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ABSTRACT 

 

A number of chemical and physical features of Namibian soils in a 22 790 km2, two degree-square block 

between 17 – 19 oE and 22 – 23 oS in eastern central Namibia, had been investigated, and the fertility 

status established.  

 

In 80 % of samples the nitrate, nitrite, and sulfate concentrations of the saturated paste extract are 0 – 54.6 

mg l-1 NO3
-, 0 – 24.7 mg l-1 NO2

-, and 5.4 – 20.9 mg l-1 SO4
2- respectively. In 90 % of samples the plant-

available phosphorus is below 12 mg kg-1, which is low for a soil under natural grassland, but in line with the 

prevailing semi-arid climate and low biomass production of the study area. In 80 % of samples  the 

extractable calcium, magnesium, potassium, and sodium concentrations are 0.61 – 5.73 cmolckg-1 Ca (122 – 

1 146 mg kg-1 Ca), 0.12 – 2.28 cmolckg-1 Mg (15 – 278 mg kg-1 Mg), 0.13 – 0.54 cmolckg-1 K (51 – 213 mg  

kg-1 K) and 0.05 – 0.38 cmolckg-1 Na (11 – 87 mg kg-1 Na) respectively, while the exchangeable calcium, 

magnesium, potassium, and sodium concentrations are 0.21 – 6.02 cmolckg-1 Ca, 0.12 – 2.01 cmolckg-1 Mg, 

0.12 – 0.49 cmolckg-1 K and 0 – 0.13 cmolckg-1 Na respectively. The mean ± 1 standard deviation is 3.57 ± 

3.57 cmolckg-1 for cation exchange capacity, 3.48 ± 3.61 for sum of exchangeable bases and 4.53 ± 4.39 for 

sum of extractable bases. The cation exchange capacity and the sum of exchangeable bases are virtually 

identical, which indicate the almost complete absence of exchangeable H+ and Al3+ in the soils of the study 

area, as expected from a semi-arid climate. None of the profiles were classified as saline or sodic. In 80 % of 

samples the plant-available iron, manganese, zinc and copper concentrations are 7.2 – 32.8 mg kg-1 Fe, 13.6 

– 207.5 mg kg-1 Mn, 0 – 1.80 mg kg-1 Zn and 0 – 4.0 mg kg-1 Cu respectively. Soil organic matter content of 

the study area soils ranges between 0.05 – 2.00 %, with most (80 % of samples) containing 0.25 – 1.20 % 

organic matter. This is considerably lower than values reported in literature, even for other southern African 

countries. The reason lies with the hot, semi-arid climate. The pH distribution is close to normal, with 80 % of 

samples having pH (H2O) of 5.54 – 8.18, namely moderately acid to moderately alkaline. Sand, silt and clay 

content of most (80 %) samples varies between 60.3 – 89.7 % sand, 4.6 – 25.2 % silt and 3.5 – 19.1 % clay. 

The soils of the study area are mainly sandy, sandy loam and loamy sand. In 80 % of samples the coarse 

sand fraction ranges from 3.5 – 34.5 %, the medium sand fraction from 20.5 – 37.3 %, the fine sand fraction 

from 38.7 – 54.5 % and the very fine sand fraction from 0.0 – 12.9 % of all sand. The fine sand fraction, thus, 

dominates, with very fine sand being least abundant. The topsoil contains relatively more coarse sand and 

less very fine sand than the subsoil. Instances of sealing, crusting and hardening occur sporadically in the 

study area. Cracking is only found in pans, while self-mulching is not evident. No highly instable soils were 

encountered in the study area. The water-holding capacity is generally low, with depth limitations in the 

western highlands, the Khomas Hochland, and texture limitations in the eastern Kalahari sands. The central 

area has soils with a somewhat better water-holding capacity, but it is still very low when compared to arable 

soils of temperate, sub-humid and humid zones elsewhere in southern Africa. 

 

Soil characteristics are perceptibly correlated with climate, parent material, topography, degree of dissection 

of the landscape and position in the landscape. The most obvious differences are between soils formed in 

schistose parent material of the Khomas Hochland in the west and those of the Kalahari sands in the east. 

The soils of the study area are unsuitable to marginally suitable for rainfed crop production, due to low 
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fertility. The study area is climatologically unsuited for rainfed crop production, so the present major land use 

is extensive livestock production on large farms. The natural vegetation is well adapted to the prevailing 

conditions.  

 

The methodology followed to delineate terrain units, with a combination of procedures involving digital 

elevation data and satellite imagery, seems to work well in the Namibian landscape. This study thus served 

as a successful proof-of-concept for the methodology, which can in future be rolled out for the remainder of 

the country. The site and analytical information is available in digital format as spreadsheets and in a 

geographical information system, as well as in a variety of digital and printed maps. 
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UITTREKSEL 

 

‘n Aantal chemiese en fisiese eienskappe van Namibiese gronde in ‘n 22 790 km2, 1o x 2o blok tussen 17 – 

19 o Oos en 22– 23 o Suid in oostelike sentraal-Namibië is ondersoek en die grondvrugbaarheidstatus 

bepaal.  

 

In 80 % van monsters is die nitraat-, nitriet- en sulfaatkonsentrasies van die versadigde pasta ekstrak 0.0 – 

54.6 mg l-1 NO3
-, 0.0 – 24.7 mg l-1 NO2

-, en 5.4 – 20.9 mg l-1 SO4
2-onderskeidelik. In 90 % van monsters is die 

plant-beskikbare fosfor minder as 12 mg kg-1, wat laag is vir gronde onder natuurlike grasveld, maar dit is 

verklaarbaar deur die heersende semi-ariede klimaat en lae biomassa produksie in die studiegebied. In 80 % 

van monsters is die konsentrasies van ekstraheerbare kalsium, magnesium, kalium en natrium 0.61 – 5.73 

cmolckg-1 Ca (122 – 1 146 mg kg-1 Ca), 0.12 – 2.28 cmolckg-1 Mg (15 – 278 mg kg-1 Mg), 0.13 – 0.54 cmolc  

kg-1 K (51 – 213 mg kg-1 K) en 0.05 – 0.38 cmolckg-1 Na (11 – 87 mg kg-1 Na) onderskeidelik, terwyl die 

uitruilbare kalsium, magnesium, kalium en natrium konsentrasies onderskeidelik 0.21 – 6.02 cmolckg-1 Ca, 

0.12 – 2.01 cmolckg-1 Mg, 0.12 – 0.49 cmolckg-1 K and 0.0 – 0.13 cmolckg-1 Na is. Die gemiddelde ± 1 

standaardafwyking is 3.57 ± 3.57 cmolckg-1 vir katioonuitruilvermoë, 3.48 ± 3.61 vir die som van uitruilbare 

basisse en 4.53 ± 4.39 vir die som van ekstraheerbare basisse. Die katioonuitruilvermoë en som van 

uitruilbare basisse is feitlik identies, wat ‘n feitlik algehele afwesigheid van uitruilbare H+ and Al3+ in die 

gronde van die studiegebied aandui, soos verwag word weens die semi-ariede klimaat. Geeneen van die 

profiele is geklassifiseer as soutbrak of natriumbrak nie. In 80 % van monsters is die plant-beskikbare yster, 

mangaan, sink en koper konsentrasies onderskeidelik 7.2 – 32.8 mg kg-1 Fe, 13.6 – 207.5 mg kg-1 Mn, 0.0 – 

1.80 mg kg-1 Zn en 0.0 – 4.0 mg kg-1 Cu. Grond organiese material inhoud in die studiegebied wissel tussen 

0.05 – 2.00 %, met 80 % van monsters wat 0.25 – 1.20 % organiese material bevat. Dit is aansienlik laer as 

die waardes gevind in literatuur, selfs vir ander Suider-Afrikaanse lande. Die oorsaak is die warm, semi-

ariede klimaat. Die pH verspreiding is feitlik normal, met 80 % van monsters wat pH (H2O) van 5.54 – 8.18 

het, met ander woorde matig suur tot matig alkalies. Sand, slik en klei inhoud van die meeste (80 %) 

monsters varieer tussen 60.3 – 89.7 % sand, 4.6 – 25.2 % slik en 3.5 – 19.1 % klei. Die gronde van die 

studiegebied is hoofsaaklik sand, sand-leem en leem-sand. In 80 % van monsters beslaan die growwe 

sandfraksie 3.5 – 34.5 %, die medium sandfraksie 20.5 – 37.3 %, die fyn sandfraksie 38.7 – 54.5 % en die 

baie fyn sandfraksie 0.0 – 12.9 % van die totale sandfraksie. Die fyn sandfraksie is dus dominant, terwyl die 

baie fyn sandfraksie die skaarsste is. Die bogronde bevat relatief meer growwe sand en minder baie fyn 

sand as die ondergronde. Gevalle van verseëling, korsvorming en verharding kom sporadies in die 

studiegebied voor. Krake kom net in panne voor en self-omkering is nie opgemerk nie. Geen hoogs-

onstabiele gronde is in die studiegebied gevind nie. Die waterhouvermoë is in die algemeen laag, met 

dieptebeperkinge in die westelike hooglande, die Khomas Hochland, en tekstuurbeperkinge in die oostelike 

Kalahari sande. Die sentrale gedeelte het gronde met ‘n ietwat beter waterhouvermoë, maar dis steeds baie 

laag in vergelyking met akkerbougronde van gematigde, sub-humiede en humiede sones elders in Suider-

Afrika.  

 

Grondeienskappe is ooglopend verwant aan klimaat, moedermateriale, topografie, graad van gebrokenheid 

van die landskap en posisie in die landskap. Die duidelikste verskille kom voor in die gronde wat van 
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skisagtige moedermateriaal van die Khomas Hochland in die weste en dié wat in die Kalahari sande in die 

ooste gevorm het. Die gronde van die studiegebied is ongeskik tot marginal geskik vir droëland akkerbou, 

weens die lae vrugbaarheid. Aangesien die studiegebied klimatologies ongeskik is vir droëland akkerbou, is 

die huidige hoof landgebruik ekstensiewe veeproduksie op groot plase. Die natuurlike plantegroei is goed by 

die heersende omstandighede aangepas.  

 

Die metodiek wat gevolg is om terreineenhede af te baken, wat ‘n kombinasie van prosedures met digitale 

hoogtedata en satellietbeelde is, blyk goed te werk vir die Namibiese landskap. Hierdie studie dien dus as ‘n 

suksesvolle bewys-van-konsep van die metodiek, wat in die toekoms uitgebrei kan word na die res van die 

land. Die veld- en ontledingsinligting is beskikbaar in digitale formaat, in ‘n geografiese inligtingstelsel en ‘n 

verskeidenheid digitale- en gedrukte kaarte.  
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% percentage  

in concentration: 1 % (mass/mass) = 10 000 mg kg-1 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 PROBLEM STATEMENT 

The soils of Namibia had not yet been fully and systematically mapped and characterised and very little is 

known about their properties and fertility status. This study aimed to investigate a number of chemical and 

physical characteristics of Namibian soils in a 22 790 km2, two degree-square block between 17 – 19 oE and 

22 – 23 oS in eastern central Namibia, to establish their fertility status. These characteristics are: nitrate, 

nitrite, and sulfate of the saturated paste extract; plant-available phosphorus, iron, manganese, zinc and 

copper; extractable and exchangeable calcium, magnesium, potassium and sodium; the cation exchange 

capacity, sum of extractable and exchangeable bases; the pH measured in water; particle size (sand, silt and 

clay content), as well as the various sand fraction; soil organic matter; base status, total base saturation  and 

saturation by calcium, magnesium, potassium and sodium, repectively; and salinity. 

 

Secondly, a methodology for delineation of terrain units according to SOTER terminology (ISRIC, 1991, 

1993; FAO, 1995)), making use of digital elevation data and satellite imagery, was developed and tested. 

Namibia is a very large country with very few soil scientists. Such a method for rapid delineation of areal 

units, to serve as basis for soil characterisation, would accelerate the pace of soil mapping and description in 

the country. 

 

1.2 CONTEXT 

The present study was carried out under the auspices of the Agro-Ecological Zoning of Namibia (AEZ) 

Programme, of which the author is the Programme Manager. This programme is being implemented by 

agricultural researchers and technicians of the Directorate of Agricultural Research and Training of the 

Namibian Ministry of Agriculture, Water and Forestry (MAWF), prior to 2005 known as the Ministry of 

Agriculture, Water and Rural Development (MAWRD).  

 

 The study was carried out within the broader context of Land Reform in Namibia. Quantitative biophysical 

and socio-economical data are essential for selecting commercial farms to be bought or expropriated for 

resettlement of the landless, for calculating a realistic price and for deciding on the number of people and 

livestock to be resettled per farm. It is also indispensable for land use planning of resettlement farms and for 

computing the amount of land tax to be levied per commercial farm in order to help finance the Land Reform 

Programme. In response to this need for scientific data for sound, objective decision-making, a pilot project 

was designed by the AEZ Programme team to develop concepts and methodologies for land production 

potential assessment in the Namibian context. A pilot project, Quantification of Land Production Potential 

(QLPP), was carried out in a two-degrees by one-degree block east of Windhoek, the capital of Namibia. The 

topic of this thesis, characterisation of the soils, is one component of the wider QLPP project. It contributes in 
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a small way to peace and stability in Namibia, by providing unbiased scientific data on soil fertility to assist 

the decision-making process and thus contribute to orderly land reform.  

