0.002
863	A36	A368 (a)	0.30	111	0.555	26	0.213	11	0.028	4	0.017	0.49	0.002	0.19	0.001	0.49	0.003	1.10	0.004
864	A36	A36B (b)	30.71	47	0.235	23	0.189	9	0.023	5	0.022	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
865	A37	A37B (a)	$0-20$	63	0.315	39	0.320	39	0.100	6	0.026	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
B66	A37	A378 (b)	20.50	43	0.215	41	0.336	36	0.092	6	0.026	0.49	0.002	0.19	0.001	0.49	0.003	2.50	0.009
867	F1	FIB (a)	0-15	25	0.125	10	0.082	8	0.020	4	0.017	0.49	0.002	0.19	0.001	1.00	0.005	1.50	0.005
868	F1	F18 (b)	15-30	8	0.040	4	0.033	5	0.013	4	0.017	0.49	0.002	0.19	0.001	1.00	0.005	0.49	0.002
B69	F1	F1B (c)	30-45	6	0.030	3	0.025	5	0.013	3	0.013	0.49	0.002	0.19	0.001	1.00	0.005	0.49	0.002
B70	F2	F28 (a)	0.5	49	0.245	14	0.115	6	0.015	2	0.009	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
B71	F2	F2B (b)	15-30	24	0.120	8	0.066	9	0.023	5	0.022	0.49	0.002	0.19	0.001	0.49	0.003	0.40	0.001
B72	F2	F2B (c)	30-45	15	0.075	7	0.057	5	0.013	6	0.026	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
873	F3	F3E (a)	0-15	65	0.325	11	0.090	4	0.010	3	0.013	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
874	F3	F3B (b)	15-30	38	0.190	8	0.066	5	0.013	3	0.013	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002
875	F3	F3B (c)	30-45	33	0.165	7	0.057	7	0.018	4	0.017	0.49	0.002	0.19	0.001	0.49	0.003	0.49	0.002

Ca: equivalent weight $=20.0$ Mg : equivalent weight $=12.2$ K : equivalent welght $=39.1$ $F e$ (ferric): equivalent weight $=18.6$ Zn : equivalent weight $=32.7$

Physical Properties: Analytical Results

Whataver	Site No.	Field Sample ID	Sample Depth (cm)	Textural Class	Organic Matter \% (L.O.I)	Soil Moisture Content \%	Dry Bulk Density ($\mathrm{g} / \mathrm{cm} 3$)	Total Porosity (valume \%)
U1	A1	A1U (a)	5	sand	0.11	0.0	1.56	41.3
U2,	A1	A14 (b)	15	sand	0.11	0.1	1.65	37.8
U3	A1	A1U (c)	25	sand	0.09	0.0	1.71	35.4
U4	A2	A2U (a)	5	sandy loam	0.16	0.9	1.46	45.0
45	A2	A2U (b)	15	sandy loam	0.15	0.9	1.46	44.8
46	A2	A2U (c)	25	sandy loam	0.17	0.9	1.55	41.6
	A3	not sampled			\square			
	A4	not sampled						
47	A5	A5U (a)	2.5	loamy sand	0.12	0.2	1.56	41.3
UB	AS	A5U (b)	25	loamy sand	0.10	1.8	1.61	38.2
U9	A5	A5U (c)	60	loamy sand	0.09	0.6	1.49	43.8
	AS	not sampled						
	A7	not sampled						
	$A B$	not sampled						
	A9	not sampled						
410	A10	A10U (a)	15	sand	0.13	0.1	1.49	43.9
U11:	A11	A11U (a)	15	sand	0.20	0.4	1.31	50.5
412	A11	A11U (b)	45	sand	0.04	0.1	1.65	37.9
U13	A12	A12U (a)	15	loamy sand	0.11	0.8	1.51	43.1
014	A13	A13U (a)	15	sand	0.13	0.5	1.39	47.7
U15	A14	A14U (a)	15	sand	0.04	0.1	1.63	38.6
U16	A14	A14U (b)	40	sand	0.01	0.6	1.63	38.5
U17	A15	A15U (a)	15	sand	0.10	0.1	1.62	39.0
418	A16	A16U (a)	15	sand	0.07	0.1	1.58	40.3
U19	A17	A17U (a)	15	sand	0.12	0.2	1.71	35.5
U20	A18	A18U (a)	15	sandy loam	1.04	8.0	0.93	64.9
	A19	not sampled						
U21	A20	A20U (a)	15	loamy sand	0.21	0.7	1.36	48.7
422	A21	A21U (a)	10	loamy sand	0.15	0.3	1.33	50.0
U23	A22	A22U (a)	15	sand	0.16	0.7	1.43	46.0
U24	A23	A23U (a)	15	sand	0.11	0.2	1.41	46.7
U25	A24	A24U (a)	15	sand	0.08	0.1	1.67	36.9
U26	A25	A25U (a)	15	loamy sand	0.20	1.9	1.33	49.7
U27	A29	A26U (a)	15	sandy loam	0.31	2.5	1.35	48.9
U28	A27	A27U (a)	15	loamy sand	0.19	1.1	1.40	47.3
	A28	not sampled						
U29	A29	A29U (a)	25	sand	0.12	0.1	1.60	39,6
$\cup 30$	A30	A30U (a)	15	sand	0.11	0.1	1.59	40.1
U31	A31	A31U (a)	15	sand	0.11	0.3	1.45	45.2
U32	A32	A32U (a)	15	sand	0.05	0.3	1.57	40.6
\because	A33	not sampled						
U33	A34	A34U (a)	15	sand	0.10	0.3	1.48	44.1
U34	A35	A35U (a)	15	sandy loam	0.78	7.6	1.10	58.6
U35	A36	A36U (a)	15	sand	0.09	0.2	1.53	42.3
U36	A37	A $37 \cup$ (a)	15	sand	0.15	0.4	1.48	44.0
U37.	F1	FiU (a)	15	sand	0.13	2.6	1.55	41.4
U38	F1	F1U (b)	30	sand	0.12	2.0	1.57	40.6
U39	F1	F1U (c)	45	sand	0.09	3.1	1.58	40.2
U40	F2	F2U (a)	15	sand	0.08	2.0	1.40	47.1
U41	F2	F2U (b)	30	sand	0.07	1.3	1.70	35.8
442	F2	F2U (c)	45	sand	0.11	1.7	1.64	38.1
U43	F3	F3U (a)	15	sand	0.08	1.3	1.56	41.3
U44	F3	F3U (b)	30	sand	0.10	1.7	1.68	36.7
U45	F3	F3U (c)	45	sand	0.09	1.3	1.78	32.7