 

The author has been the architect, manager, main implementer and chief reporter of the AEZ Programme 

since its inception in 1993. Where team members of the AEZ Programme have carried out the fieldwork, 

laboratory work and construction of map legends, maps and reports, their contributions are fully 

acknowledged. The characterisation of the soils in terms of their physical and chemical properties is 

exclusively the work of the author. 

 

1.3 APPROACH 

All extant data on the study area were gathered and assessed as to their relevance and essence. A literature 

review was carried out on the infrastructure, land tenure, land use, climate, vegetation and water resources 

(Chapter 2), and the topography, geomorphology and geology (Chapter 3) of the study area. Literature on 

the soils of the area (Chapter 3) and on physical and chemical characterisation of soils in general, was 

examined. Gaps in the present soils data were identified. Terrain units were delineated (Chapter 5). A soil 

survey was carried out by a technician under guidance of the author. Soil samples were collected from profile 

pits and analysed by the Namibian Ministry of Agriculture, Water and Forestry’s Agricultural Laboratory for a 

variety of chemical and physical attributes. All field observations and laboratory results were databased and 

mapped (Chapter 5 and Appendix A). The various methods used in this process were summarised in 

Chapter 4. Soil characteristics were described and statistically analysed to find relationships with parent 

material and topography (Chapters 6 - 10). Soils were evaluated as to their fertility status (Chapter 11).  

 

The discussion of relevant literature was not concentrated in a single chapter, but appears where particular 

subjects are elaborated. Efforts had been concentrated on literature on soils of arid and semi-arid zones, 

preferably in southern Africa. As expected, very little information was available on the soils of Namibia and 

even less on the soils of the study area. The only pedological work done in the study area or surrounds was 

by Ganssen (1960, 1963), Ganssen and Moll (1961), Scholtz (1968a, 1968b, 1973), Leser (1971, 1982), 

Loxton, Venn and Associates (1971) and Petersen (2008). Kempf (1994, 1999a, 1999b, 1999c 2008), 

Bertram and Broman (1999), and Bertram and Kempf (2002) carried out investigations into the 

geomorphology of the area. Soil information from these sources was reviewed in Chapter 3.  

 

To gain a better understanding of the study area, of the soils it could conceivably contain and of their genesis 

and characteristics, the literature review was extended to the geology and geomorphology of the study area 

(Chapter 3). This broader framework provided insights into the origin and ages of rock types and lineaments, 

the occurrence of erosional and depositional surfaces, particular landforms and the underlying lithology. The 

work of Grünert (2000) and Schneider (2004), as well as the Atlas of Namibia by Mendelsohn, Jarvis, 

Roberts and Robertson (2002) provided good overviews of the geological development of Namibia. The work 

of Kasch (1983a, 1983b, 1986, 1988), Miller (1983) and Kukla (1992) fostered understanding of the Damara 

Orogen and appreciation of how most of the western part of the study area was formed, while the work of 

Kasch (1983a, 1983b, 1986, 1988) and Hegenberger (1993) also illuminated the subsequent Karoo and 

Kalahari periods that dominate the surface geology towards the east. The geomorphological setting started 
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with old observations by Gevers (1932a, 1932b, 1934, 1942). The erosional cycle of King (1967, 1978) and 

its re-interpretation by Partridge and Maud (1987, 1988) followed. Kempf’s (1999) more recent work on the 

central parts of Namibia provided additional information and alternative perspectives. Broad landforms, like 

the Kalahari, as well as medium-sized and small feature, such as pans and dunes, were briefly discussed. 

 

Soil chemistry, soil analysis and soil fertility were studied from a large number of sources. Preference was 

given to literature from Europe and southern Africa, as the support network of the author draws mostly from 

soil scientists in South Africa, Belgium, Germany, the Netherlands and the Food and Agriculture 

Organisation (FAO) of the United Nations in Rome. This Euro-African focus of the study can be seen in the 

use of the World Reference Base, WRB (FAO, 1998a and 2001), for classification purposes, the FAO 

methodology of soil profile description (FAO, 1990), the digital format for soil data storage (SOTER), 

developed by the FAO (FAO 1989, 1991, 1995, 1996, 2003) and International Soil Reference and 

Information Centre (ISRIC, 1991, 1993), and the use of standard methods for soil analysis from the Non-

Affiliated Soil Analysis Working Committee (1990) and ISRIC (Van Reeuwijk, 1992, 2002) . 

 

1.4 PRODUCTS 

The tangible products of the study are: 

 Soil profile data in an accessible digital format  

 Analytical data of geo-referenced soil profiles in accessible digital and hardcopy format 

 Chemical and physical characterisation of the soils, in the context of the lithology and topography  

 A number of maps and images of the study area in digital and hardcopy format 

 A geographical information system of all the available raw and processed data.  

 

 

    
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CHAPTER TWO 

DESCRIPTION OF THE STUDY AREA 

 

2.1 LOCATION 

The study area lies within a one degree by two degrees block, 22o – 23o south, 17o – 19o east, in eastern 

central Namibia. It spans approximately 100 km (north-south) by 200 km (east-west) and covers 22 790 km2 

or 2 279 million ha. It includes parts of three administrative regions, viz. Khomas (western half), Omaheke 

(eastern half) and Otjozondjupa (northwestern corner) (Figure 2.1).  

 
Figure 2.1. Namibia and study area (MAWF, 2005) 

 

2.2 INFRASTRUCTURE 

Infrastructure is the facilities and services that support day-to-day economic activities and functioning of a 

community, such as transportation and communication systems, water and electricity. Windhoek, the capital 

of Namibia, is the main urban centre. More than 90 % of the population in the study area is concentrated in 

Windhoek. Gobabis is a substantial town with municipal status and most of the essential facilities. Witvlei is 

officially classified as a village. Omitara, Aris, Groot Aub and Kapps Farm are settlements; Otjivero, Seeis, 

Dordabis, Ovitoto, Döbra, Okamboro, Blaukrans, Midgard and Doringveld are informal settlements. 

Neudamm houses an agricultural college and the Faculty of Agriculture and Natural Resources of the 
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University of Namibia, while Hosea Kutako comprises an international airport with its associated 

infrastructure (Figure 2.2). The road network (Figure 2.2) consists of 500 km tarred trunk roads, 1 028 km 

gravel main roads and 820 km graded earth district roads (Roads Authority, 2004). The area has 335 km of 

railways (Figure 2.2), though rail transport of agricultural produce is minimal. Air transport facilities are 

provided by Hosea Kutako International Airport, Eros Airport, which is a busy regional hub, Gobabis 

Aerodrome and at least 14 officially recognised landing strips on farms (Figure 2.3).  

 

2.3 LAND TENURE  

Title deeds have been registered on all the land parcels within the study area. Around urban centres, some 

land parcels belong to local authorities (municipal, village and town councils) and there are also a large 

number of privately owned smallholdings for residential-, recreational- and light industrial use. Many parcels 

contain utilities, e.g. road-, rail- and power-line reserves. These belong to the respective state-owned 

enterprises (Roads Authority, Transnamib and Nampower) or Ministries responsible for those functions. 

Government land houses an agricultural college at Neudamm, quarantine station at Bergvlug, schools, 

resettlement farms and Ovitoto, the largest single parcel that is farmed communally at subsistence level. On 

resettlement farms a number of previously disadvantaged families are farming through leasehold 

agreements, mostly at subsistence level. Some of the land in the southwest of the study area belongs to 

individuals from the Baster ethnic group, in the area formerly known as the ‘Baster Gebiet’ or ‘Basterland’. 

Some private property belongs to non-profit organisations (e.g. farmers associations, churches, etc.), while 

most are commercial farming enterprises owned by corporate entities (closed corporations, limited 

companies, trusts, etc.) and individuals (Figure 2.4; Table 2.1).  

 

Table 2.1: Land ownership in the study area (MAWF, 2005). 
OWNERSHIP NUMBER  AREA (ha) % of AREA 

Government of the Republic of Namibia 65 93992 3.6 

Local Authorities 15 75309 2.9 

Organisations 11 12778 0.5 

Black Individuals (‘previously disadvantaged’) 105 281090 10.8 

White Individuals (‘previously advantaged’) 512 1590318 60.9 

Foreign Individuals 3 9485 0.4 

Corporate Entities 162 538761 20.6 

Unspecified 123 7846 0.3 

 

2.4 LAND USE 

The study area, excluding proclaimed urban areas, consists of 996 land parcels of which 113 are peri-urban 

smallholdings, road and rail reserves and other non-agricultural land of less than 10 ha each. A further 278 

land parcels are less than 100 ha and another 77 between 100 and 1 000 ha. There are 523 parcels of more 

than   5 000 ha that can be considered economically viable farmland and 306 parcels of  1 000 – 5 000 ha on 

which extensive livestock farming is a precarious enterprise in the prevailing semi-arid climate (Figure 2.5; 
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Table 2.2). 

 

Table 2.2: Land parcels in the study area (MAWF, 2005). 
Land Parcel Size (ha) Number of Land Parcels 

< 1 34 

1 – 10 79 

10 – 100 278 

100 – 1000 77 

Subtotal < 1000 468, covering < 2 % of surface area 

1 000 – 5 000 306 

5 000 – 10 000 204 

10 000 – 15 000 13, of which 2 belong to a municipality and 1 to Government 

15 000 – 20 000 3, all municipal property 

20 000 – 55 000 2, of which one is the communal land of Ovitoto 

Subtotal > 1000 528, that can be considered ‘farms’ 

Total 996 

 

Farming in central Namibia is based on the utilisation of natural pasture by livestock or game, with the 

objective of profit-maximisation (Buß, 2006). More than 98 % of the land area is under natural rangeland and 

is used for extensive, low pressure livestock production. Cattle-farming is dominant (> 90 % of all farms), 

while mixed cattle- and sheep-farming, small stock- (sheep and goats) and game-farming-cum-eco-tourism 

also take place (IDC, 2005). Live cattle and beef exports account for 7 % (in gross income) of all Namibian 

exports (Buß, 2006). An investigation by International Development Consultants (IDC, 2005) found that 

average meat production is 4.28 kg/ha for cattle and 5.3 kg/ha for sheep in the study area. It has potential for 

the production of cactus pear, ethno-botanicals (e.g. devil’s claw), oleo-resins, small citrus orchards, small 

olive groves, and tunnel-cultivated cut-flowers and vegetables where sufficient groundwater for irrigation is 

available (IDC, 2005). Harvesting of wood and charcoal production from invader bush are possible (IDC, 

2005). Towards the northeast, crops such as maize, sunflower, groundnuts, oriental tobacco, cotton, pearl 

millet, sorghum and cultivated pastures can be planted to a limited extent, but only if the farmer has sufficient 

groundwater for supplementary irrigation and/or a high risk tolerance, as crop failures occur 30 – 40 % of the 

time on farms just outside the study area.  

 

Trophy hunting, venison hunting, non-consumptive eco-tourism and the accompanying hospitality industry 

are valuable additional sources of income for farmers of the area. These wildlife-based tourism enterprises 

require high capital inputs for accommodation and catering facilities, game fencing, construction of 

waterholes and hides, off-road game-viewing and hunting vehicles and rare game species. It also calls for 

skilled labour and good marketing skills. Game management in a conservancy, a loose merger of a number 

of farms (often with a surface area in excess of 100 000 ha) and a single wildlife management plan, is 

economically more efficient (Barnes and De Jager, 1996). The study area covers parts of 12 conservancies 

consisting of more than 150 farms. 
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Figure 2.2. Urban centres, rail and road network (MAWF, 2005) Figure 2.3. Air transport facilities (MAWF, 2005) 

  
Figure 2.4. Land ownership in the study area (MAWF, 2005)        (PA = 

previousoly advantaged; PD = previously disadvantaged) 

Figure 2.5. Size of land parcels (in ha) in the study area (MAWF, 2005) 
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2.5 CLIMATE 

The study area is situated in the tropics on the south-western flank of Africa. This position, in conjunction 

with the cold Benguela Current along the west coast, dictates the climate. Köppen (1936) classified it as a 

semi-arid hot steppe / savanna climate with summer rains. He used the code BShw, which he defined as “a 

dry climate (B) where the potential evaporation is more than average rainfall for the year, there is no water 

surplus, therefore no permanent water streams will develop; steppe climate (S) that is semi-arid with an 

annual rainfall of 380 – 760 mm; dry and very hot (h), with the average annual temperature > 18 oC; and the 

dry season in winter (w)”. Papadakis (1970a and 1970b) classified the Kalahari as a Hot Subtropical Desert, 

and central Namibia a Tropical Highland Desert. 

  

According to Mendelsohn, Jarvis, Roberts and Robertson (2002), the climate is governed by three systems: 

the Subtropical High Pressure Zone (STHPZ), Inter-tropical Convergence Zone (ITCZ) and Temperate Zone. 

The STHPZ is expressed by the Botswana Anticyclone – a high-pressure cell located over the centre of the 

subcontinent during most of the year, causing dry stable conditions – and the South Atlantic Anticyclone that 

feeds cool air from the Atlantic Ocean onto the Namibian coast in the form of south-westerly winds. During 

summer the Botswana Anticyclone weakens and migrates off the coast of southern Africa, allowing moisture-

bearing air from the ITCZ to move south from the equatorial regions, bringing summer rains to Namibia. 

These fall as convection thunderstorms with highly variable spatial and temporal distribution. The Temperate 

Zone of moist air carries a succession of low-pressure systems and cold fronts on the prevailing westerly 

winds past the southern tip of the subcontinent. During winter, the Temperate Zone moves further north and 

cold fronts sweep across southern Namibia, bringing a little winter rain to the southernmost parts of Namibia, 

as well as cold spells further north (Mendelsohn et al., 2002). 

 

Within the study area, first order weather stations are located in Windhoek (at the Namibia Meteorological 

Service) and at Hosea Kutako International Airport. A substantial number of second and third order stations 

are also found in the area. However, these stations normally only record rainfall, the critical climatic factor 

governing the environment and land use in Namibia. 

 

2.5.1 RAINFALL 

The mean annual rainfall of the study area increases from 300 mm in the south to 410 mm in the north, 

according to the relatively old Updated Isohyetal Rainfall Map for Namibia (DWA, 1992) (Figure 2.6). 

 

Du Pisani (2005a) constructed ‘virtual stations’ (sic) for each half-degree block in and adjacent to the study 

area (21o30’ – 23o30’ S and 16o30’ – 19o30’ E) and interpolated daily rainfall data from 172 actual stations for 

the period 1941 – 2000. Mean annual (January – December) (Figure 2.8), and mean seasonal (July – June) 

rainfall are higher than median annual (Figure 2.7) and median seasonal rainfall. This is typical for arid and 

semi-arid environments where rainfall is not normally distributed, but usually best described by a gamma  

distribution function. Rainfall increases from south to north and shows a discernible orographic influence over
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Figure 2.6. Rainfall isohyets (MAWF, 2005, based on DWA, 1992) Figure 2.7. Median annual rainfall over a 60-year period (1941 – 

2000) (Du Pisani, 2005a) 

#S

#Y

#S#S

#S

#S

#Y

#S

#S

#S

# # # # # #

# # # # # #

# # # # # #

# # # # # #

265.5 257.2 268.2 249.4 279.5 311.0

317.7 355.2 320.0 286.4 324.1 362.2

324.9 375.3 379.8 369.5 364.7 376.6

366.6 374.3 423.0 376.7 405.2 404.5

  
Figure 2.8. Mean annual rainfall over a 60-year period (1941 – 2000) 

(Du Pisani, 2005a) 

Figure 2.9. Coefficient of variation of annual rainfall over a 60-year 

period (1941 – 2000) (Du Pisani, 2005a) 
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Figure 2.10. Monthly rainfall distribution of ‘virtual stations’ representing high, average and low rainfall in the study area (Du Pisani, 2005a) 

 

   
Figure 2.11. Median seasonal rainfall 

(1940/1 – 1999/2000) from the ‘wettest’ 

virtual station (Du Pisani, 2005a) 

Figure 2.12. Median seasonal rainfall 

(1940/1 – 1999/2000) from the ‘driest’ 

virtual station (Du Pisani, 2005a) 

Figure 2.13. Median seasonal rainfall 

(1940/1 – 1999/2000) from the ‘average’ 

virtual station (Du Pisani, 2005a) 
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the central high ground, the Khomas Hochland, and particularly over the mountains east of Windhoek. 

 

The high temporal variability of rainfall is illustrated in Figure 2.9 by the coefficient of variation (CV), which is 

inversely related to the amount of rain. The CV ranges from 34 % for the area of highest rainfall, to more 

than 50 % for the area of lowest rainfall.  

 

Rainfall is concentrated in summer with most occurring during the period from January until March, as is 

evident from the three radar graphs in Figure 2.10. The radial axes numbered 1 – 12 represent the months 

from January to December, with the millimetres of monthly rainfall marked on each of them. The graphs 

represent three ‘virtual stations’ with high, average and low median annual rainfall respectively, as typical 

examples from the study area. 

 

The high inter-annual variability of rainfall in the study area is evident from Figures 2.11 - 2.13. The three 

graphs illustrate median seasonal rainfall from the virtual station with the highest mean (423.0 mm) and 

median (410.6 mm) rainfall, the station with the lowest mean (249.4 mm) and median (223.3 mm) rainfall, 

and a third station that represents the block with rainfall closest to the average of the whole study area 

(mean of 355.2 mm and median of 343.9 mm). A downward trend in rainfall over the 60-year period is 

evident for stations with lowest rainfall (Figure 2.12). 

 

 When rainfall is expressed in dekadal (10-day) format, as in Figures 2.14 – 2.16, the rainfall patterns of the 

wetter, drier and average parts of the study area are similar throughout the study area: a dry winter, a slow 

start in October, significant showers occurring from January until end of March, and a rapid decline 

throughout April. 

 

2.5.2 TEMPERATURE 

Temperatures are generally lower than what would be expected from the latitude and aridity, due to the 

elevation. Du Pisani (2005b) used two stations to characterise the temperature of the study area, viz. 

Windhoek Meteorological Office and Hosea Kutako International Airport, as those are the only stations with 

good quality temperature data. Temperature profiles are fairly similar at the two stations (Figures 2.17 – 

2.22), with the maxima slightly higher at Hosea Kutako than in Windhoek. Minima are consistently lower at 

the airport, with the difference in the winter months exceeding 3 oC. December and January are the hottest 

months, while June and July are the coldest. 

 

2.5.3 GROWING PERIODS 

Most of the study area has an average growing period of between 40 and 60 days, while the north-eastern 

corner has an average growing period of between 60 and 90 days, with only a very short dependable 

growing period (Figure 2.23). The Windhoek – Okahandja Valley has between 40 and 60 days of adequate 

soil moisture for plant growth (De Pauw, 1996; De Pauw and Coetzee, 1999; De Pauw, Coetzee, Calitz, 

Beukes and Vits, 1999; Coetzee, 2001a, 2001b). 
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Figure 2.14. Decadal rainfall from the ‘wettest’ virtual station (Du Pisani, 

2005a) 

Figure 2.15. Decadal rainfall from the ‘driest’ virtual station (Du Pisani, 

2005a) 

 

 
Figure 2.16. Decadal rainfall from the ‘average’ virtual station (Du Pisani, 

2005a) 
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Figure 2.17. Monthly temperature extremes – Windhoek (Du Pisani, 2005b) Figure 2.18. Monthly temperature extremes – Hosea Kutako (Du Pisani, 

2005b) 

   
Figure 2.19. Monthly maximum and minimum temperature – Windhoek (Du 

Pisani, 2005b) 

Figure 2.20. Monthly maximum and minimum temperature – Hosea Kutako 

(Du Pisani, 2005b) 
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Figure 2.21. Daily maximum, minimum and mean temperature – Windhoek 

(Du Pisani, 2005b) 

Figure 2.22. Daily maximum, minimum and mean temperature – Hosea 

Kutako (Du Pisani, 2005b)

  
Figure 2.23. Growing period zones (MAWF, 2005) (AGP = average growing 

period; DGP = dependable growing period) 

Figure 2.24. Vegetation zones (MAWF, 2005, based on Giess, 1998
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2.5.4 OTHER CLIMATIC PARAMETERS 

Solar radiation varies between 5.8 kWh m-2 day-1 in the east and 6.2 kWh m-2 day-1 in the west of the study 

area (Mendelsohn et al., 2002). The number of sunshine hours per day varies between 8 h in March, the 

time of maximum cloud cover, and slightly more than 10 h from May until September when skies are clear 

(Mendelsohn et al., 2002). Relative humidity varies from below 20 % in September to 70 – 80 % in March 

(Mendelsohn et al., 2002). Mean annual evaporation lies between 1 820 mm and 1 960 mm in the study area 

roughly north of the Windhoek – Gobabis road, while it varies between 1 960 mm and 2 100 mm in the 

southern half of the study area (Mendelsohn et al., 2002). Monthly evaporation is highest during December, 

closely followed by October, November and January, and lowest in June and July (Mendelsohn et al., 2002). 

On 20 % of days Windhoek experiences wind from the east, 10 % from the northeast and 10 % from the 

west, while 35 % of all days are calm (Mendelsohn et al., 2002). In the vicinity of Gobabis, on 15 % of 

days wind blows from the northeast, and roughly 10 % each from the east, south and northwest, with 44 % of 

days being calm. Wind speeds are on average well below 20 km/h (Mendelsohn et al, 2002). The north-

western quarter of the study area experiences 10 – 20 days of frost, while the remainder has up to 30 days 

of frost, per year (Mendelsohn et al., 2002). 

 

2.6 VEGETATION 

FAO-UNESCO (1977) classifies the whole study area as Thornbush Savanna and describes it as an 

intermediate vegetation type between the moister wooded types and the subdesert types, with grasses 

generally less than a metre high and trees mainly of the Acacia genus and Commiphora genus. According to 

Giess (1971, 1998) the study area has four main vegetation zones, viz. the Highland Savanna around 

Windhoek, Thornbush Savanna in the Windhoek–Okahandja Valley, Camelthorn Savanna east of the Hosea 

Kutako International Airport and Mixed Tree- and Shrub Savanna towards the southern edge of the study 

area (Figure 2.24).  

 

Mendelsohn et al. (2002) label the corresponding vegetation types Highland Shrubland, Thornbush 

Shrubland, Central Kalahari and Southern Kalahari respectively. All four vegetation zones form part of the 

Acacia Tree- and Shrub Savanna Biome. Elements of both the Sudano-Zambezian Flora and Namib-Karoo 

Flora can be found, depending on small-scale environmental factors (Kempf, 1994). 

 

2.6.1 DOMINANT PLANT SPECIES 

The eastern half of the area – the Camelthorn Savanna or Central Kalahari – is characterised by Acacia 

erioloba (Camel-thorn; Kameeldoring) trees, which lend their name to the zone in the Giess classification. 

Terminalia sericea (Silver cluster-leaf; Sandgeelhout) occurs on deep sandy soil. Acacia mellifera (Black-

thorn acacia; Swarthaak) and Dichrostachys cinerea (Sickle bush; Sekelbos) are indigenous invasive 

(‘encroacher’) species most often implicated in bush encroachment (Section 2.6.2). Ziziphus mucronata 

(Buffalo-thorn; Blinkblaarwag-‘n-bietjie), Boscia albitrunca (Shepherd’s tree; Witgat), Acacia hereroensis 

(Mountain-thorn; Bergdoring), Acacia karoo (Sweet-thorn; Soetdoring) and Albizia anthelmintica (Worm-cure 
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albizia; Aroe) are also abundant (Curtis and Mannheimer, 2005). Prosopis (Mesquite), an invasive alien, is 

common along watercourses, especially the Nossob River (Smit, 2002; Bethune, Griffin and Joubert, 2004). 

 

The most common shrubs in this vegetation zone are Acacia hebeclada (Candle-pod acacia; Trassiebos), 

Grewia flava (Velvet raisin; Fluweelrosyntjie); Grewia flavescens (Sandpaper raisin; Skurwerosyntjie); 

Phaeoptilum spinosum (Brittle-thorn; Brosdoring); Tarchonantus camphorates (Camphor bush; 

Wildekanferbos); Ozoroa paniculosa (Common resin-bush); Rhigozum brevispinosum (Simple-leaved 

rhigozum; Granaatbos); Rhigozum trichotomum (Three-thorn rhigozum; Driedoring) and Catophractes 

alexandri (Trumpet-thorn; Ghabbabos) (Curtis and Mannheimer, 2005).  

 

Where rangeland is in good condition, the sward is dominated by Eragrostis pallens (Broom grass; 

Gemsbokgras / Besemgras), Eragrostis rigidior (Curly-leaved love grass; Krulblaarpluimgras), Eragrostis 

lehmanniana (Lehmann’s love grass / Common love grass; Knietjiesgras), Anthephora pubescens 

(Woolgrass; Borseltjiegras) and Schmidtia pappophoroides (Kalahari sand quick; Kalaharisandkweek) 

(Klaassen and Craven, 2003; Lubbe, 2006), Brachiaria- and Digitaria species (Müller, 1983). Degraded veldt 

is typified by Aristida (Steekgras) species, such as Aristida congesta (Tassel three awn / perennial 

bristlegrass; Katstertsteekgras) and Aristida stipitata (Sandveld long-awned stick grass / Sandveld 

bristlegrass; Langnaaldsteekgras) (Lubbe, 2006; Klaassen and Craven, 2003), Schmidtia kalahariensis 

(Annual Bushman grass; Kalaharisuurgras / Eenjarige vyfnaaldgras) and Stipagrostis uniplumis (Silky 

Bushman grass; Blinkhaarboesmangras) (Müller, 1983; Klaassen and Craven, 2003). 

 

The western half of the study area – the Highland Savanna or Highland Shrubland – is dominated by Acacia 

mellifera, Acacia erioloba, Acacia hereroensis, Acacia karroo, Acacia erubescens (Yellow-bark acacia; 

Withaak), Acacia recifiens (Red-thorn; Rooihaak), Combretum apiculatum (Kudu-bush; Koedoebos), 

Ziziphus mucronata; Boscia albitrunca and Albizia anthelmintica trees. Prosopis is a common tree throughout 

the whole study area, predominantly along watercourses (Smit, 2002; Bethune et al., 2004; Curtis and 

Mannheimer, 2005).  

 

The most abundant shrubs of this vegetation type are Croton gratissimus (Lavender croton; Laventelbos); 

Grewia bicolor (Two-coloured raisin-bush; Basterrosyntjie); Grewia flava; Lycium bosciifolium (Limpopo 

honey-thorn; Wolfdoring, Slapkriedoring); Lycium eenii (Broad-leaved honey-thorn; Breëblaarkriedoring); 

Manuleopsis dinteri (Dinter’s bush); Rhigozum brevispinosum; Rhigozum trichotomum; Catophractes 

alexandri; Tarchonantus camphorates; Phaeoptilum spinosum, Montinia caryophyllacea (Wild clove-bush; 

peperbos) (Curtis and Mannheimer, 2005) and Rhus ciliata (Sour karee) (Müller, 1983).  