APPENDIX 6
SOIL CLASSIFICATION AND ENVIRONMENTAL DATA

Soils of Kavango Region
Fleld Survey
Soil Classification and Environmental Data

Number	FAO Solf Unit Code	Soll Unit	Phase	Profile Characterlstics	Effectuve Depth Fange（cm）	FAO Soil Depth Class	Soll Depth Class Code	FAO SOll Textural Class	Estimated Soll Permeablitity	FAO Soll Permeability Class
AB	FLd	Orystric Fluvisol	Hundic／phreat	Deep，imperfectiy drained alluvial igarry sand to sandy loam；no crust，seating or cracks．Ochric A horizon gteyish yellow brain（10\％R 4／2） sitity tine sand；unconsolldated to wealdy developed very fine platy structure；unstatle aggregates；no motiles；surface cover＞70\％lear and grass iltter atthough tine root networkis in A horizon are spartan；carbonates detected．Gradual，difiuse transitional AB horizon at 25 cm deepening to brownish black（10YR 2／2）at 30tm depth；very fine subangular structure；stable aggregates；medium network of tine roots；no carbonates delected；common fine to very fine pores；tongueing of clay parlicles．Argic E horizon at 30ctn；distinctly higher content of fluwial clay to 15 cm ．Lomer boundary to C at 45 cm ；meterial indistinct from lower alluvili sediments	50－100	Maderately deep	θ	1	impertectity drained	2
A3	ARn	Haplic Arenosol	Yernic	Deep，well to somewhat excessivek drained medium to coarse aealian sand；no crust，sealing or tracks．Ochric A horiton madified by ploughing，bright brown（7．5广P $5 / 5$ ）．unconsolidated，frisble．no structural developinent， 1% black arganic mowes evenly distributed and fine quartate fragments，rare fine pores，few fine to yery fine and no medium reots，non calcareous．Diatinct boundary at 49 cm to B horizon where ＜t\％black organic fragments，no roots，very rate fine pores，non calcaraus．	>100	Oeep	10	1	Somentiat excegstively dralned	5
Ald	APh	Haplic Arenosol	Verrnic	Deep，well urained medium to the aeollan sand，incipient crust development $=1$ mim thick，easily troken，no cracks．Albic surface horizon， greyish yeddow brown（10YP a／2）bleached and friable to 3 cm ；ochic A horizon with 7 － 10% black organic motles and fragments in diense band at 5 － gln depth；uritonsolidated，very weak very the grathlar structure；rare very fine roots and few fine pores；hon calcareous；no further diagnostic properties and no tisible boundary to 3 Im depth．	＞100	Deep	10	1	Well drained	4
All	ARo	Ferralic Arenosor	Phreatic	Deep．well drained medium to fine aedian sand，no crust，sealing or cracks．Ochric a norzon with some indication of urnbric propertues； greyish brown（ 7.5 yR d 1 ？）bleached at surface 10 2an，very friabte；unconsoldded tree grains，no structural developrnent，fine root mat evenvy distribuled to 20 cm ，common medium to large pores，few fine pores； 5% black organit mottles at $11-14 \mathrm{~cm}$ deptr；non calcareous．Smooth distinct boundary at 25 cm w 8 horizon wilh in situ colour alteration to dull reddish brown（ 5 VP 5／3）；fiable，very weal very fine granular very fine roots，common medium to targe pores，tew tine pores；non takareous．Sharp boundary at 75 cm to C horizon（parent material， untonsobidated sand dirit）；dull oranne（TVR 7／3），significant increase in moisture content，rare fine roots；common medium to targe pores， few fine pores，＜ 1% small（ $0.5-1$ min）black organic inothes．Note very shallow groundivater tevels．	2100	Geep	10	1	Well drainea	4
A12	CLIn	Haplic Calctisol	Plreatic	Deep，imperfectiy dralned loanty sand；impeded surface trainage and dithicut to penetrate；thin hard crust 4 mnt thick，no cracks Othicicaltic A harizon，dark brown（7．5\％R 3／3）dry，ioose medlum to the sand with silts and ciays；brown stem and bark fragments up to Imin tong at $5-15 \mathrm{~cm}$ ，no back moties；very fine to fine platy sructure；stable ajgregates up to 3 cm diameter，rounded，common very fine 4／2）medium to fine sand with decrease in finer particles；weak very tine granular structure；improved drainage but increase in mossure content with depth；few tine pares；few very fine roats；no mottles．Smoath bounary at bocm to lluwial C horizon，grejish yellow brown（ 10 \％R 5／2）toarny sand：increase in fine partiches（llluvial）；medium to coarse grantar struture；further increase in galt moisture： 1% black organtic motties in 5 min band at 87 cm depth，irregular soft white silghtity calcareous nodules（aultigente）in non calcareous inatrix．Ho visible lower ooundary to $>100 \mathrm{~cm}$ ．	50－＞ 100	Maderately deep to deep	9	1	Imperfectly drained	2
413	CLL	Haplic Caxicisol	none	Deep，moderately well drained sand to ioarmy sand；no crusting，sealing or cracks．Ochric A hotzon，darte brown（10YP 3i3），very fine deptr： 5% burnt trig and roat ragments at 30 cm depth，common fine pores．Distinct colour change at 40 cm to yellowish brown（towR 5 m ）； non calcaric e normon，no motlles or concrethons；＊ary time to tine subangular structure；contmon fine pores；no toots；\＆ 1% black arganic moties．Structural change at bocm，no colour inange（yeliowisn brown），significant increase in unconsolldated medium to coarse sand wath no structural development；no roots；no visible fine pores．No visible lower toundary．	>100	Deep	10	1	Moderatety well dralned	3

Solls of Kavango Reglon
Soil Classification and Environmental Data

Soils of Kavango Region
Field Survey
Sail Classification and Environmental Data

Nuite	Soll Sallnity Status	Soll Sodicity Status.	Land System	Land Faces	Inclination 14	$\begin{aligned} & \text { FRo siope } \\ & \text { Class } \end{aligned}$	Slope Aspect	$\begin{aligned} & \text { slope } \\ & \text { shape } \end{aligned}$	$\begin{aligned} & \text { Micro- } \\ & \text { topography } \end{aligned}$	Soll Surface Condition	Surtace prainage	Erosionidaposituon status	$\begin{aligned} & \text { Estimated } \\ & \text { Erodiblity (Fb } \\ & \text { عallue; SLEMSA) } \end{aligned}$	$\begin{aligned} & \text { Eresion } \\ & \text { Hazard } \\ & \text { Potential } \end{aligned}$
A 29	Hon saline	Hon sodic	(7.0/2) Easternflowing palea drainage transitionat hard vith large pans Dant to sand plain with	Head of tritutary to main ornuralnba charnel; mid channel position base of gentte slope	0.5	1	s	silghthy	Extensivety hurnmocky, thany local milcro stapes	30\% cover liliter, wery ititle to no crust develapment, no cracks no stones	Imperrect	Wo evidence of erosion!; no recent deposition	4.5	Moderate
A29	Non salme	Non sodic	$\begin{aligned} & (7.3 / 2) \text { Eastert- } \\ & \text { fowing paleo } \\ & \text { crainage. } \\ & \text { transitional hard } \\ & \text { pan to sand plaing } \\ & \text { yuith large pans } \end{aligned}$	Sancty plain	0	1	n/a	Hat	Hneven	High cover of lear liter: no crust, seailng or cracks; no stones, Burkea woodiand	Excessivety well drained; no vist\|le drainage channei	Wo evidence of erosion: no recent deposition	5	Low
A30	Non saine	$\begin{array}{\|c} \text { Incipient naric 日 } \\ \text { narizon } \end{array}$			1	1	E	concave	Hneven	High cover of lear litter, no crust, seailing or cracks; no stones	Excessuvery well drained; na visible drainage cthannela	Wo evidence of wind or water erosion; no recent deposition	4.5	Hoderate
A 31	Non saine	Man sodic	$\begin{aligned} & \text { (6.1) Ephemeral } \\ & \text { catchnent dride - } \\ & \text { nligh plain } \end{aligned}$		'	1	NE	almost flat plain		Sutface cleared of limer along runoft cnannels betweeh stable grassed cumps; no crust. sealing or cracks; no stones; na evidence of fire	Surface well drained: subsurface drainage mpertect: shallow widespread	Artaple evidence or water erosion; denudalion surface: no gullies	3.5	High
A32	Mon sallie	Harric 日 hartzon	(5.1) Ephemeral athiment divide . phign platn	Water divide area; elevated plain with hoca depressions cresto of rise	0.5	1	E	$\begin{array}{\|l} \text { Hat to to } \\ \text { siflithy } \\ \text { conver } \end{array}$	Hurnmecly: shallow, wide rumofit chatinels	Extensive surface cementation; continuous crust 15inn sick, consoldated sand layer below crust 30run thict, no stones	Impeded zurface drainage; ffee internsi drainage from $5-12 \mathrm{~cm}$ deptit) further impeded drainage below 15 cm	Denudation surface: maderate water ferosion (nunaff channela): no gullies	4	Moderate
$\mathrm{A}^{3} 4$	Non 3aline	Non Sodle	(4.1) Omatako omurambs - maln channel and tributaries	Man Channeintoutary contuence: ch3nnel floor position	2	1	NM-SE	conczuve	Localized mummocts. and smooth ra	High cover of grasses and shrubs; no cracks, sealing ar stones	well drained, no visible drânage channels	Recent deposition of sandy matertal [Colluryial)	4.5	Mocerate
A35	Non 3aline	Mon sodic	(4.1) Omatal:o minuramba - main channed and Itributaries	floor biain channel	0	1	n/a	that		Low cover tuited grasses; hard, crusted surface (Ammethicio). continuous; no stones; no craclis	tinpeded drainage; wide shallow drainage sint	matenal Revent deposition tine sand and silty	5	Low