 

Good condition rangeland contains Anthephora pubescens, Brachiaria nigropedata (Blackfooted Brachiaria / 

Spotted Brachiaria; Swartvoetjie), Cenchrus ciliaris (Buffalo grass; Bloubuffelgras), Digitaria eriantha (Finger 

grass / Wooly finger grass; Wolvingergras / Kleinvingergras), Eragrostis nindensis (Wether love grass /, 

perennial love grass; Agtdaepluimgras), Stipagrostis uniplumis and Heterogpogon contortus (Spear grass; 

Assegaaigras) as the most prominent grass species (Müller, 1983; Klaassen and Craven, 2003; Lubbe, 

2006). Poor rangeland is characterised by Enneapogon cenchroides (Common nine-awned grass; Eenjarige 

negenaaldgras), Chloris virgata (Feather-top Chloris; Klossiegras), annual and perennial Melinis repens 
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(Red-top; Ferweelgras) and various Aristida species (Klaassen and Craven, 2003; Lubbe, 2006). 

 

The mixed tree and shrub savanna (in the south) typically has Acacia haematoxylon (Grey camel-thorn; 

vaalkameel) on the sand dunes, Rhigozum trichotomum in the hard dune valleys (‘streets’), and a good 

quantity of Acacia erioloba, Boscia albitrunca, Acacia mellifera subsp. detinens, Acacia reficiens, Acacia 

hebeclada subsp. hebeclada and Grewia flava (Curtis and Mannheimer, 2005).  

 

Asthenatherum glaucum (Gha grass; Ghagras), Anthephora argentea (Silver wool grass; 

Silwerborseltjiegras), Eragrostis lehmanniana, Stipagrostis uniplumis and Stipagrostis ciliata (Tall Busman 

grass; Langbeenboesmangras), personify well-maintained veldt, while Schmidtia kalahariensis dominates on 

degraded land. Stipagrostis amabilis (Kalahari coach; Duinekweek) stabilises dune crests (Müller, 1983).  

 

The Windhoek – Okahandja valley, comprising Thorn Bush Savanna (tree and shrub savanna; thornbush 

shrubland) is dominated by Acacia species, such as Acacia reficiens, Acacia hebeclada subsp. hebeclada, 

Acacia erubescens and Acacia fleckii. Acacia tortillas subsp. heteracantha also occurs. Boscia albitrunca 

and Ziziphus mucronata are common (Curtis and Mannheimer, 2005).  

 

In good condition rangeland one finds Anthephora pubescens, Brachiaria nigropedata, Digitaria species and 

Urochloa bolbodes (Gonya grass; Meerjarige beesgras). In degraded veldt Stipagrostis uniplumis and 

Schmidtia pappophoroides are abundant (Müller, 1983).  

 

In-depth studies of the vegetation, in the form of Braun-Blanquet relevés, had been carried out by Volk and 

Leippert (1971) on the farms Voigtland, Brack and Binsenheim, while Kellner (1986) concentrated on farm 

Neudamm. Extensive vegetation data have also been collected by Strohbach (2008). 

 

2.6.2 BUSH ENCROACHMENT 

Bush encroachment, chiefly by Acacia mellifera subsp. detinens, is already a substantial problem in some 

parts of the study area and has the potential to become a major dilemma as it is in other parts of Namibia. 

Bush encroachment is the invasion and/or increase in density and size of aggressive undesired woody 

species resulting in an imbalance of the grass-to-bush ratio, a decrease in biodiversity and a decrease in 

carrying capacity (IDC, 2005). Desirable grass-, forb- and fodder bush species are out-competed by 

undesirable, often thorny, bush species. As a rule of thumb, bush densities of more than 1.5 times the mean 

annual rainfall (expresses as number of bush per hectare) are considered to be encroachment. That would 

translate into 375 – 550 bushes / ha in the study area. In reality, densities of 1 500 – 3 000 bushes / ha are 

found (IDC, 2005). For chemical bush control, the clay content of soils must be known to calculate the 

required quantity of herbicide (Horsthemke, 2000) thus the present study will contribute to the control of bush 

encroachment in the area. Extensive work on bush encroachment in Namibia, including the study area, had 

been published by Bester (1996; 1997a; 1997b; 1999a), De Klerk (2004), and Joubert, Rothauge and Smit 

(2008). 
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2.6.3 GRAZING CAPACITY 

The concepts carrying capacity and grazing capacity, as employed by the pasture scientists of MAWF 

(Lubbe, 2006), are defined as follows (Trollope, Trollope and Bosch, 1990): 

 Carrying capacity is the potential of an area to support livestock through grazing and/or browsing and/or 

fodder production over an extended number of years without deterioration to the overall ecosystem. 

 Grazing capacity is the productivity of the grazeable / browsable portion of a homogeneous unit of 

vegetation expressed as the area of land required to maintain a single animal unit over an extended 

number of years without deterioration to the soil. 

 

Morris, Hardy and Bartholomew (1999) stated that the stocking rate is the single most important 

management factor influencing animal, performance and profitability of a livestock farming system. The 

Ministry of Agriculture, Water and Forestry promotes the use of the biomass concept (Bester 1988, 1999b, 

2003) to determine the ideal stocking rate annually.  

 

Grazing capacity of the study area varies between 12 kg live animal mass per ha in the south-western 

corner, to 30 kg/ha in the northeast (Figure 2.25). These values are under revision at present (Lubbe, 2005), 

and are highly variable in space and time. Actual stocking rates vary from 84 kg/ha in the Ovitoto communal 

area – which is grossly overstocked – to 24 kg/ha on average on commercial farms (IDC, 2005). 

 

2.6.4 BIOMASS PRODUCTION  

Cumulative seasonal biomass production estimates had been calculated for the study area since 1985/6 

(Ganzin, Coetzee, Rothauge and Fotsing, 2005; MAWF, 2005). The method is based on the Monteith model 

(1972) of biomass production calculated from solar radiation and uses NOAA and SPOT Vegetation satellite 

imagery in the form of normalized different vegetation indices (NDVI) and the Sustainable Management of 

Arid Rangelands (SMAR) software (Ganzin, 1999). 

 

Figures 2.26 – 2.29 show the mean estimated seasonal biomass production over the 20-year period 1985/6 - 

2004/5 (Figure 2.26) and comparisons of the 2001/2 (Figure 2.27), 1994/5 (Figure 2.28) and 1999/2000 

(Figure 2.29) growing seasons with the mean, expressed as a percentage of the mean. These three seasons 

were average, very poor and very good respectively. At present the method does not differentiate between 

trees, shrubs, grass and forbs, but research is in progress to refine the method into estimating grass and forb 

production (Lubbe, 2005; Espach, Lubbe and Ganzin, 2006). This will greatly assist in determining seasonal 

livestock carrying capacity, as well as long-term grazing capacity.  

 

2.6.5 LAND COVER 

Land cover is defined as ‘the observed (bio) physical features on the earth’s surface’ (Di Gregorio and 

Jansen, 1997) and can include vegetation and man-made features, as well as bare rock, soil and inland 

water systems. Espach (2006) has mapped the land cover of the eastern half of the study area, roughly from  
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Figure 2.25. Grazing capacity, in kg live animal mass per ha (MAWF, 2005) Figure 2.26. Estimate of total seasonal above-ground biomass production 

(kg/ha) – 20-year mean (1985/6 – 2004/5) (MAWF, 2005) 

 
Figure 2.27. Estimated total season above-ground biomass production of the 

2001/2 growing season (1 October 2001 – 30 April 2002), compared to the 20-

year mean (1985/6 – 2004/5), expressed in percentage biomass production 

above normal (MAWF, 2005) 
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Figure 2.28. Estimated seasonal biomass production: deviation from the 20-

year mean (1985/6 – 2004/5) during a very poor growing season (1994/5) 

(MAWF, 2005) 

Figure 2.29. Estimated seasonal biomass production: deviation from the 20-

year mean (1985/6 – 2004/5) during a very good growing season (1999/2000) 

(MAWF, 2005) 

 
Figure 2.30. Land cover of the eastern half of the study area (Espach, 2006) 
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Witvlei to Gobabis (Figure 2.30), by means of supervised classification of multi-seasonal Landsat satellite 

images and field sample data. Verification was done through point-based field sampling, an area-based 

assessment using recent digital orthophotos, a comparison with the MODIS continuous field vegetation 

dataset and digital photographs taken from a low-flying gyrocopter (Espach, 2006; Espach, Lubbe and 

Ganzin, 2006). The study area consists of grasslands, shrubland, woodland and forest, according to the 

classification in Table 2.3. 

 
Table 2.3: Landcover classification (Espach, 2006). 

LANDCOVER TYPE 
MINIMUM THRESHOLD 
PARAMETERS 

MODIFIERS FOR EACH 
VEGETATION GROUP 

Forest (dominated by single-

stemmed trees) 

Canopy cover > 70 % and 

canopy height > 5 m 

Woodland (dominated by single-

stemmed trees) 

Canopy cover > 10% and < 70 

% and canopy height > 5 m 

Shrubland (tree / multi-stemmed 

shrub mix) 

Canopy cover > 10 % and 

height > 0.5 m 

 Canopy height: 

< 2 m: low shrubland;  

> 2 m: tall shrubland 

Herbaceous: Grassland 
Tree / shrub cover < 10 % and > 

1 % vegetation cover 

Herbaceous: Forbs 
Tree / shrub cover < 10 % and > 

1 % vegetation cover 

Canopy cover thresholds (all 

types): 

0 – 10 % Very Sparse 

10 – 40 % Sparse 

40 – 70 % Open 

70 – 100 % Closed 

Forests are by definition closed 

with > 70 % canopy cover. 

The 0 – 10 % modifier is not 

applicable to tree and shrub 

dominated classes – these 

automatically qualify for one of 

the herbaceous classes 

 

Areas of low grass cover are interspersed with open and closed grassland, sparse tall shrub and open tall 

shrub in the centre and western sections of the study area (Figure 2.30). Sparse and open woodland, 

intermingled with open and closed tall shrub and forest dominate in the east and north-east of the study 

area. 

 

2.7 WATER RESOURCES 

 2.7.1 GROUNDWATER 

Water availability is the major constraint on all types of land use in Namibia. Farmers predominantly make 

use of boreholes to access groundwater (Figure 2.31). Groundwater resources are inadequate for irrigation 

purposes, except on very small scale for vegetable gardens, greenhouses and small orchards of high-

income crops. 

 

Groundwater quality is generally good (Figure 2.32), though the depth to aquifers with sufficiently high yields 

(Figure 2.33) often makes pumping uneconomical. 
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Figure 2.33. Borehole yield (MAWF, 2005, based on Mendelsohn et al., 

2002) 

Figure 2.34. Surface water – rivers and reservoirs (MAWF, 2005) 
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2.7.2 SURFACE WATER 

The study area has no permanent rivers. Runoff from episodic rivers is stored in surface reservoirs operated 

by the Namibia Water Corporation, Namwater, namely Goreangab, Avis, Otjivero, Tilda Viljoen and Daan 

Viljoen Reservoirs, with Oanob and Sartorius von Bach Reservoirs just outside the study area (Figure 2.37). 

All of the surface water is distributed to urban areas for domestic and industrial use. There are a few 

relatively large private earth dams on farms, e.g. on Hoffnung, Midgard and Neudamm. 

 

 

    
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CHAPTER THREE 

GEOMORPHOLOGY, GEOLOGY AND SOILS 

 

3.1 GEOMORPHOLOGICAL CONTEXT WITHIN SOUTHERN AFRICA 

Shaw (1997) described Africa as a massive fragment of continental crust, tectonically stable relative to other 

continents and moving northwards since the break-up of Gondwana, characterised by a strong Precambrian 

tectonic legacy, vast ancient erosional surfaces and sedimentary basins that give it an unusually flat aspect. 

 

In southern Africa, Precambrain rocks provided the basement upon which later sedimentation occurred, 

particularly the Karoo Sequence – from the Dwyka glaciation to the deposition of the terrestrial sandstones of 

the Ecca Formation. The Ecca formation is believed to be the source rock of the Kalahari sands (Smith, 

1984). The fragmentation of Gondwana lead to the formation of pericratonic basins around the African 

coastline and flexuring of the continental crust which resulted in the formation of the Great Escarpment of 

southern Africa and the development of the inter-cratonic Kalahari-Cubango-Congo Basin (Thomas 1988), in 

which accumulation of Kalahari sediments commenced in the Cretaceous (Thomas and Shaw, 1991). 

 

By the end of the Cretaceous, the interior of southern Africa had been eroded to a vast peneplain, the 

African Erosion Surface (Partridge and Maud, 1987, 1988), with deeply leached tropical soils and silicification 

that is still evident in parts of southern Africa today. The eroded material had been deposited on the 

continental shelf. The marginal escarpment retreated, forming a broad, gently sloping coastal plain 

(McCarthy and Rubidge, 2005). At this time, the southern African crust began to flex, forming large swells 

and depressions, probably as the result of mantle convection or compression from seafloor spreading from 

the mid-ocean ridges surrounding much of Africa (McCarthy and Rubidge, 2005). Uplift along the Kalahari-

Zimbabwe Axis diverted much of the ancient Limpopo River headwaters towards a series of intra-continental 

lakes, including the ancestral Lake Makgadikgadi (McCarthy and Rubidge, 2005). This marks the start of the 

Kalahari Basin. The subsequent uplift of the Transvaal-Griqualand Axis further south diverted the Kalahari 

River towards the southeast, where it captured the Karoo River to form the Orange River (McCarthy and 

Rubidge, 2005).  

 

By 20 Ma ago, the influence of the East African Rift System spread into the Luangua and Zambezi Valleys, 

with the Zambezi systematically capturing the headwaters of the lake system. The Kafue and Upper Zambezi 

had already joined the Lower Zambezi, while the Kwando-Linyanti-Chobe is currently being captured. The 

Quito and Cubango-Kavango will eventually join the Zambezi. The depression into which the Okavango 

River debouches, with its accompanying faults, indicate that the rift system is still propagating (McCarthy and 

Rubidge, 2005). The tectonic quiescence was interrupted by two periods of uplift resulting in renewed 

erosion. Around 20 Ma ago the eastern part of the subcontinent rose by 250 m, while the west rose by 150 

m (McCarthy and Rubidge, 2005). The subsequent erosion gave rise to the Post-African I Erosion Surface in 

the interior (Partridge and Maud, 1987, 1988).  
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The second uplift, around 5 Ma ago, culminated in a further tilting of the subcontinent – around 900 m in the 

east and only around 100 m in the west – and formation of the Post-African II Erosion Surface (Partridge and 

Maud, 1987, 1988). The increase in gradient added energy to rivers draining the escarpment towards the 

ocean, causing rapid down-cutting into gorges and submarine deposition of eroded material on the 

continental shelf (Figure 3.1).  

 

 
Figure 3.1. Transect through southern Africa, showing erosional surfaces (McCarthy and Rubidge, 2005) 

 

During the Pleistocene (the last 2 Ma) a succession of ice ages caused variation in sea levels, allowing 

alternate periods of erosion and deposition on the coastal plains. During cold periods coastal rivers cut down 

into bedrock to form deep valleys, while warm periods produced estuaries and coastal lakes. Ice ages also 

increased aridity of the southern African interior, with formation of the Kalahari sands (or Mega Kalahari, see 

paragraph 3.6) stretching across parts of the southern Congo, Angola, Zambia, Zimbabwe, Namibia, 

Botswana and the Northwest and Northern Cape Provinces of South Africa (McCarthy and Rubidge, 2005). 

 

3.2 TOPOGRAPHY 

The western part of the study area is relatively high and strongly dissected where it forms part of the Khomas 

Hochland (= Highland) (Figures 3.2 and 3.3). The second highest point in Namibia is the Moltkeblick (2 479 

m) in the Auas Mountains southeast of Windhoek (Surveyor General, 1983).  

 

The land slopes down towards the southeast of the study area, where the minimum elevation is roughly 1 

310 m (Figure 3.3) and the landscape almost flat (Figure 3.2). The Windhoek – Okahandja Valley is a graben 

at lower elevation (1 400 – 1 700 m) within the Khomas Hochland. 

 

Figures 3.4 – 3.11 show altitudinal profiles from west to east (A1 – A2, B1 – B2, C1 – C2) and north to south 

(D1 – D2, E1 – E2, F1 – F2, G1 – G2, H1 – H2). The vertical scale is greatly exaggerated.  
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Figure 3.2. Slope (%) of the study area 

 

 
Figure 3.3. Elevation (m) and location of transects used to construct altitudinal profiles 
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Figure 3.4. Altitudinal profile of transect A1 – A2 

 

 
Figure 3.5. Altitudinal profile of transect B1 – B2 

 

 
Figure 3.6. Altitudinal profile of transect C1 – C2 

 

   
Figure 3.7. Altitudinal profile of transect D1 – D2 Figure 3.8. Altitudinal profile of transect E1 – E2 
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Figure 3.9. Altitudinal profile of transect F1 – F2 Figure 3.10. Altitudinal profile of transect G1 – G2 

  
Figure 3.11. Altitudinal profile of transect H1 – H2 

 

3.3 AGRO-ECOLOGICAL ZONES 

De Pauw, Coetzee, Calitz, Beukes and Vits (1999; AEZ Programme, 1999) divided the study area into 3 

broad physiograpic zones, namely the Escarpment, Central Plateau and Kalahari, and further into 10 agro-

ecological zones (Figure 3.12; Table 3.1). 

 
Table 3.1: Codes and short descriptions of agro-ecological zones (MAWF, 2005; De Pauw et al., 1999; AEZ Programme, 

1999). 

ESC2 Escarpment, high mountains on Basement Complex rocks 

ESC4 Escarpment, high plateaux on Basement Complex rocks 

CPL3-4 Central Plateau, strongly dissected inselberg plains, average growing period 61-90 days, very 
short dependable growing period 

CPL3-6 Central Plateau, strongly dissected inselberg plains, average growing period 41-60 days 

CPL3-7 Central Plateau, strongly dissected inselberg plains, average growing period 21-40 days 

CPL5 Central Plateau, flat plains on metamorphic rocks 

KAL2-7 Kalahari Sands Plateau, stabilized northwest – southeast dunes with common pans, average 
growing period 31-40 days 

KAL3-4 Kalahari Sands Plateau, stabilised sand drift with few pans, average growing period 61-90 
days, very short dependable growing period 

KAL3-6 Kalahari Sands Plateau, stabilized sand drift with few pans, average growing period 41-60 
days, no dependable growing period 

R Undifferentiated rocky hills and inselbergs 
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3.4 KHOMAS HOCHLAND  

The Khomas Hochland is a rugged dissected plateau, on average 1 700 – 2 000 m above sea level, located 

roughly between the Swakop River in the north and Aris in the south, the Great Escarpment in the west and 

the Neudamm Kuppe in the east. The highest peaks and ridges of the Khomas Hochland are found around 

Windhoek, viz, the Kaiser Wilhelmberg, Kupferberg, Regenstein, Lichtenstein, Liebenstein and Grossherzog 

Frederick Mountains to the southwest, Auas Mountains to the southeast, Eros Mountains to the east and 

Otjihavera Mountains to the northeast respectively. East of the Swakop River is an isolated and unnamed 

remnant of the Khomas Hochland, with the Kunistein at 1 924 m as the highest point. The summit level 

slopes eastward until the land gradually sinks below the Kalahari sand east of the Neudamm Highland. 

Three of the most important ephemeral rivers in Namibia – the Swakop, Kuiseb and Nossob – arise in the 

Khomas Hochland. 

 

The Khomas Hochland was created by an east-west axis of up-arching from the Windhoek area to the Great 

Escarpment. All the cyclic erosion surfaces slope eastward, the older ones progressively more so. King 

(1967) described the Khomas Hochland as an ancient, repeatedly-upwarped segment of Gondwana with 

locally elevated eastwardly tilted berms (partial bevels) and valleys that open into the main plain when 

followed eastward. He postulated that an early warp is indicated by the summit heights of inselbergs and 

mountain ranges on the Khomas plateau, which decrease in elevation eastwards more rapidly than the 

Khomas surface. He stated that when a land-surface has been deformed by tilting to a differential greater 

than the critical height for the local rock type and pediplanation continues to operate at the same base-level 

as before, a scarp may be developed separating what appear to be surfaces due to two distinct cycles of 

erosion. King assigned the smooth ridge crests of the Khomas Hochland to the Jurassic age Gondwana 

Erosion Surface. The extensive post-Gondwana valley system between them corresponds to the African 

Erosion Surface of Partridge and Maud (1987, 1988).  

 

Kempf (1999c) and Bertram and Kempf (2002) suggested that the western part of the study area (Khomas 

Hochland and Neudamm Highlands) forms part of a large lenticular upwarp, dissected into a flight of distinct 

etchplain levels. They postulated that the oldest has been preserved in the silcrete capped plateau of the 

Gamsberg. They concluded that upwarping continued throughout much of the Tertiary up to the Early 

Quaternary, with a most active phase during the Oligocene. They identified three major levels and called 

these the Otjihavera, Khomas and Seeis niveaux. The Khomas niveau consists of the deeply dissected block 

of the Khomas Hochland. Its planation must have ceased in Mid-Oligocene to Mid-Miocene, as it cuts across 

Oligocene volcanic plugs and trachyte veins. East of Windhoek, the Khomas niveau continues, amongst 

others, as the top level of the Eros Mountains, the flat top of the Neudamm Kuppe and the Onyati Mountains. 

The undissected part of the Khomas niveau east of the regional watershed had been rejuvenated during the 

Pliocene and now forms the Seeis niveau, some 50 – 100 m below the Khomas niveau. The Neudamm 

Highlands is an example of the Seeis niveau (Bertram and Kempf, 2002).  
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3.4.1 WINDHOEK-OKAHANDJA VALLEY 

The Windhoek-Okahandja Valley lies about 350 m below the surrounding plateau, with a width of 10 to 15 

km over a length of more than 60 km. Gevers (1932a, 1932b, 1934, 1942) and King (1967, 1978) ascribed 

the Windhoek Valley to erosion during the African cycle in the Cretaceous, mainly by the Otjihavera and Usib 

Rivers. However, Miller (1983), Grünert (2003) and Schneider (2004) explained the Windhoek-Okahandja 

Valley as a halfgraben – a tectonic feature formed in the mid-Tertiary (35 Ma ago) by north-south-trending 

faults. They argued that its origin lies in the major extensional forces exerted on the continental crust in the 

Mid-Jurassic (170 Ma ago), before the break-up of Gondwana. They asserted that the graben can actually 

be followed for a length of 150 km.  

 

Kempf (1999c) referred to radiometrically dated Oligocene volcanic plugs and intrusive dykes near 

Windhoek, which are saprolised and peneplanated in both the Khomas and Seeis niveaux. The 

peneplanation is also signified by relicts of fossil ferralitic soils on the highlands, which are proposed to be of 

post-Oligocene to Miocene age. According to Kempf’s interpretation, the Windhoek Valley forms an 

intramontane basin associated with a tectonic stressfield with numerous rupture fissures induced by 

upwarping, where peneplanation, rather than fluvial incision, was the dominant process until the end of the 

Miocene. The Windhoek-Okahandja Valley constitutes the third and lowest peneplanation level postulated by 

Bertram and Kempf (2002) and Kempf (2008), namely the Otjihavera niveau. They suggested that it shows 

very similar pedological and weathering features as the Seeis niveau (Kempf, 2008). This is most likely due 

to the fact that the tectonically induced basin and the undissected Neudamm highlands were experiencing 

similar environmental conditions that caused deeper chemical weathering with desilification in the middle 

Pliocene (Kempf, 2008). In contrast, the very active and steep westward drainage of the Khomas level 

caused strong dissection along rupture fissures due to tectonic uplift since the mid Tertiary. In Kempf’s 

opinion (2008) this dissection was a consequence of the end-Miocene Messinian crisis, with final 

development of intensive Benguela upwelling. Namibia was very dry at around 7 – 4 Ma ago, but became 

wetter in the mid Pliocene (~ 4 – 3 Ma), which rejuvenated intensive weathering on the undissected and 

poorly drained Seeis- and Otjihavera niveaux and caused deep valley incision on the already dissected and 

well drained Khomas niveau. The end of the Tertiary (~ 3 – 2 Ma) was very dry again and caused extensive 

dune development in the Namib. This climatic history matches what is known from offshore Benguela drilling 

cores (Kempf, 2008). 

 

3.4.2 AUAS MOUNTAINS 

These are composed of the Auas Formation sediments that were laid down 730 Ma ago in a spreading 

ocean on the continental shelf of a passive margin (Schneider, 2004). During the Damaran Orogeny they 

underwent intense folding and thrusting towards the southwest. The highest peaks of the Auas Mountains, 

which are among the highest in Namibia, are capped with weathering-resistant quartzites forming steep 

south-facing cliffs (Schneider, 2004).  
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3.5 CENTRAL PLATEAU TRANSITION ZONE 

This is the area east of Neudamm up to Witvlei, corresponding with the agro-ecological zones CPL3-4, 

CPL3-6, CPL3-7 – strongly dissected inselberg plains with growing periods varying between 21 and 90 days 

– and CPL5 – flat plains on metamorphic rocks of the Central Plateaux of Namibia. The area is lower and 

less dissected than the Khomas Hochland.  

 

Small mountain ranges are found between the Windhoek-Rehoboth road and Dordabis: Hoher Schein, 

Kransneus-, Kransnek-, Blaukrans- and the Hatsamas Mountains. East of Dordabis the small mountains are 

the Grimmrücken, Kleeberge, Groot Kleeberg, Buschmannsklippe, Okambaraberg and Hartbeest-Rücken. 

Some of the more prominent inselbergs are the Schildkrötenberg at Aris, and the Bismarckfelsen, Oamites 

Mountain and Billstein west of the Windhoek-Rehoboth road. In the area north of Dordabis and south of the 

Windhoek-Gobabis road one finds the Bismarckberge, Paviansberg, Elisenhöhe, Koanusberg, Humansberg, 

Richtberg, Seeisberg and Dreispitz – all inselbergs. Further east, the most prominent inselbergs are the 

Otjiveroberg, Omieveberg, Ozombaheberg, Koedoeberg, Losberg and Heliographenberg .  

 

3.6 KALAHARI  

The definition of the Kalahari depends upon the criteria used, from physiographic region to eco-zone to an 

area occupied by Kalahari Group Sediments. The Mega Kalahari refers to the extent of the Kalahari erg from 

the northern Cape to Gabon and Congo north of the equator, an area of more than 2.5 million km2 (Thomas, 

1984). The drier parts occur south of the Zambezi River. The Kalahari is an edaphic desert. The absence of 

surface water is the result of a combination of relatively low mean annual rainfall, high temporal and spatial 

variability in rainfall, high evaporation rates and high infiltration rates. The sand mantle is generally 80 to 100 

m deep, but in places up to 300 m (Schneider, 2004). It overlies Karoo sediments and volcanics, with very 

few rock outcrops (Grϋnert, 2003, Schneider, 2004).  