Soil Classification and Environmental Data
Solls of Kavango Region
Fleld Survey

Site Number	FAO SOII Unit Code	SoliUnit	Phase	, - Protile characteristics ${ }^{\text {a }}$,	Effective Depth Range(cm)	FAO Soll Depth Class	Soll Depth Class Code	FAO Soll rextural Class	Estimated Soll Permeablily	FAO 50ll Permeabllity class
A36	APT	Calcaric Arenosol	Yernic	Deep, moderately well drained sand, continuous thin, nard trust Imm thick, no cracks. Ochric, silghty calcareous a horizon; darle brown (10 YR $3 / 3$) medium to tine sand with sitr, very fine granular to very fine platy structure; rare tine roots; common tine pores; <1\% black organic mottes at E-gern. Smoath boudary at 30 cm to C horizon of dult brown ($5 \times \mathrm{R}$: $1 / 4$) medlurn to tine aeallan sand, good internal orainage, funconsotidated to wealty developed fine granular structure; no mattles; no rools; common medium pares; no vistble boundary to $>100 \mathrm{~cm}$ depth.	2100	Oeep	10	1	Moderately well drained	3
A37	ARo	Ferralic Asenosal	Yermis	beep, well drained sand; contlruous incipient crust 1 mm Lhick, no cracks. Ochric A horizon, brown ($7.5 \% \mathrm{f}$ 4/5) medium to fine sand with silt land ciay, unconsolidated to very fine crumb structure; dense root mat bound into 5inm trick, fibrous tayer with silts and clays at 3 am deptr: 2% black organic fragments and partictes at $7-1 / \mathrm{cm}$. Smooth boundary at 20 cm to transtional ac horizon with some ferratle properties handing propenties; unconsolidated, no structural developinent; freaty drained; no roots; no motiles; common medum pores. No vislble tower boundary to $>100 \mathrm{~cm}$.	>100	Deep	10	1	Well cramed	4
FI	ARO	Ferrahc Arenosol	Yerrnic	organic motiles and fragments in dense band between $5-7 \mathrm{~cm}$ deptly; weabty developed coarse granular structure, very friable, non sticky, non plastic; few fine pores, non calcareous, few tine to very tine foots. Smocth diftuse boundary at 15 cm to B honzon with some ferralic properties (texture to coarse to be tiagnostic of feralic horizon). No textural difference allhough colour thange to reddish brown (5yR 4/6): yery weakk very toarse crumb structure, slighty hard, friable, non catiareous; rare fine roots. Smooth boundary at 30 cfn to C horzon of bright reddish brown (5ve 5ra) loany sand: loose, very coarse crumb structure, silghtiy hard, friable, non calcareous; no roots. No visible tower boundary to > 200 cm .	>100	Deep	10	1	Excesslvely drained	6
F2	A. I_{1}	Hapll Arenosal	そennic	Deep, excessively well drained sand; no crusting, sealing or cracks. Thin ochric A borizon of brawn (7.5YR A/f) sand with fittie clay of sitt content, grey cast permeating eolour certainty produced by fecent flre; very coarse crumb structure, easily broken; non callareous; 10\% black organic mottles; common tine to very tine roots; common medium and large potes. Abrupt boundary at 15 fm to dull brown (7.5vR 5/3) sand wilh coaraer texture; unconsolidated, to weak tine crumb 5 tructure; non calcareous; non sticky, 3 a black organic mottles at $15-18 \mathrm{~cm}$ deptr: common very tine roots; common large pores. Sinooth boundary to transitional AC horzon of dull orange ($7.5 \% \mathrm{R}$ b/d) unconsolidated sand; slighty' compact; no structural development, no roots; no motties; common large pores. No wisible lower boundary' to $>\$ 00 \mathrm{~cm}$.	>100	Ceep	10	1	Excestively drained	б
F3	ARh	Haplic Arenosol	Yernic	Deep, excesstyely well drained sand; no crusting, sealing or cracks. Ochric A horizon of brown (7.5YR 4/4) sand with lime clay or sitt content: coarse crumb structure, easily brotien; 3% black organic molles; few fine roots; common medium and large pores; non calcaredus. Smoatn roots; common medium and large pores, nen ialcareaus. Diftuse boundary at 32 cm to unspecified C horizon, no colour change or textural differences; medium crumb structure, easity broken, elight increase in patinng state; 3% b back organic motties at $32-35 \mathrm{~cm}$; common inedium pores. Ho visble lower boundary io $>100 \mathrm{~cm}$.	>100	Deep	10	\dagger	Excesstmely draned	6

APPENDIX 7

SOILS ANALYSIS:

TEST SITE SUMMARIES

 \begin{tabular}{l|l|l}
B 1 \& $\mathrm{AlP}(\mathrm{a})$ \& $0-30$

\hline

 Bulk tap ID Bulk Field 10 ，Bulk Deph（cm） $0-30$ Depith

81 \& A1B（a） \& $0-30$

 Buik Lab（D Bulk Fleld iD Buik Depth（cm）

$B 1$ \& $A 1 B(a)$ \& $0-30$

 Bulk：Lat iD Bulk Fledq IO Guik Depth（cm）

B 1 \& A18（a） \& $0-30$

\hline
\end{tabular}

Und Lab ID Und FieldiD Und Depth（cm）
4

J 1	15	
A 2	A1U（b）	15

$5: 3$
Mlerotopography
Local micro－slopes in N －S alignment
Distinct crust 4 mm thick bonded by amorphous black

－ $5 \| y$ ou
$-\quad$－
Horion Depth（cm），\quad ，Profile Descifition
Deep，well drained sand；soff，easily broken surface crust 4 mm thick of surface mineral parilcies bonded by black amorphous mycrophyllc material（algae ？）；no cracks，no salt；ochric A horizon，dull orange brown（ $10 \mathrm{YR} 6 / 4$ ）wilh 10\％orange（ $5 \mathrm{YR} 6 / 8$ ）and light grey（ $2.5 \mathrm{Y} 8 / 1$ ）mottlas；thin band of black organic fragments at 7 cm depth；unconsolldated to very fine granular structure；fine roots and root hairs at $5-25 \mathrm{~cm}$ depth．Diffuse boundary at 20 cm to B hortzon，orange（ $5 \mathrm{YR} 6 / 8$ ）medum to fine sand； 10% bright yellowish brown mottles from $20->100 \mathrm{~cm}$（ $10 \mathrm{YR} \mathbf{6 / 6}$ ）；unconsolldated to very fine granular structure，lacking in cohesion；no evidence of carbonales．No vislble lower boundary of $日$ horlzon $10>100 \mathrm{~cm}$ ．
NOIOBy OSNఈA甘Y IO STIOS

 E4 A4B (a)

B4
 ESP (me/1009) Q
-1.549 BSP (me/foog clay) 5.88 $\frac{\text { Sodiclly, }}{\mathrm{NloP} 1 \mathrm{mef} 100 \mathrm{o}} \mathrm{N/A}$ $\quad \mathrm{N} / \mathrm{A}$ \square NA
Fernwood?
Eroston toppositon

FAO Depth Class
 Deep

 No evidence of water erosion; possible wind-induced
surface smooting although no evidence of recent deposition surface smooting although no evidence of recent deposition
ents of same vidence of carbonales. oarse fram
developm
arbonates.
9

SOILS OF KAVANGO REGION

$8106.53 \mu v 5$	Class
6.7	1
11.4	

OrgC\%	
(Walisey-Black)	caco, (quant)
0.18	low pH
0.12	low pH

 ESP (me/1000 \% W W

Doptr Class , $\begin{array}{cc}\text { (Na> } 1 \text { mef } 100 \mathrm{~g}) \\ \mathrm{No} & \mathrm{N}_{1}\end{array}$

No evidence of eroslon; no micro-deposilion features; land No evidence of eroslon; no micro-deposition features; land
cover high, predominantly grass; shrubs not common; large old trees; rare animal burrows; small animal tracks.