 

The Kalahari is a gently undulating sand plain at approximately 1 000 m above mean sea level, with 

occasional inselbergs or minor hill chains. The central Kalahari has an endoreic network of ephemeral and 

dry channels draining towards the Makgadikgadi Basin and Okavango Delta. The southern Kalahari does not 

have an integrated drainage system, but rather a large number of small pans and dry rivers, locally known as 

omiramba. Lancaster (1978a, 1978b, 1986a), Goudie and Thomas (1985), Shaw (1988), Thomas, Nash, 

Shaw and Van der Post (1993), Shaw and Thomas (1997) and Mosweu (2008) described the distribution 

and characteristics of the pans and their lunette dunes, while Shaw and De Vries (1988), Nash (1995, 1997), 

Nash, Shaw and Thomas (1994a, 1994b, 1994c), and Nash and McLaren (2003) and discussed the 

morphology and function of the dry valleys. 
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Figure 3.12. Agro-ecological zones (MAWF, 2005). See Table 3.1 for 

full legend. 

Figure 3.13. Drainage of the study area  

    
Figure 3.14. Geology – age (Geological Survey of Namibia, 2008) Figure 3.15. Geology – Höhewarte Complex (Geological Survey of Namibia, 

2008)
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Figure 3.16. Geology – Damara Sequence (Geological Survey of 

Namibia, 2008) 

Figure 3.17. Geology – Sequences (Geological Survey of Namibia, 

2008) 

   
Figure 3.18. Geology – Groups (Geological Survey of Namibia, 2008) Figure 3.19. Geology – Suites and Subgroups (Geological Survey of 

Namibia, 2008) 
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Figure 3.20. Geology – Formations (Geological Survey of Namibia, 2008) 

   
Figure 3.21. Witvlei and Gobabis Synclinoria (Hegenberger, 1993) Figure 3.22. Stratigraphy of Witvlei and Nama Groups (Hegenberger, 

1993) 



3  12 

3.6.1 DUNES 

The dunes of the central and southern Kalahari are mainly linear (Thomas and Shaw 1991), with small areas 

of parabolic dunes and pan lunettes (Shaw, 1997). They were formed during the last glacial maximum in the 

Northern Hemisphere (20 000 – 16 000 years ago), when a large high-pressure cell circulated over the sub-

continent and resulted in strong, cold dry winds (Schneider, 2004), the mean temperature was approximately 

5 oC lower than today; there was less water vapour in the atmosphere and consequently lower precipitation 

and an expansion of the world’s deserts (Grϋnert, 2003). Annual rainfall in the region was less than 150 mm, 

the threshold for sand movement in a vegetation-free environment (Heine 1982). The dunes are now 

stabilised by typically savannah vegetation. The alignment of linear (longitudinal) dunes is the result of acute 

bimodal wind regimes, with overall dune orientation parallel or sub-parallel to the resultant direction of sand 

transport (Thomas and Goudie, 2000). Linear dunes can also develop in wide unimodal wind regimes, where 

the single wind direction swings through an arc of less than 90o (Lancaster, 1978b ; Wilkinson, 1988). The 

origin of the sand is streams flowing into the Kalahari depression over millions of years (Wilkinson, 1988). 

The sand consists mainly of physically hard and chemically inert quartz (Wilkinson, 1988).  

 

Lunettes are crescent-shaped dune features found on the lee (downwind) margins of many pans in the 

Kalahari (Thomas and Goudie, 2000). The horns of these dunes face into the wind and result from deflation 

of sand and silt from the pan floor during windier or drier periods in the past (Wilkinson, 1988). 

 

3.6.2 PANS 

Pans (‘playas’) are abundant in the Kalahari. They occupy the lowest points in the topography and have flat 

basin floors (Wilkinson, 1988). Pans are hydrologically closed dryland depressions that may hold an 

ephemeral shallow water body or which may have been occupied by a lake under past positive water 

balance conditions (Thomas and Goudie, 2000). Hydrological inputs are provided by direct precipitation, 

surface or subsurface inflow, or a combination of these, and there is no surface outflow (Thomas, 1997). 

Calcretes beneath many pans support perched water tables.  

 

According to King (1967), some pans are back-tilted sections of former drainage systems; others are 

deflation hollows, while some are the products of surface or subsurface solution of lime-bearing deposits. 

Goudie and Thomas (1985) integrated a number of hypotheses of pan formation into a model that should be 

applicable wherever conditions for pan formation are favourable: drainage impedance, the presence of 

suitable sediment or rock types and a semi-arid climate. The model includes, inter alia, erosion by animals 

concentrating around water and salt deposits, reduction of vegetation cover, deflation, lack of integrated 

surface drainage and tilting of old planation surfaces leading to drainage disruption. Lancaster (1986) noted 

that some of the higher-level pans in the Aminuis area contain algal mats and stromatolites, suggesting an 

origin as spring tufas at points of high groundwater discharge. 

 

Pans are usually vegetation-free, particularly at the lowest elevations. Episodic flooding, vertisol and 

solonchak formation and salt accumulation discourage vegetation growth, although halophytic plants and 

shallow-rooting grasses may be established. Grassed pans exist alongside bare clay surfaces, suggesting 
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small variations in soil alkalinity and wind direction (Shaw and Thomas, 1997). The dominant salts in pans 

are sodium and calcium sulfates, sodium chloride and sodium carbonate. 

 

3.6.3 DURICRUSTS 

Duricrust occurrence is correlated with rainfall and usually associated with pans, drainage lines and valley 

sides (Goudie, 1973). Three types of duricrust are found in the Kalahari Group sediments: calcrete, silcrete 

and ferricrete, with thicknesses of up to 100 m in the southern Kalahari (Shaw and De Vries, 1988). The 

origin, distribution and characteristics of calcretes had been studied by Netterberg (1980) and reviews on the 

subject had been written by Goudie (1973), Watts (1980) and Summerfield (1982). Many Kalahari duricrusts 

date from the Tertiary, showing long-term geomorphological stability (Goudie, 1973), but some types are of 

Quaternary or recent age. 

 

Calcretes are widespread in southern Africa where mean annual precipitation is in the range 150 – 600 mm, 

and annual free surface evaporation is above 1 000 mm (Goudie and Thomas, 1985). Calcrete develops in 

deserts due to progressive accumulation of calcium carbonate, either supplied by groundwater along valley 

bottoms, or on hillsides as airborne carbonate dust (Wilkinson, 1988). In the Kalahari they are plentiful in the 

interdune valleys, locally known as ‘streets’ (English) or ‘strate’ (Afrikaans). Goudie (1973, 1983) and 

Netterberg (1980) found that the Kalahari calcretes range from calcic soils to massive hardpan calcretes, and 

from precipitates to alteration products. They may form ridges and terraces on pan edges.  

 

Silcretes are frequently encountered as layers of nodules within the calcrete, due to direct precipitation or 

calcium displacement (Summerfield, 1982).  

 

3.7 DRAINAGE  

The Khomas Hochland constitutes a regional watershed (Figure 3.13). All the rivers draining the land east 

and southeast of the Auas and Otjihavera Mountains and east of the Swakop River valley are endoreic – 

they do not reach the ocean, but gradually disappear in the sand of the Kalahari. Endoreic systems are 

independent of the worldwide base level determined by the world ocean. By creating their own base levels, 

they are not influenced by eustatic changes, and erosion can only proceed to the local base level – pans in 

the case of the Kalahari (Wilkinson, 1988). The Usib and its tributaries drain the area south of Windhoek. 

The Auas Mountains and area around Dordabis are drained by the Skaap River. Both the Usib and the 

Skaap flow into large pans near Duineveld, southeast of Rehoboth, in exceptionally good rainy seasons 

before disappearing into the Kalahari sand. The Seeis River joins the Olifants on the farm The Dunes at the 

southern edge of the study area. The Olifants subsequently joins the Auob at Tweerivieren southeast of 

Gochas. The confluence of the White- and Black Nossob is on the farm A-Ais, just south of the study area. 

The Auob and Nossob Rivers flow towards the Orange River, but do not reach it nowadays. 

 

Exoreic rivers, with gradients three to four times that of the southern and eastern rivers, drain the Khomas 

Hochland towards the Atlantic Ocean. The Windhoek-Okahandja Valley is drained by the Otjihavera River 
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and its tributaries, which in turn joins the Swakop River that drains the area around Midgard and Ovitoto. The 

Swakop occasionally reaches the Atlantic Ocean at Swakopmund.  

 

Large parts of the Kalahari, particularly in the areas of longitudinal dunes, are areic – without drainage lines. 

Ephemeral rivers that flow only occasionally and fossil drainage lines are locally known as omiramba 

(singular omuramba). They are often wide and shallow grassy valley bottoms without discernable 

streambeds.  

 

Many drainage lines, particularly in the Khomas Hochland and Neudamm Highlands, correspond with 

tectonically disturbed zones such as rupture fissures resulting from upwarping (Kempf, 1999c). Valleys often 

meet at right angels, especially in proximal areas of elevated highlands (Bertram and Kempf, 2002).  

 

3.8 MAIN STRATIGRAPHIC UNITS OF THE STUDY AREA 

The present state of the study area is the end-result of the Mokolian and Damaran Orogenies and the 

deposition of Kalahari sediments.  

 

3.8.1 HÖHEWARTE METAMORPHIC COMPLEX 

The oldest rocks in the study area occur in the Paleoproterozoic Höhewarte Complex (Figure 3.15). The 

complex formed during development of the Kalahari Craton in Vaalian (> 2 000 Ma) to Early Mokolian (2 000 

– 1 800 Ma) times, and through several cycles of subsequent metamorphism. The Höhewarte Complex 

forms a roughly circular dome structure with a diameter of approximately 40 km southeast of Windhoek 

(Schneider, 2004). It also underlies the extensive peneplain in the area of the Hosea Kutako International 

Airport. The lithology is dominated by mica schist, porphyro-blastic ortho- and para-gneiss, migmatite, granite 

gneiss and amphibolite (Schneider, 2004).  

 

3.8.2 DAMARA SEQUENCE 

The late Precambrian to early Palaeozoic Damaran Orogeny (1 000 – 500 Ma ago, Scheider, 2004) is part of 

the pan-African mobile belt system and connects with the Zambezi and Mozambique Belts. It underlies a 

vast tract of Namibia, where it can be subdivided into several geological provinces. Miller (1983) grouped the 

intra-continental branch of the Damaran Orogeny into seven zones bases on stratigraphy, structure, grade of 

metamorphosis, plutonic rock and geochronology (Schneider, 2004). Three of these zones run through the 

study area, namely the Okahandja Lineament, Southern (Khomas) Zone and the Southern Margin (Hakos) 

Zone. The Okahandja Lineament is the most important boundary in the Orogeny, with major changes in 

stratigraphic succession, structural style and age of deformation (Schneider, 2004). Both the Okahandja 

Lineament and the Southern Zone (Khomas Zone) are composed of the Kuiseb Group, but with different 

metamorphic characteristics. The Southern Margin Zone (Hakos Zone) shows intense thrusting, the result of 

continental collision (Schneider, 2004). 

 

During its history, the Damaran Orogeny passed through a Wilson cycle, evolving through the successive 
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stages of rifting, spreading, plate convergence, subduction and continental collision (Miller, 1983). Kukla’s 

model (1992) supports this concept of convergence and collision of the Kalahari and Congo Cratons 

following a rifting and spreading phase, and includes formation of the Khomas Hochland accretionary prism 

of Late Proterozoic age, developed in the Khomas Trough.  

 Rifting: Initial rifting started around 750±65 Ma ago (Miller, 1983), and was characterised by formation 

of fault grabens filled with fluvial, lacustrine, shallow marine and volcanogenic deposits with rapid facies 

changes (Hegenberger, 1993).  

 Spreading: Advanced rifting led to crustal thinning and the development of an oceanic spreading centre 

in the Khomas Sea. This phase has been confirmed by the presence of tholeiitic, mid-ocean ridge-type 

metabasalts and pillow lavas of the Matchless Amphibolite (Kukla, 1992). Breccias, meta-gabbros and 

ultramafic lithologies also occur within the oceanic sequence. The amount of tectonic shortening 

indicates that the basin had a minimum width of several hundreds of kilometres, once spreading ceased 

(Kukla, 1992).  

 Convergence: The next phase was convergence and subduction of Khomas Sea oceanic crust beneath 

the Congo Craton. An oceanic trench developed along the southern margin of the Congo Craton, where 

sedimentary precursors of the Kuiseb schists accumulated as turbidites on an elongated submarine fan, 

incorporating large amounts of clastic sediments (Kukla, 1992). The trench sediments accreted against 

the Congo cratonic margin. 

 Subduction: The Khomas Hochland accretionary prism evolved through the offscraping of submarine 

fan lithologies from the descending oceanic slab. The dominance of metasediments relative to basalts 

within the present-day Khomas Trough confirms high sediment input into the oceanic trench. Clastic 

sediments were preferentially accreted whereas oceanic basalts and pelagics were mostly subducted 

(Kukla, 1992). During accretion, early isoclinal folding occurred within the accretionary prism, the D1-

phase of deformation. The backstop of the accretionary prism was located at the southern margin of the 

Congo Craton and Kukla suggests that this structure was the initial expression of the Okahandja 

Lineament. Small amounts of pre-, syn- and post-tectonic alkaline and calc-alkaline granites, diorites 

and metagabbro intrusions occurring in the southern Central Zone within 30 km from the Okahandja 

lineament represents the magmatic arc associated with the subduction zone (Miller, 1983).  

 Continental collision: Collision between the two cratons caused onset of major compressive stresses in 

the lithosphere, causing the D2, D3 and D4 deformation patterns in the Khomas Trough. The Us Pass 

Lineament, forming the northern edge of the Southern Margin Zone, is interpreted as representing the 

continental suture zone (Hoffmann, 1983, 1989). 

 

The Matchless Amphibolite Belt (Figure 3.19) is a striking and economically important linear feature running 

southwest to northeast through the Khomas Hochland, from Homeb in the Namib to near Steinhausen, 

where it disappears under Kalahari sand, over a distance of 350 km (Schneider, 2004). Killick (2000) 

describes it as a relatively thin, but laterally continuous belt of metamorphosed, subalkaline, tholeiitic, ocean-

floor basalt within metapelitic schist. It is up to 3 km wide, forming lenses and layers of amphibolites 

interbedded with Kuiseb Formation schist. Its estimated maximum stratigraphic thickness is 10 km. The belt 

is a remnant of the basaltic ocean floor of the ancient Khomas Sea (or Damaran Southern Zone Ocean), 

which was sheared off during the subduction of the oceanic crust beneath the continental crust of the Congo 

Craton (Schneider, 2004). One proposed mechanism is that the Matchless Amphibolite was incorporated into 
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the prism during the late stages of the accretionary processes by off-scraping from an oceanic crustal high 

such as the mid-ocean ridge, an aseismic ridge or an oceanic plateau (Killick, 2000). A second possible 

emplacement mechanism is that it may have been structurally emplaced during obduction of the accretionary 

prism onto the Kalahari Craton during the D3 deformation, with fluids actively participating in the development 

of shear zones. It has a mid-ocean rift basalts geochemical signature, interpreted as metamorphosed, syn-

sedimentary submarine volcanics emplaced into sediments covering a mid-ocean ridge (Schneider, 2004). 

Killick (2000) sites evidence that the belt is stratigraphically inverted over most of its length. The Matchless 

Amphibolite Belt contains 18 known base metal deposits, grouped into four clusters, which formed as part of 

the hydrothermal system during spreading. These are classified as Besshi-type volcanic hosted massive 

sulfide deposits, and it is estimated that the water depth at the time of their formation must have been at 

least one kilometer (Killick, 2000). In the study area, copper is mined from one such cluster of three sulfide 

lenses at Otjihase Mine (Schneider, 2004). 

 

The sedimentology and stratigraphy of the Witvlei and Nama Groups (Figure 3.18) of the upper Damara 

Sequence had been studied extensively by Hegenberger (1993). These sediments are found towards the 

centre and east of the present study area. They were deposited on the Southern Foreland some 650 – 530 

Ma ago (Miller, 1983) and preserved from erosion by being buried under Karoo sediments in the Witvlei and 

Gobabis Synclinoria (Figure 3.21). The Witvlei Synclinorium consists of the Rooiwater, Achenib and Eindpaal 

Synclines and the Vergelegen Anticline. The Synclinorium is approximately 180 km long and up to 20 km 

wide. The marginal thrust plane of the Damaran Orogeny forms the northwestern boundary of the Witvlei 

Synclinorium. Steep hills and ridges are formed in the central part of the synclinorium by erosion-resistant 

quartzite of the Weissberg Member. The overlying shales are deeply eroded. They occupy the inter-montane 

valleys and plains. Several anticlines show relief inversion: once erosion had removed the resistant 

Weissberg Member quartzite, the softer rocks of the underlying Buschmanns-klippe Formation (Figure 3.22) 

eroded quickly, forming oblong valleys within the centres of anticlines. In the southwest the Witvlei 

Synclinorium is underlain by the Doornpoort and Kamtsas Formations (Figures 3.21 and 3.22) that are 

exposed at the southwestern tip of the Rooiwater Syncline. The broad Nina Anticline (Kamtsas Formation 

arenites of the Nosib Group) separates the Witvlei and Gobabis Synclinoria. The latter consists, from west to 

east, of the Gobabis Syncline, Masis-Mamuno Anticline (which further north forms the Ganzi Ridge), Aranos 

Syncline and Uichenas Anticline, all trending southwest to northeast and mostly covered by Karoo and 

Kalahari sediments. Witvlei and Nama Group exposures are found along the Black and White Nossob River 

valleys (Hegenberger, 1993). 

 

Hegenberger’s stratigraphic sequence (Hegenberger, 1993), from the bottom upwards (see Table 3.2), is as 

follows: 

 The Tsumis Group (Bitterwater, Aubures, Doornpoort, Klein Aub and Eskadron Formations) (Figures 

3.20 and 3.22) contains the oldest sediments. These were deposited on the Kalahari Craton as fluvial, 

lacustrine, shallow marine and volcanogenic sediments of the early Damara rifting phase (Hoffmann, 

1989). They consist of conglomerate, sandstone, shale and carbonates.  

 The succeeding Nosib Group (Kamtsas Formation) represents later rift filling and consists mainly of 

fluvial arenites (Figures 3.18, 3.20 and 3.22).  

 A patchy mixtite of glacial origin (diamictite), the Blaubeker Formation, indicates major unconformities 
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between the underlying Nosib and overlying Witvlei Groups (Figures 3.20 and 3.22).  

 
Table 3.2: Lithostratigraphic units of the Damara Sequence in the study area (Hegenberger, 1993). 

Group Formation Member Main Lithology  
(facies in brackets) Depositional Environment 

Grϋnental 
Sandstone (b) 
Shale, dark limestone (c) 
Dark limestone (c) 

Shallow subtidal (c) 
Offshore to subtidal lagoonal (a) 
Fluviatile (b) Zaris 

Zenana Quartzite (upper unit) 
Dark dolomite (lower unit) 

Sandy tidal delta fan (distal) 
Shallow subtidal Nama 

Dabis Weissberg 
Orthoquartzite (a) 
Submature quartzite (b) 
Conglomerate (c) 

Protected intertidal to shallow 
subtidal (a) 
Onshore tidal flat (b) 
Proximal delta fan (c) 

Unconformity, in places paraconformity or conformity 

Okambara 

Light-grey dolomite (upper 
unit) 
Quartzite (middle unit) 
Light-grey limestone (lower 
unit) 

Inter to supratidal (upper) 
Tidal channels (middle) 
Shallow subtidal (lower) 

La Fraque Shale, marl, subordinate 
carbonates 

Muddy shallow subtidal (shelf 
lagoon) 

Busch- 
manns- 
klippe 

Bildah  Light-grey and pink 
dolomite 

Shallow subtidal;  
intertidal, locally shallow 
subtidal 

Witvlei 

Unconformity 

Simmenau 
Quartzite (main) 
Conglomerate 
(subordinate) 

Braided fluvial; 
Alluvial fan 

Constance Shale, siltstone, 
subordinate carbonates 

Muddy shallow lagoonal or 
flood-plain 

Gobabis Dark carbonates (laminated 
or massive) 

Lacustrine, shallow-water (b) 
Anoxic lacustrine, deepwater (a) 

Witvlei Court 

Tahiti Quartzite  
Unconformity 

 Blaubeker  Mixtite (diamictite)  
Unconformity 

Nosib Kamtsas  Quartzite, conglomerate  
Unconformity 

Eskadron  Quartzite, shale carbonate  Tsumis Doornpoort  Quartzite, conglomerate  
 

 The Witvlei Group was deposited on the southern shelf of the Damara trough, on the northern and 

western edge of the Kalahari Craton. It shows two sedimentary cycles, represented by the Court and 

Bushmannsklippe formations (Figures 3.20 and 3.22). Sedimentation of the Witvlei Group was 

terminated by a transgression. The Court formation was probably deposited towards the end of the 

rifting stage, firstly as deepwater laminate carbonate, passing into shallow-water carbonate (both of the 

Gobabis Member), followed by floodplain mudstone with carbonate intercalations (Constance member) 

and then by fluvial sandstone (Simmenau member). The Bushmannsklippe Formation was most likely 

deposited during the drifting stage, in a flexure basin of a passive margin. It starts with light-coloured 

intertidal dolomite (Bildah Member), grading into shallow subtidal limestone towards the top, followed by 

marl (La Fraque Member), which was deposited in a muddy lagoonal to subtidal environment. This is 

followed by three units of the Okambara Member, namely a shallow subtidal lower unit consisting of 

limestone with arenaceous intercalation, showing edgewise conglomerate and hummocky cross-
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stratification; an arenaceous middle unit also showing crossbedding; and an upper unit consisting of 

dolomite with sandy intercalations containing flat-pebble conglomerate and, near the top, stromatolites 

and pseudomorphs after an evaporite mineral, indicative of regression. 

 The Dabis and Zaris Formations of the Nama Group were mostly deposited in peritidal and shallow 

subtidal environments, with clastic material derived from the Kalahari Craton (Figures 3.20 and 3.22). 

The basal unconformity probably indicates the reversal of plate motion from spreading to convergence. 

 

3.8.3 KAROO SEQUENCE 

Karoo Sequence (Figure 3.17) sediments are mostly buried under the Cenozoic Kalahari Group. A few 

scattered Dwyka diamictites of the lower Karoo Sequence are found on the Nossob Valley floor (Schneider, 

2004). 

 

3.8.4 KALAHARI SEQUENCE 

The deposition of the Kalahari Sequence (Figure 3.17) followed on the disintegration of Gondwana and the 

subsequent isostatic uplift of the continental edges about 120 Ma ago. It covers roughly one third of 

Namibia’s surface and includes stabilised red sand dunes and flat sand plains, conglomerates, sandstones, 

shales and siliceous calcretes. Clay-filled pans of Cenozoic to recent age are often found among the 

Kalahari Sequence sediments (Schneider, 2004).  

 

3.9 LITHOLOGY  

3.9.1 KHOMAS HOCHLAND 

Schneider (2004) describes the origin of the Khomas Hochland as a narrow elongated branch of the Khomas 

Sea which eventually became the Damara Mobile Belt. Clayey-sandy sediments were eroded from the 

Congo Craton towards the north and the Kalahari Craton towards the southeast and deposited to a thickness 

of 10 000 m in this narrow sea. During the subsequent Damaran Orogeny these sediments were intensely 

folded and metamorphosed to intercalated mica-schist, quartzite and meta-greywacke, presently known as 

the Kuiseb Formation (Figure 3.20) of the Damara Sequence (Schneider, 2004). 

 

The Damara Mountains were eroded over the aeons to form a vast peneplain. After the break-up of 

Gondwana the area was extensively uplifted. Further erosion over millions of years resulted in the present 

plateau with its rolling topography (Schneider, 2004).  

 

3.9.2 WINDHOEK-OKAHANDJA VALLEY 

The Windhoek-Okahandja Graben was formed as a result of powerful extensional forces applied on the 

continental crust since the Mid-Jurassic (170 Ma ago), before the break-up of Gondwana, which created 
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north-south-trending faults. Crustal stress was relieved by vertical (and minor horizontal) displacement of 

individual blocks in the mid-Tertiary (35 Ma ago). The valley is covered by Cenozoic sediments deposited 

on the schist of the Kuiseb Formation of the Damara Sequence (Schneider, 2004). 

 

3.9.3 AUAS MOUNTAINS 

Auas Formation (Figure 3.20) sediments were laid down 730 million years (Ma) ago in a spreading ocean 

on the continental shelf of a passive margin. During the Damaran Orogeny they underwent intense folding 

and thrusting towards the southwest. The highest peaks of the Auas Mountains are capped with weathering-

resistant quartzites forming steep south-facing cliffs (Schneider, 2004).  

 

3.9.4 AREA SOUTH OF WINDHOEK TOWARDS REHOBOTH 

The mountain pass between Windhoek and Usib Valley towards the south is a surface manifestation of the 

block faulting that originally caused the formation of the Windhoek-Okahandja Graben. The accompanying 

volcanism resulting in the emplacement of thrachytes and phonolites of mid-Tertiary age, such as the 

Schildkrötenberg and Huquanis phonolites north of Aris and the Gocheganas trachyte (also known as the 

‘Backenzahn’ or ‘Kiestand’). Older granitic intrusions from the Kibaran (1 200 Ma) and Damaran (500 Ma) 

Orogenies also occur in the Aris area, such as Falcon Rock. This whole area is underlain by the Höhewarte 

Complex, composed of quartz-feldspar gneisses inter-layered with meta-carbonates and amphibolites. The 

Bismarckfelsen and surrounding hills towards the west are composed of erosion-resistant quartzite of the 

Melrose Formation (Figure 3.20). Further south of Aris, the glacial Naos Formation (Figure 3.20) is visible 

west of the trunk road towards Rehoboth, while the Nosib and Hakos Groups (Figure 3.18) of the Damara 

Sequence are exposed towards the east. These were thrust to the southwest onto the Höhewarte Complex, 

where they now form tectonic nappes (Schneider, 2004). 

 

3.9.5 AREA BETWEEN WINDHOEK AND HOSEA KUTAKO INTERNATIONAL AIRPORT 

The Kleine Kuppe Formation (Wasserberg Member) (Figure 3.20) just east of Windhoek, contains mainly 

micaceous quartzites intercalated with Kuiseb Formation schists. Between the Dordabis turn-off and Hosea 

Kutako International Airport, a series of thrusts towards the southwest, in schist and quartzite of the Hakos 

Group, is found. The schist and quartzite are extensions of the Auas Mountains south of the road (Schneider, 

2004). 