[^1]邑)

Bulk Lab ID	Bulk Fieldio	Bulk Depth (cm)	CaMg
B5	A5B (a)	5-30	0.59
B6	A5B (b)	53-70	0.5

Und Lablo	Und Field io	Und Deplh (cm)	OMMLLO.
U7	A5U (a)	0-5	0.12
U8	ASU (b)	25	0.10
49	ASL (c)	60	0.09

Micro-lopography
Smooth to slight surface roughness

SOILS OF KAVANGO REGION

 ${ }^{\frac{n}{6}}-$ ————— 1.1 CaCO_{3} (quant) 12.0 $\stackrel{\stackrel{\circ}{\dot{+}}}{ } \stackrel{-}{V}$ \begin{tabular}{c|}
\hline Mn (ppm)

\hline<0.5

\hline 0.5

\hline

 \cdots ESP (melt100g , SAR

0.276

\hline 0.489
\end{tabular} FAO Depih Class \quad, FAO Depth Class

Moderatefy Deep
 - Elosion/Deposilion $\quad \square \quad \square$ Extensive rlver bank (water) eroslon: small gully

development $0.5-4 \mathrm{~m}$ long development 0.5-4m long \begin{tabular}{c}
ESP (me/loog)

\hline 3.437

4.620

Sodicily K,

(Nas tme/100g

No

No

\hline

\hline Cu (ppm) ,

\hline<0.5

\hline<0.5

\hline

\hline BSP (med 100 g clay

\hline 6.49

\hline 14.58

\hline
\end{tabular}

$\frac{\text { Na ppm }}{23}$
$\frac{24}{54}$

Q p zooo y ravet
$\frac{\text { trace to null }}{\text { trace to null }}$
:---:
trace to null

sand
81.3 Texture om\% (col)

Bull Lablo	Eukbleid id	Buik Doplficm)	\% 24 day
B8	A8B (a)	0-30	6.5

Bulk Lab ID Buik FildiD Bulk Deph (cm) Colour (molst)
$1 \cdot 1$

5.2 | Ca (ppm) | Mg (ppm) | K (ppm) |
| :---: | :---: | :---: |
| 440 | 53 | 66 |
| 596 | 199 | 92 | Tol Exch Bases me/ 100 g (

$\frac{2.903}{5.080}$ KCEClot $\frac{0.38}{0.67}$ Pa

CECclay
$(\mathrm{me} / 100 \mathrm{~g})$
44.76
34.84

(EPP)
5.81

K:Mg
0.39
0.14

Group
FIuvisol
Fluvisol
Ofruieic ojeyins
Imperfect (slow) dralnage allhough no evidence of ponding
Profile Descripilon
Deep, imperfectly drained alluvlal loamy sand to sandy loam; no crust, sealing or cracks. Ochric A horizon greyish yellow brown ($10 \mathrm{YR} 4 / 2$) sllty fine sand; unconsolldated to weakiy developed very fine platy structure; unstable aggregates; Ho moines; surface cover > 70% leaf and grass ilifer aifhough fine root networks in A horizon are spartan; carbonates defected. Gradual, diffuse transmonal AD horizon al 25 cm deepening to brownish black ($10 \mathrm{YR} 2 / 2$) at 30 cm depth; very fine subangular structure; stable aggregates; medium network of fine rools; no carbonales delected; common fine to very

fine pores: tonguelng of clay particles. Argic B hortizon at 30 cm ; distinctily higher content of illuvial clay to 45 cm . Lower boundary to C at 45 cm ; material indistinct from lower alluvilat sediments. Micro-lopography | Uneven; surface disturbed by animal hooves | $\begin{array}{l}\text { Surface covered by leaf and grass iltter; no crust, } \\ \text { sealing or cracks; no stones }\end{array}$ |
| :--- | :--- |

Hotizon - Dephicm)

 $45+$

要要 3
NOIDAY OפNみAby go shios

SOLLS OF KAVANGO REGION

 $\frac{\text { Class } \quad 1}{1}$ CaCO_{1} (quant) \qquad
 ESP (me/A00g) , ESP (me/1009, SAR ,
Cola
 AAO Depth Class

Micro-topography	Soll suface Conditon	Sufface Dramage	Eroson/Deposifion
Hummocky	Incipient crust development <1mm thick, easlly broken; no cracks; no slones	High permeabilly; no visible smail-scale drainage	No evidence of wind or water erosion

Horizon	Depth (cm)	Arofile Description
E	0-3	
$A_{\text {Au1 }}$	3-5	ochric A horlzon with $7-10 \%$ black organic molttes and fragments in dense band at 5 - 8 cm depit; unconsolldated, very weak very fine granular structure; rare very fine roots and few fine pore
${ }_{\text {Au2 }}{ }^{\text {Ap }}$	${ }_{8 \rightarrow 100}^{4-8}$	caicareous; no further dlagnostic properties and no visible boundary to $>1 \mathrm{~m}$ depth.

SOLLS OF KAVANGO REGION

SOILS OF KAVANGO REGION

SOILS OF KAVANGO REGION

SOILS ANALYSIS Site Summary									Slope class	Aspect	Siope Shape	
		A17	30-Apr-99	$18^{\circ} 30,255^{\prime} 5$	$20^{\circ} 44,460^{\prime} E$	(7.4) Eastem-flowing paleo dralnage eastern omiramba	SW-facing slope of tributary 10 Kaudom river channel; basal slope position	0.5	1	SW	straight slope	
Bull Lablo	Buik fleid If.	Bull Depth (cm)	+ ar 2 p cly	\% $2-530$ silt	5520001	P\% >20001 gravel	v2000600\%	\% $8000-250 \% \mathrm{~ms}$	\% 250.1060 .5	\% $\% 106-534$ yf	FAOTextural Class	
B30	A17B (a)	0.30	4.7	7.8	87.5	trace to nuil	1.3	37.8	46.0	14.9	1	
831	A178 (b)	30-60	4.8	8.6	86.6	Irace to null	1.0	30.2	53.7	15.1		
B32	A 178 B (c)	>60	4.7	7.3	88.0	trace to nuli	0.9	29.4	54.0	15.7		
Bulk Lablo	Butk Fieldid	Buik Depth (cm)	Colour (molist)	Texture		Molst Conty	Pfolsenmghe	$\mathrm{ECe}(\mathrm{s} / \mathrm{cm})$	$\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O}\right.$	\qquad	CaCO_{3} (guan)	
B30	A178 (a)	0-30	7.5YR $3 / 2$ brownish black	sand	Not analysed	Not analysed	<0.1	13.5	6.4	0.22	low pH	
P31	A178 (b)	30-60	$\begin{gathered} 7.5 \mathrm{YR} 4 / 2 \text { greyish } \\ \text { brown } \\ 7.5 \mathrm{~F} 5 / 2 \text { greyish } \\ \text { brown } \end{gathered}$	sand	0.08	0.2	<0.1	12.3	6.8	0.00	<1	
B32	A178 (c)	> 60		sand	0.07	0.5	<0.1	15.2	7.0	<0.01	4	
Bulit Lab Io	Bulk Field id	Bulk Depth (cm)	$\mathrm{so}_{\text {, }} \mathrm{s}$, g / g Turbid)	Ca (ppm)	Mg (ppm)	K K ¢ррm)	Na (ppm)	Cu (pmm)	Zn (ppm)	Fe (ppm)	$M n(p p m)$	
B30	A178 (a)	0-30	13.5	182	30	,	,	<0.5	<0.2	<0.5	<0.5	
B31	A178 (b)	30-60	14.6	152	23	4	4	<0.5	0.4	<0.5	<0.5	
B32	A178 (c)	>60	9.9	95	12	13	7	<0.5	<0.2	<0.5	<0.5	
Bulk Lab iD	Buik fieldio	Bulk Depth (cm)	CECtotal (me/100g)	Clay\%	CECclay (me/100g)	Tot Exch Beses (me/100g)	日SP (me/foog)	ESP (me/loog clay)	ESP (me/toog)	ESP (me/1009	SAR	
B30	A178 (a)	0-30	1.20	4.70	25.59	1.196	99.46	4.67	1.414	0.066	0.072	
831	A178 (b)	30-60	0.98	4.80	20.48	0.976	99.27	4.76	1.729	0.083	0.080	
B32	A178 (c)	>60	0.64	4.70	13.67	0.636	98.98	4.65	4.669	0.219	0.180	
Qulk Lab ID	Bulk Fleld ID	Buik Depth (cm)	Ca Mg	K.Mg	K:CEC total (EPP)	$\mathrm{KCEC}(\mathrm{clay})$	Salinity	Sodicity (SP ग15)	Sodiclly ($\mathrm{Na}>1 \mathrm{me} / 100 \mathrm{~g}$)	FAD Deplh Class		
B30	A178 (a)	$0-30$	3.70	0.09	1.91	0.09	No	No	No	Deep		
E31	A178 (b)	30-60	4.02	0.05	1.02	0.05	No	No	No			
B32	A178 (c)	>60	4.85	0.34	5.14	0.24	No	No	No			
Und Labide	Und Field ID.	Und Depth (cm)	OM\%COI	Moist Cont\%	Dry $\mathrm{BD}(\mathrm{g} / \mathrm{cm3})$	Porosity (vol \%)	FROMOClasing alion		Phase	RSA Classlicication		
U19	A17U (a)	15	0.12	0.2	1.71	35.5						
							Arenosol	Cambic	Yermic	Fernwood/Okavango intergrade		
Micro-Iopography			Soil Suiface Condifion			Suirface Drainage			Erosion/Deposition			
Hummocks; Lneven; gentle mlcro-slopes			50% cover leaf and grass litier; thin crust developmen! 2 mm thlck, sand mixed with finer dark grey particles; по eracks: no stones; evidence of fire.			imperfect to moderately well drained; evidence of ponding in patches			Sheet wash deposilion area			

Profie Descriplon
Deep, moderately well drained colluvial sand; thin crust development 2 mm thlck of sand cemented by finer dark grey sill and clay particles; no cracks or stones. Crust averlies chric A horizon of brownlsh black sand,
 horizon; greylsh brown (7.5 YR $5 / 2$): increase in proportion of medium to fine sand particles; no motlles; common medium pores; no horizon differentiation to $>100 \mathrm{~cm}$.

SOILS OF KAVANGO REGION

 -1 | cacolquant |
| :---: |
| 65.9 |

[^2]SOILS OF KAVANGO REGION

Bulk Lab ID	Bulk Fiedid	Buik Depth (cm)	\% < 2μ ctay	\% $2-53 \mu \mathrm{sil}$	$\text { x } 520000$	Q $>2000 \mathrm{p}$ gravel	$\% 2000-500 \mu$ vestes	\% $500-250 \mu \mathrm{~ms}$	\% $250-106 \mu$ ts	H100-53ups	fAO Texurrie
B36	A20B (a)	0-35	6.5	12.0	81.5	trace to null	1.2	39.6	49.0	10.2	1
B37	A200 (b)	$40-80$	6.8	9.3	83.9	trace to null	1.4	41.9	47.8	8.9	
Bulk Labil	Buik Fieldid	Bulk Depth (cm)	Colour (molst)	Texture	OM\%	Moist Cont ${ }^{\text {a }}$	P(OIsen mg kg)	ECE $(\mu \mathrm{s} / \mathrm{mm})$	$\mathrm{pH}\left(\mathrm{H}_{3} \mathrm{O}\right)$	$\begin{aligned} & \text { orgc } \text {, } \\ & \text { NJaikley Biack } \end{aligned}$	CaCO_{3} (quan)
836	A20B (a)	0-35	5 YR $2 / 3$ very dark reddish brown	loamy sand	Not analysed	Not analysed	0.1	30.2	7.0	0.29	<1
B37	A208 (b)	40-80	5YR 3/4 dark reddish brown	loamy sand	0.15	0.9	0.1	13.1	6.6	0.10	low pH

[^3]| وf 106－53 4 vis | class
 FAOTextural |
| :---: | :---: |
| 8.7 | 2 |
| 11.5 | |
| 9.7 | |

P （Olsen mgkg）	$\mathrm{ECo}(\mu \mathrm{s} / \mathrm{cm})$	$\mathrm{PH}\left(\mathrm{H}_{2} \mathrm{O}\right)$	OrgC （Walksey－Black）	CaCO_{3}（quant）
0.2	103.6	8.6	0.29	<1
<0.1	471.0	9.9	0.06	＜1
0.1	938.0	10.3	<0.01	＜1
Na （ppm）	culppm	Zn（ppm）	Fe（ppm）	Mnippm）
66	<0.5	<0.2	<0.5	<0.5
653	<0.5	<0.2	<0.5	＜0．5
1519	<0.5	<0.2	＜0．5	＜0．5
BSP（me／ 100 g ）	BSP（me／100g clay）	ESP（me／foog）	ESP (me/100g	SAR
99.89	5.99	4.615	0.277	0.536
99.88	6.39	52.598	3.366	8.029
99.93	8.89	68.198	6.070	17.187
Salliity	Sodicily（ESP 315 ）	（Na＞1me／100g）	FAO Depth Class	
No	No	No－	Moderately Deep	
No	Yes	Yes		
No	Yes	Yes		

पonipeysselo usy	\cdots
	플

 deposition of sand particles；hard crust would increase nunaff potential down this long gentle slope：shallow
subsuface calcrele（？）

[^4]SIS RIVNUS STIOS

SOILS OF KAVANGO REGION

NOIפEy OפNVAナY 30 s기OS

Ph $250-106 \mathrm{j}$ ts ． 106 23ivs：class．

Mn（ppm）
0.5 － ESP（me／liog ，SAR Depth Class \quad Deep
> 0.241 － $\frac{\mathrm{PH}\left(\mathrm{H}_{2} \mathrm{O}\right)}{5.5}$ $\frac{\mathrm{Zn}(\mathrm{ppm})}{<0.2}$
 $\cdots+\quad$
SOILS OF KAVANGO REGION

 1 O. 1 $\mathrm{aco}_{\text {, (quant) }}$
low pH

	Microtopography		Soil Surface Condilion	- Suiface Drainage	Erosion/Deposifion
Uneven			25% cover leaf litter; no stones; angular charcoal fragments on surface and throughout profle ($0-75 \mathrm{~cm}$ depth)	No visible local drainage channels or rills; high permeabilly	No evidence of erosion; no recent deposilion
Horizon	Depth (cin)			Profile Descriplon	
$\begin{array}{\|l} \text { Anp } \\ \text { Cw } \end{array}$	$l_{45->100}^{0-45}$	Deep, somewhat excessively well drained sand; no crusting, sealing or cracks. Very liitle profle development. Ochric A horizon; dull reddish brown (5YR 4/4) fine to very flie sand; 2% burni fragments and paricles lhroughout profile; few very fine roots; common medium and large pores. At 45 cm depth very gradual transition to C horizon marked by increase in colour value to 5 保 visblbe lower boundary.			

SOLLS ANALYSIS site Summary		A26	Date	Lat			Land Facel Paleo suiface: dessicaling pan on crest In gentily undulatinc area																					
		Dale02-May-99	19 ${ }^{\circ} 06.431$ '	200 ${ }^{2}{ }^{\circ} 42.432^{\prime} \mathrm{E}$	(7.3) Eastem-flowing paleo drainage - hard pan	Slope ${ }^{\text {hi }}$		Slope Class	Aspect	Slope Shape:																		
		1						n/a	top of genlle convex slope																			
Bulk Lat ID	- Bulic Field io		Bulk Depth (cm)	$\%<2 \mu$ clay	\%2-53 - silt	$\text { s. } 53.2000 \mathrm{p}$	\% $>2000 \mathrm{~g}$ gravel	$42000-5000$	\% $500-250 \mu \mathrm{~ms}$	\% $250-106 \mu \mathrm{fs}$	96. $106-53 \mathrm{pvs}$	FAO Textural																
$\frac{B 46}{847}$	A268 (a)	0.8	10.0	16.2	73.9	trace to null	7.6	21.8	50.6																			
B48	A26B (c)	$8-32$ $32-72$	10.6	22.1	67.3	lrace to null	6.0	21.1	52.5	20.1	2																	
Buth Lablo		Bulk Depth (cm)	Colour (mosis)	Texture	62.9	trace to mull	6.0	21.3	52.6	20.1																		
	Bulk Field ID				OM\% (Loil	Mois Cont	P (01sen mg/kg)	$\mathrm{ECe} / \mu \mathrm{s} / \mathrm{cm})$	$\mathrm{PH}(\mathrm{H}, \mathrm{O})$	Orge \% (Waikley-Black)	CaCO_{3} (quant)																	
${ }^{8} 46$	A26B (a)	0-8	black 10YR $3 / 2$ brownish	sandy loam	0.44	0.7																						
	A26B (a)						1.6	100.7	8.1	0.45	23.7																	
647	A268 (b)	8-32	10YR 4/2 greyish vellow brown	sandy loam	0.43	1.9	0.7	176.2	8.2	0.33	32.3																	
B48	A268 (c)	32-72	5YR $5 / 2$ greyish brown	sandy loam	0.43	3.0	0.4	151.2	8.3	0.14	32.3																	
Bulk Labio	Buik Fieldid	Bulk Depth (cme	SOrs S H/g Turbld																									
B46	A26B (a)	$\frac{0-8}{0-8}$	$\frac{0.9}{}$	$\frac{\text { Ca (ppm) }}{1913}$	$\frac{\text { Mg (ppm) }}{95}$	K (ppm)	Na (ppm)	Cu (ppm)	Zn (ppm)	Fef(pmm	Man (ppm)																	
B47	A26B (b)	8-32	1.2	1656	95	80	10	<0.5	<0.2	<0.5	<0.5																	
B48	A26B (c)	32-72	1.7	2223	97	52 37	10	<0.5	<0.2	<0.5	<0.5																	
BulkLabio.	Butk Fieldid.	Bulk Depth (cm)	CEClotal (me/4009)	Clay $\%$	CECclay (me/toog)	37	14	<0.5	<0.2	<0.5	<0.5																	
						Tol Exch Bases (me1100g)	BSP (mehoog)	BSP (me/100g clay)	ESP (me/100g)	ESP(me1100g	SAR																	
846	A26B (a)	$0-8$	10.59	10.00	$\frac{105.91}{}$																							
847	A268 (b)	8-32	9.00	10.60	84.93	$\frac{10.584}{8.996}$	99.94	9.99	0.330	0.033	0.048																	
848	A26B (c)	32-72	12.07	16.10	74.98	-12.066	99.93 99.95	10.59	0.478	0.051	0.065																	
Bulk Labid	Buik Flold ID	Bulk Depth (cm)	CaMg	K / Mg	KCEC lotal (EPP)	K:CEC (clay)	99.95	16.09	0.505	0.081	0.079																	
							Sallinity	Sodicity (ESP S 15)	Sodicity (Na / P me $/ 100 \mathrm{~g}$) -	FAO Depth Clas																		
846	A268 (a)	0-8		0.26	$\frac{(E P P)}{1.94}$																							
B47	A268 (b)	8-32	15.30	0.25	$\frac{1.94}{1.48}$	0.19	No	No	No	Moderately Deep																		
	A26日 (c)	32-72	13.98	0.12	1.48 0.79	0.16 0.13	No	No	No																			
$\frac{\mathrm{U27}}{}$	Und Field ID	Und Depth (cm)		Molst Cont H.	Dry BD (g/cm3)	Porosily (vol \%	Group. FAO Classiffation		No																			
		$\frac{15}{}$	$\frac{0.31}{0.31}$							RSA Classitication																		
		15	0.31	2.5	1.35	48.9			Phase																			
							Calcisol	Hyper-Luvic	Duripan																			
Micro-topography			Soli Surface Condition			Sufface Dralnage			Eroslon/Depasilion \%																			
Slightly uneven			Significant crust development ($+/-5$ mm Itick) of fine, cemented calcareous material, dificull to penetrate or otherwise break; no slones																									
			Drainage through surface impeded; internal drainage Impeded down to 32 cm deplh below which it improves significantly	Old deposition area; currently a runoff zone allhough no evidence of wind or water erosion; no recent deposition																								
Hortizon	Depth (cm) ${ }_{\text {M }}$	sandy loam: Moderately deep, imperfectly dralned sandy loam; significant cuust $5 m$ m thick of fine cemenled calcareous material, dificuilt to peneirate or break. Thin ochic a horzon of brownish black co																										
Ack	0-1																											
Ak		sandy loam: upper particles cemented to underside of crust; medium angular blocky structure with loosely packed fine sand particles to $\mathrm{\theta cm}$ depth; small ($1-5 \mathrm{~mm}$) hard white cemented calca																										
Btow	8-32 (10)	(10YR 4/2) fine sand with increase in slll: fine sub (10YR 4/2) fine sand wilh Increase in sllf: fine subangular blocky structure; small white disaggregated calcareous grains accounling for 10\%, of matrix; dense mat of fine roots; common fine poser																										
tk	${ }^{32} \mathbf{3 2}+$																											
ckm																												
240% of matrix: few fine rools. to 40 cm : common fine oores. Hard, indurated. Detro-calcic chorizon at 72 cm deoth. No further penetration oossible,																												

sOILs OF KAVANGO REGION

SOILS OF KAVANGO REGION

SOILS OF KAVANGO REGION

Aspect vivishope shapdy
 FAOTGXUiral
\longrightarrow
1.
$\frac{106-634 \mathrm{vts}}{14.7}$
Class
1

<0.5

<0.5 SP（me／1000 SAR | N |
| :---: |
| O |
| 10 | FAO Depth Class Shallow

	FAo classificallon		RSAClassincation
W Group	－Unit	Phase	
Solonetz	Calci－Haplic	Duripan	$?$

> Erosion／pepostion Exlensive surface cementalion；continuous crust 15 mm Impeded surface dralnage；free internal drainage from $5-12 \mathrm{~cm}$ Denudation surface；moderate water erosion（runoff channets）；no gullies
Profle Des cription Very shailow sand wilth impeded drainage．Note：area of Makalani Palms．Extenslve surface cementation；continuous crust 15 mm thick，consolidated sand layer cemented to underside of crust 30 mm ， шппраш рл granular to fine subangular blocky structure；increase in packing state and impeded internal drainage below 15 cm ；very few fine roots；rare black organle mottles．Structural boundary at 20 cm to granular to fine subangular blocky structure；increase in packing state and impeded internal drainage below 15 cm ；very few fine roots；rare black organic momes，Scricturl bouncay
Horizon，Depth（cm）
Hummocky；shallow，wide runof channels thick；consolldated sand layer below crust 30 mm thick： no stones

Bulk LabiD Bulk FieldiD Guik Depth（cm）CEClotal（meltoog），Clay \％					
566	A32B（a）	0.10	1.06	4.70	KMg $\begin{array}{r}0.16 \\ \hline 0.25 \\ \hline\end{array}$

Moist Cont \％Dry PD（ofem3）	
0.3	1.57

（vol 9 ）

0 ．
Camg
$\frac{1.61}{6.41}$
0.05

Soli Surface Condilion

－Ejupio eueuns

Mg（ppm）
42
72
CECclay

mell 100 g
$\frac{22.59}{96.10}$
KcEC total
$\frac{-5}{-\frac{5}{28}}$
－

B56	A32B（a）
$B 57$	$A 32 B$（b）

Und Lab ID Und Fleld ID Und Depth（cm）
$\begin{array}{ll}\mathrm{U} 32 \mathrm{~A} 2 \mathrm{U} \text {（a）} & 15\end{array}$
Micro－1opography
SOILS ANALYSIS
A32
个

0
m
Bulk Lab ID Buile FleldiD ，eulkDepth（cm）

$$
\begin{array}{|l|l|l|}
\hline \text { B56 } & \text { A32B (a) } & 0-10 \\
\hline \text { B57 } & \text { A32B (b) } & 10-30 \\
\hline
\end{array}
$$

B57	A32（b）	$10-30$

U 32	$\mathrm{~A} 32 \mathrm{~L}(\mathrm{a})$	15

Horizon：
문
끄ㄷㅜㅜ훌

我管車窗䈏

SOILS OF KAVANGO REGION

FFAOTadural
$\frac{\square}{\bar{\circ}}{ }^{-}$

Fe（ppm），Mn（ppm），
10 N

$$
=\mathrm{Co} / \mathrm{e} / 100 \mathrm{~g}
$$

SAR
0.148
0.169

Sodicily（ESP M15	Sodiclly	（Na＞1mef100g）	FAO Depth Class
No	No	Deep	
No	No		

Yermic

> Profile Description

$$
\text { ESP (me/ } 100 \mathrm{~g} \text {, SAR, }
$$

Erosion LDoposilion
Recent depositton of sandy materiai（colluvial）

| smooth | stones | Well drained；no visible drainage charinels | Recent depositlon of sandy materiai（coliluvial） |
| :--- | :--- | :--- | :--- | :--- |

Deep，somewhat excessively well drained aeolian sand；no crusting，seating or cracks．Very litile profile development．Deep ochric A horizon of dark reddish brown（ 5 YR $3 / 2$ ）medium to fine sand；rare bumt organic fragments and parlicles throughout horizon；few very fine roots；common medium to large pores．Clear smooth boundary at 42 cm to B horizori wilh some ferralle properiles：reddish brown （ 5 YR $4 / 6$ ）medium to fine sand，little textural difference；rare very fine roots at $42-47 \mathrm{~cm}$ ；no mottles；common medium to large pores．Diffuse，barely visible boundery at 80 cm to a C horizon of firm，slightly compacted sand；no texiural or colour change．No visible lower boundary．

Horizon ，Depth（cm
84
8
※品 $47-80$
$80+$

		Sile No	Dale	Lat,	Long	Land System:	Land faces	S10pe\%	- Slape Class	Aspect	Slope Shape
	ANALYSIS ummary	A35	04-May-99	${ }^{18}{ }^{\circ} 52.124{ }^{\prime} \mathrm{S}$	$19^{\circ} 40.940^{\prime} \mathrm{E}$	(4.1) Omatako omuramba - main channel and tributarles	Maln channel floor	0	\% 1	n/a	flat
Bulk Lable	Bulk Fiedalip	$\frac{\text { Suil Deph (cm) }}{0.35}$	$\frac{9}{624}$	P2-53,541	$\text { s } 53 \text { 20000 }$	4-2000\% gravel	ycs/cs	\% $500-2504 \mathrm{~ms}$	W250-106\% ${ }^{\text {cs }}$	do $106-53 \mu \mathrm{Ht}$	FAQtenturar
B61	A358 (b)	- $35-35$	6.2 5.3	32.0	61.6	trace to null	21.6	35.1	27.5	15.8	
062	A35B (c)	>70	4.0	24.6 9.9	$\frac{70.1}{86.1}$	trace to null	24.6	42.5	21.7	11.2	1
	A	>	4.0	9.9	86.1	trace to nuil	23.8	50.6	21.2	4.4	
Bulk Latip	Buk Fieldild.	Bulk Depth (cm)	Colour , (molst $2 / 2 \mathrm{brownish}$	Texture	OM\%(40)	Molst Cont 4	P(Olsen mghg)	$\mathrm{ECO}(\mathrm{\mu s} / \mathrm{cm})$	P $\mathrm{PH}^{\left(\mathrm{H}_{2} \mathrm{O}\right)}$	OrgC. Woikley-Black)	CaCO_{3} (quant)
860	A35B (a)	0-35	$2 / 2$ brownish black	sandy loam	Not analysed	Not analysed	0.4	191.2	8.3	<0.01	101.4
B61	A35B (b)	35-70	$10 \mathrm{YR} 3 / 2$ brownish black	sandy loam	0.53	4.5	0.4	150.9	8.4	<0.01	55.4
B62	A35B (c)	>70	10YR $3 / 3$ dark brown	sand	0.15	1.0	0.1	92.5	8.6	0.16	8.7
Bulk Labio	Buik Field iD	Bulk Depth (cm)	SO, (S ug/g Turbid)	Ca (ppm)	Mg (ppm)	K (ppm)	Na. (ppm)	Cu (ppm)	Zn:(ppm)	Fe(ppm)	$\mathrm{Mr}(\mathrm{ppm})$
B60	A35B (a)	0-35	4.4	2217	343	98	12	<0.5	<0.2	<0.5	<0.5
862	A35日 (c)	$35-70$ >70	2.5	1953	292	63	16	<0.5	<0.2	<0.5	<0.5
be2	АЗ	>70	4.6	1526	128	21	11	<0.5	<0.2	<0.5	0.5
Bulk Labio	A35B (a)	Bulk Depth (cm)	CECtolal (me/1009)	Clay \%	CECclay (me/100g)	Tot Exch Gases (me)toog)	BSP (mellogg)	ESP (mefloog clay)	ESP (me/100g)	$\mathrm{EsP} \text { (me/1009 }$	SAR
861	A35E (b)	$\frac{0-35}{35-70}$	14.21 12.40	6.20 5.30	229.12	14.199	99.95	6.20	0.366	0.023	0.063
662	A35B (c)	>70	8.79	5.00	219.68	$\begin{array}{r}12.389 \\ \hline 8.781\end{array}$	99.95	5.30	0.565	0.030	0.089
	A3S (-	8.79	4.00	219.69	8.781	99.93	4.00	0.546	0.022	0.073
Buik Lab If	Buite Field id A35B (a)	$\frac{\text { Buik Depth (cm) }}{0-35}$	CaMg	$\mathrm{K} M \mathrm{Mg}$	$\begin{aligned} & \text { KCECtotal } \\ & \text { (EPP) } \end{aligned}$	KCEC (clay)	Salinily	Sodichy ESP M 15	$\begin{gathered} \text { Sodecily } \\ (\mathrm{Na} \mathbf{1} \mathrm{me} / 10 \mathrm{~g}) \end{gathered}$	FAO De	th Class
661	$\frac{\text { A35B (a) }}{\text { A35B (b) }}$	$0-35$ $35-70$	3.94 4.08	0.09	1.77	0.11	No	No	No		
862	A35B (c)	$\bigcirc 70$	4.08	0.07	1.30	0.07	No	No	No		
					0.61	0.02	No	No	No		
Und Lab ID	Und Field ID	Und Depth(cm)	OM M COD	Most Cont\%	Dry BD (g/cm3)	Porosity (vol 9)		FAO Classilicalion:			
U34	A35U (a)	15	0.79	7.6	1.10	58.6	Group	U Unilt	Phase	RSA Cla	sification
							Calcisol	Hapilc	Yermic	?	
	Mlcrotopograp		Soll	Suface condilion	1		Suface Dralnage		-	sion/Deposition.	
Flat, hard, smo			Low cover tuffed gras thick). continuous; no	ses; hard, crusted stones; no cracks	d surface $(4 \mathrm{~mm}$	Impeded dralnage; wid	shallow drainage sin		Recent deposition fine	sand and silly mate	rial

Horizon Deplf(cm) , , , , , , , , , , P , Profle Description
Ack o-1 porporiton of silt; weakly developed fine granular to medium platy structure; slow internal drainage: high proportion of soff, highly calcareous aggregations in calcareous mowdery sandy loam with filgh 24 cm : common fine pores. Diffuse boundary to B horizon at 35 cm to sandy loam with brighter colour value ($10 \mathrm{YR} 3 / 2$): increase In medium sand paricles; fine granular structure; inperfect dralnage: decrease with depth in proportions of sof, highly calcareous aggregatlons and large hard highly calcareous aggregations in calcareous matrix; rare fine to medium roots fo 37 cm ; common fine pores. Distlinct boundary at 70 cm to C horizon of dark brown (10YR 3/3) sand; low proportion of small, consolldated calcareous fragments and disaggregaied particles in slightly calcareous matrix; internal drainage improved: no roots; common medium and larae pores, few fine pores. No vislble lower boundary to $>100 \mathrm{~cm}$.

\% $250-1064$ is	Wh $108.53 \mu \mathrm{pfs}$	FAOTaxtiral
39.8	9.2	
40.2	9.8	1

$\mathrm{PH}(\mathrm{HOO})$	Orge. \% (Walikley-Black)	CaCO_{4} (quant)
6.1	0.05	low pH
5.9	<0.01	low PH

Mn (ppm)
1.1
0.5

SAR \quad

FAODEpth Cless $\quad \mid$
Deep

Eroslon \mathbf{D} Doposition \quad,
Minor development of sheet wash surfaces

 Deep, moderately well drained sand; continuous thin, hard crust Imm thick, no cracks. Ochric, slightly calcareous A horizon; dark brown (10YR $3 / 3$) medium to fine send wilh silt: very fine granular to very ine platy structure; rare fine roots; common fine pores; <1\% black organic mottles al $6-9 \mathrm{~cm}$. Smooth boudary at 30 cm to C horizon of dull browm ($5 Y \mathrm{R}$ 4/4) medium to fine aeollan sand; good internal drainage; unconsolldated to weakly developed fine granular structure: no mottles; no rools; common medium pores; no visible boundary to $>100 \mathrm{~cm}$ depth.
SOILS OF KAVANGO REGION

| Bublab ID | Bulk Eleldib | Bulk Depth (eni) | Ste2pelay | \% $2.53 \mu \mathrm{sill}$ | $\$ 53-2000 \mu$ | $\%>2000 \mu$ gravel | \% $2000-500 \mu$ | $\%$ \% $500-250 \mu \mathrm{~ms}$ | \% $250 \sim 106 \mu \mathrm{fs}$ | 106.534 vs | FAOTextural |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 106-53uve \quad Class \quad ${ }^{-}$

ESP(me/10099	SAR
clay)	0.146
0.193	0.157
0.240	

FAD Depth Class
Deep

 Surface Dralnage \quad Eroslon/Deposition \quad, \quad, \quad,

[^5]

Horizon - Deplt (cm)

PronleDescription

Undtabio	Und Fleld ib	Und Depth (cm)	OM\% LOI)	Moisl Cont	Dry BD (gem3)	Porosily (vol \%
U36	A37U (a)	15	0.15	0.4	1.48	44.0

$-\quad-\quad-\quad-\quad-\quad$ -
Microtopography

Bulk Lab LD Bulk Feld DD Bulk Depth (cm) CECtotal (mel100g) K Clay \% | 865 | A37B (a) | $0-20$ |
| :---: | :---: | :---: |
| A37B (b) | $20-50$ | 0.77 |
| | 0.68 | | ด<

665	A37B (a)	$0-20$
B66	A37B (b)	$20-50$

| Aspect Siope Shapoty |
| :---: | :---: |
| $N E: \quad$ stralght slope |

		－
$\frac{5}{8}$	sin	F 0
	${ }^{2}$	$\stackrel{\square}{2}$
	${ }^{\infty}$	\％

$\mathrm{pH}(\mathrm{Q}+\mathrm{O}$	Orgc \％ （Walidey－Black）	CaCo，（guant）
5.0	0.06	low pH
4.7	<0.01	low pH
4.7	＜0．01	low pH
Zn（ppm）	FA（ppm）	Mn（ppm）
<0.2	1.0	1.5
＜0．2	1.0	<0.5
<0.2	1.0	＜0．5

Horizon \quad Depth com ， ， ， ，Profile Descriplon

Deep，excessively well drained sand：no crusting，sealing or cracks．Thick ochric A horizon，brown（ $7,5 \mathrm{YR} 4 / 6$ ）medium sand；common black organic mottles and fragments in dense band beiween $5-7 \mathrm{~cm}$ deplh；weakly developed coarse granular structure，very friable，non sticky，non plastlc；few fine pores，non calcareous，few fine to very fine roots．Smooth difluse boundary at 15 cm to B horlzon with some ferralic properties（texiure too coarse to be diagnostic of ferrallc horizon）．No textural difference allhough colour change to reddlsh brown（ 5 YR 4／6）：very weak very coarse crumb structure，slightly hard，frlable，non calcareous；rare fine roots．Smooth boundary at 30 cm to C horizon of bright reddish brown（5YR 5／8）loamy sand；loose，very coarse crumb structure，silghtly hard，frlable，non calcareous；no roots．No visible lower boundary to $>100 \mathrm{~cm}$ ．

猃思：

867骨 Bulk LabiD Bulk FieldiD Bulk Depth（cm） SO_{4}（S． $\mathrm{\mu g} / \mathrm{g}$ Turbid）Ca（ppm） \begin{tabular}{l|l|l}
$B 67$ \& F1B（a） \& $0-15$

\hline 868 \& $F 1 B(b)$ \& $15-30$

$B 66$ \& $F 18$（b）

\hline$B 69$ \& $F 18(c)$

\hline
\end{tabular} Bulk Lab ID 867 $\frac{\text { ESP（me／1009）}}{\frac{6.616}{15.141}}$ 14.400 （Nas 1 medilly 10 g ） 222

Phase

ESP（mef100g）

94.96
91.73
89.72

Salinity

No
No

Shoup
（vol \％）

41.4
-40.6
40.2

Moist conl \％Dry BD（glem3）
$\stackrel{+}{9}$
Soil Surface Condillon ，

Und ab ID Und Fleld ID Und Depth（cm）

Micro－fopography
Buik Lab ID Bulk Fieldio Buk Deph（cm）

$B 67$	$F 1 B(a)$	$0-15$
$B 68$	$F 1 B(b)$	$15-30$

B69 FIB（c）$\quad 30-45$
Uneven；micro－siopes around shrubs
${ }^{8}$
品呙
宫
Au1
主是呈高高
40

$$
\stackrel{\ddot{c}}{\mathbf{~}}
$$

$$
\stackrel{\rightharpoonup}{\sim}
$$

$$
\sqrt{82000}
$$

Poisenigh

$$
12.3
$$

$$
\begin{gathered}
\text { Cu ppm } \\
\hline<0.5 \\
<0.5 \\
<0.5
\end{gathered}
$$

No evidence of wind erosion; rain splash (slight

$$
\begin{aligned}
& \text { Sand Fico of plain, } \\
& \text { NW Kavango south } \\
& \text { of oldest terrace }
\end{aligned}
$$

High cover of bunt twigs, a recent high temperature
fire; no crusting, sealing or cracks; no sail

Profile Description

 broken; slight Increase in packing state; 3\%, black organic mottles at $32-35 \mathrm{~cm}$; common medium pores. No visible lower boundary to $>100 \mathrm{~cm}$.$$
\begin{gathered}
\text { ESP (mer1009 } \\
\hline 2.924 \\
4.505 \\
6.451
\end{gathered}
$$

$$
\begin{gathered}
\text { RSA classification, } \\
\text { Sandspruit ? } \\
\text { Erosion } 1 \text { Deposition, }
\end{gathered}
$$

cementation \& pitted surface) and minor sheet wash effects

Deep, excessively well drained sand; no crusting, sealing or cracks. Ochric A horizon of brown (7.5 YR 4/4) sand with little clay or silt content; coarse crumb structure, easily broken; 3% black organic
 no mottles; few fine roots: common medium and large pores; non calcareous. Diffuse boundary al 32 cm to unspecified C horizon, no colour change or textural differences; medium crumb structure, easily
broken; slight Increase in packing state; 3% black organic mottles at $32-35 \mathrm{~cm}$; common medium pores. No visible lower boundary to $>100 \mathrm{~cm}$.

[^0]: Values shown here are the estimated values of production for the year. Actual mineral sales and sales revenue are not shown. Department of Mines, 1985

 Note:

[^1]: Deep, well drained loamy sand; no sufface sealing, crusling or cracks; surface cover $>$, 70%, litter. Thin, parched, bleached brown ($7.5 Y R$, 4/3) albic/calcic surface E horizon to 6 cm deplh; structureless
 (7.5YR 4/4) where profile begins to show a weak granular structural development with larger unstable platy aggregates ($5 \mathrm{~mm}-2.5 \mathrm{~cm}$ size range) down to 53 cm depth: harizon eluviated and bleached;

 platy aggregates easily broken; a few medium roots and occaslonal small, long channels (2 cm dlameter) made by burrowing animals; no evidence of carbonates. No visible lower boundary to 8 horizon $>100 \mathrm{~cm}$.
 Horizon \quad Depth com
 9
 E.
 气
 \%
 -

[^2]: Profile Deseription
 Very shallow, very poorly drained sill loam; mature crust $14-26 \mathrm{~mm}$ thick (A horizon cemenied by calclum carbonate) overlying shallow B horizon of dull yellowish orange (10 YR $7 / 3$) powdery sill; no indurated layer of weathered calcrete (C horlzon transllional to bedrock) at 20 cm depth. No further penefrallon possible; rudic phase indlcated.

 ## Horizon Depth (cm)

[^3]: Eroslon $/$ Deposition
 No evidence of water or wind erosion; no evidence of
 recent deposition
 calcareous matrlx; calcareous accumulations not suficient for holiz sand grains; dy; medium to very coarse granular structure with common single fine and medium sand grains; large pores; few fine roots, large roots at 80 cm depth. No visible lower boundary $>100 \mathrm{~cm}$ depth. Micro-lopography

 Uneven | Uneven | $\begin{array}{l}\text { High cover leaf iilter; no crust, sealing or cracks; no } \\ \text { stones; nol salty }\end{array}$ | $\begin{array}{l}\text { No visible local drainage channels or rills; high permeability; } \\ \text { whtole slope allgned } \mathrm{E} \text { - } W \text { and dralns in } \mathrm{NW} \text { direction }\end{array}$ |
 | :--- | :--- | :--- |

 Profile Descripilon

 Hotizon, Depth(cm)

[^4]: Moderately deep，imperfecily dralned loamy sand；thin hard crust 1－3mm thick；local cracking．Thin ochric／calcic A horizon of dark reddish grey（ 2.5 YR $3 / 1$ ）fine sand and sill； 3% black organlc motiles at $6-8 \mathrm{~cm}$ ；very weak subangular blocky siructure with single graln unconsolidated sands；common medium pores；fine rools and leaf fragments at $5-10 \mathrm{~cm}$ ．Abrupt boundary at 10 cm to eluvial B horlzon， ， brownish grey（7．5YR $4 / 7$ ）with significant increase in soil moisture conlent；fine to very coarse granular structure；common medium pores；few fine roots and leaf fragments al $10-15 \mathrm{~cm}$ ；no mottles．Wa boundary at 20 cm to natric B sub－horizon，dark reddish brown（ $5 \mathrm{YR} 3 / 3$ ）finer textured silly sand；flne prismatic structure：increase in coheslvily；molst；no mottle；no roots，accumulation of sodium． C
 horizon compact and consolidated below 40 cm ． horizon compact and consolldated below 40 cm ．

[^5]: Deep, well drained sand; conilnuous incipient crust 1 mm thick, no cracks. Ochric A horizon, brown (7.5 YR 4/6) medium to fine sand with silt and clay; unconsolidated to very fine crumb structure; dense
 root mat bound into 5 mm thick fibrous layer with silts and clays at 3 cm depth; 2% black orgic fragents
 development; freely drained; no roots; no motiles; common medium pores. No vislble lower boundary to $>100 \mathrm{~cm}$.
 \qquad $20->100$