3.9.6 AREA NORTH OF HOSEA KUTAKO AIRPORT (TOWARDS STEINHAUSEN) 

North of the airport one finds intercalated mica schist and quartzite of the Kuiseb Formation, including the 

mountains Lydiakop, Ludwigskop and Neudammkuppe. These mountains are the products of block faulting 

caused by the extensional tectonics that operated during the mid-Tertiary. Further east on the Kapps Farm – 

Steinhausen road, the terrane is underlain by gneisses of the Höhewarte Complex. One also finds extensive 

thrusting, underlain by graphitic schist of the Hakos Group, Kudis Subgroup, before coming across more of 
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the Kuiseb Formation. The Matchless Amphibolite Belt (Figure 3.19) runs through this area, but without 

prominent outcrops (Schneider, 2004). 

 

3.9.7 BISMARCK MOUNTAINS AND TOWARDS DORDABIS 

The Bismarck Mountains southeast of the Dordabis turn-off had been formed by the thrusting of Auas 

Formation (Figure 3.20) quartzite onto Nosib Group schist. The road passes over a few outcrops of quartz-

feldspar gneiss inter-layered with marble and amphibolite of the Höhewarte Complex. These are locally 

intruded by Mesoproterozoic Rietfontein Granite which forms hills such as the Dassiekuppe. Rosaberg is 

composed of quartzite of the Auas Formation (Figure 3.20) thrust onto schist and marble of the Hakos 

Group, Kudis Subgroup (Figure 3.19). Dreispitz is composed of schist and quartzite of the Kudis Subgroup 

thrust onto the younger Vaalgras Subgroup (Figure 3.19) and the Höhewarte Complex. Humansberg is 

composed of feldspathic quartzite of the Kamtsas Formation of the Nosib Group. The Kamtsas Formation 

was deposited in a half-graben during early stages of rifting 750Ma ago. The Elisenhöhe Mountain and its 

surrounding mountains are composed of marbles of the Kudis Subgroup, with Kamtsas Formation quartzites 

thrust onto them. The Höhewarte Complex underlies all of this terrrane.  

 

The Koedoeberg and Hatsamas Mountains are composed of Kamtsas Formation quartzite thrust onto 

younger Vaalgras Subgroup lithologies. The Grimmrücken is composed of Kamtsas Formation quartzite. At 

Dordabis there is a major thrust along which quartzite of the Kamtsas Formation has been thrust onto 

quartzite and phyllite of the Rehoboth Sequence (Figure 3.17) (of Palaeoproterozoic age). South of Dordabis 

the landscape flattens out and Kalahari sediments take over. The Eskadron Formation (Figure 3.20) (of 

Mesoproterozoic age) of the Sinclair Sequence (Figure 3.17), with red-brown quartzite, crops out as a range 

of small hills about 15 km southeast of Dordabis, as a result of a fault. The Karubeamsberge and the 

Hartebeestrückenkuppe are composed of quartzite of the Eskadron Formation, while the flat area between 

the two ranges is underlain by black limestones of the Kuibis Subgroup (Figure 3.19), Nama Group. The 

northeastern extension of the Karubeamsberge consists of metasediments of the Doornpoort Formation of 

the Sinclair Sequence, overlying the Eskadron Formation (Schneider, 2004). 

 

3.9.8 AREA FROM HOSEA KUTAKO INTERNATIONAL AIRPORT TO WITVLEI 

Cenoizoic age sediments of the Kalahari Group, with some ridges of Nosib Group quartzite are found east of 

the airport. Northeast trending folds and thrusts with large displacements occur, and several deformation 

events have been recognized in the Omitara area. Near Omitara a 10 km wide zone of quartzites with heavy 

mineral layers, conglomerate bands and scattered pebbles of the Kamtsas Formation, Nosib Group, are 

found. Further east, these quartzites are thrust over the red-brown quartzites of the Eskadron Formation, 

Sinclair Sequence of Mesoproterozoic age. The latter contains copper deposits in three broad zones, which 

were most probably deposited in shallow basins. Witvlei is located in a gap between a ridge of sandstone 

Kuibis Subgroup of the lower Nama Group, and quartzite of the Nosib Group (Schneider, 2004). 
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3.9.9 WITVLEI TO GOBABIS 

Feldspatic quartzites of the Kamtsas Formation underlie the area between Witvlei and Gobabis. Gobabis lies 

on the contact between the Nosib Group, which is visible in isolated low hills, and the Nama Group, which is 

partially followed by the road towards Buitepos, as a syncline (Schneider, 2004). 

 

3.9.10 GOBABIS TO LEONARDVILLE 

The flat landscape south of Gobabis is underlain by sandstones of the Kuibis Subgroup, Nama Group, and 

towards the southern edge of the study area, by the Nosib and Witvlei Groups. Dwyka diamictites of the 

lower Karoo Sequence are found in the valley floors of the White and Black Nossob Rivers, indicating that 

these parts of the drainage system are probably quite old. Downstream of the confluence of these two 

ephemeral rivers on the farm A-Ais (just south of the study area), the river is known as the Nossob. The 

lower part of the Nossob, as well as the Olifants and Auob Rivers are thought to date to the end of the last 

ice age (Schneider, 2004). 

 

The lithology of the study area is summarised in Figure 3.23 and Table 3.3 

 

Table 3.3: Lithology (Geological Survey of Namibia, 2008) 

CODE ROCK TYPES 
Cd Tillite, boulder shale, shale, sandstone, limestone 
Egdb Granite 
Eu Serpentinite, chlorite schist, talc schist 
Mbi Quartzite, schist, conglomerate, quartz porphyry 
Md Quartzite, conglomerate, shale, basalt, rhyolite, ignimbrite 
Mgg Granite 
Mho Para-/orthogneiss, metasedimentary rocks, granite, metabasite dykes 
Mm Quartzite, phyllite, rhyolite, basalt, conglomerate, intrusive metabasite dykes 
Mnu Rhyolite, ignimbrite, conglomerate, quartzite, shale, basalt 
Nau Marble, schist, ortho-amphibolite, quartzite 
Nb Mixtite 
Nc Mixtite, minor schist, shale, quartzite, iron-formation, ortho-amphibolite, graphitic schist 
Nd Schist, marble, quartzite, conglomerate, graphitic schist 
Ndu Quartzite, conglomerate, schist, marble 
Ngl Syntectonic gneissic leucogranite 
Nk Mica schist, minor quartzite, graphitic schist, marble 
Nka Quartzite, conglomerate, schist, marble 
Nka_uc Quartzite, conglomerate, schist, marble 
Nks Sandstone, black limestone, conglomerate, shale 
Nks_uc Sandstone, black limestone, conglomerate, shale 
Nku Marble, schist, quartzite, graphitic schist 
Nml Ortho-amphibolite 
Nsc Marble, schist, quartzite, calc-silicate, graphitic schist 
Pp Shale, mudstone 
Pp_uc Shale, mudstone 
Q Alluvium, sand, gravel, calcrete 
Tr Trachyte, phonolite 
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Figure 3.23. Lithology map (Geological Survey of Namibia, 2008). See Table 3.3 for full legend. 

 

3.10 SOILS OF THE STUDY AREA – EXTANT INFORMATION 

Scholz (1968a) described some soil types of the southern Khomas Hochland and a small plot further to the 

east (Scholz 1968b). He noted (1973) that the soils are generally rich in materials derived from physical 

weathering. Organic matter content is very low (OC < 1 %) as a result of low litter supply and rapid 

mineralization, with low water-holding capacity. Ganssen (1960, 1963) and Ganssen and Moll (1961) 

recorded that the soils are shallow and also often skeletic, especially on slopes, where they can turn into 

blockfields and bare bedrock. Blümel (1991) mentioned that pedogenic duricrusts like calcrete, silcrete and 

ferricrete are common compounds in the soils, usually genetically unrelated to the host sediment.  

 

Soils evolved from Kalahari sand are weakly developed. Profile development is almost absent and the soils 

are characterized by low levels of nutrients and organic matter (Thomas and Shaw, 1991). In the linear 

dunefields, nutrient content and sand grain size vary along catenas across the dune ridges, with the highest 

nutrient concentrations and the finest grain sizes being found in the inter-dune areas (Lancaster 1986; 

Thomas and Shaw, 1991). Kalahari sands have a high hydraulic conductivity, which allows for potential 

recharge but poor storage. Most of the soils formed from Kalahari sands are classified as Arenosols (FAO-

UNESCO, 1974, 1977; FAO 1998a) or quartzipsamments in the USDA nomenclature (Soil Survey Staff, 

1975, 1998). 

 

The FAO-UNESCO Soil map of the World (FAO-UNESCO, 1974, 1977) contains information on Namibian 

soils supplied by Scholz (1963c). The study area is mainly divided between two broad soil regions. The 

Kalahari Desert towards the east is generally occupied by luvic and cambic Arenosols, with intensely leached 

sand found in depressions, and some albic Arenosols with deep-lying duripans in some cases. Calcic 

Xerosols, Vertisols and Solonchaks are found in less sandy areas, which are often of alluvial origin. The 
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western part is mainly covered by stony calcic Xerosols (typical soils of an aridic moisture regime, having 

weak ochric A horizons and calcium carbonate enrichment within 125 cm of the surface), with Lithosols (soils 

limited in depth by continuous hard rock within 10 cm of the surface and develop mainly in mountainous 

areas) and rock outcrops. The cambic Arenosols are described as generally poor in organic carbon, nitrogen, 

exchangeable bases and phosphorus, with slightly acidic pH at the surface, but they become less acidic with 

depth. According to this source, Xerosols contain high concentrations of cationic nutrients, but high levels of 

soluble salts may be present, while trace element deficiencies, especially zinc and iron, are common. These 

soils may suffer from imperfect drainage due to the presence of petrocalcic or argillic B horizons. Lithosols 

are found in areas of dissected topography with steep slopes. They are shallow and very stony, thereby 

limiting their use mostly to extensive livestock production (FAO-UNESCO, 1974, 1977).  

 

Loxton, Venn and Associates (1971) mapped the soils and irrigation potential of northern and central 

Namibia at small scale, using the South African classification system that would later be published as the 

Binomial System (McVicar, et al., 1977). Figures 3.24 – 3.27 depict their maps of the topography, soil depth, 

soil potential for irrigation and dominant soils of the present study area. 

 

Bertram and Broman (1999) and Bertram and Kempf (2002) carried out studies on seven farms, viz. 

Neudamm, Bergvlug, Bellerode, Sonnleiten, Hoffnung, Höhewarte and Ondekaremba, concentrating on the 

first two in the Neudamm Highlands east of Windhoek. Bertram and Kempf (2002) found that classification of 

the soils of the Khomas Hochland according to the FAO Revised Legend (FAO-UNESCO-ISRIC, 1988) or 

World Reference Base (FAO, 1998a) only key out as Regosols and Leptosols. They argued that this is not 

meaningful, as these Reference Groups, strictly speaking, only differ in solum depth. They suggested the 

creation of a new Reference Soil Group in the World Reference Base, namely Colluvisols, for finely textured 

soils developed in young colluvium, to emphasise the importance of landscape evolution for pedogenesis. 

They also suggested that a new soil qualifier should be adopted for weakly developed skeletic soils on 

saprolite, namely saprolitic Leptosols.  

 

According to Bertram and Kempf (2002), typical catenas showed saprolitic Leptosols on top, through lithic 

Leptosols and cambic Leptosols on slopes, to Colluvisols on valley floors. Fluvisols were found on terraces. 

Kempf (1994, 1999a, 1999b, 1999c), in his wider analysis of the central Namibian geomorphology, described 

recent Cambisols and Arenosols, denudated Leptosols, young Fluvisols, Vertisols and Regosols as the most 

common soil types.  

 

Bertram and Broman (1999) mentioned remnants of older Ferralsols and Acrisols in pockets on the pediment 

furthest from drainage lines on the farms Neudamm, Höhewarte, Sonnleien and Ondekaremba. These are 

usually preserved by colluvial cover of similar material, derived from sites further upslope. The type 

specimen is on farm Höhewarte, where the colluvium contains Mid-Paleolithic artefacts on top of a fossil 

surface containing Acheulian tools in situ (Kempf 1999a; 1999c). This may indicate a middle Pleistocene 

colluvial phase during which much of the original ferralic substrates were eroded from local watersheds. 

Kempf (1994, 1999a, 1999b) also found old Ferralsols, derived mainly from deeply weathered saprolitic 

country rock, with occasional ferricrete remnants. He noted that postgenetic aeolian and fluvial activity 

changed many of the ferralitic or fersialitic substrates, presumably during the Quaternary. 
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Figure 3.24. Topography (MAWF, 2005, based on Loxton et al., 1971) Figure 3.25. Soil depth (MAWF, 2005, based on Loxton et al., 1971) 

  
Figure 3.26. Soil potential for irrigation (MAWF, 2005, based on 

Loxton et al., 1971) 

Figure 3.27 Dominant soil (MAWF, 2005, based on Loxton et al., 

1971)



3  25 

Saprolite, deeply chemically weathered bedrock, is a very characteristic component of the central highlands 

of Namibia. Kempf (2000) mentioned signs of saprolitisation down to a depth of 60 – 80 m in the Khomas 

niveau. Kempf considered saprolitisation as an important factor in any recent and ongoing soil formation, and 

as compelling evidence for the occurrence of etchplanation. He proposed (Kempf, 2008) that the most recent 

phase of environmental conditions allowing deep chemical weathering occurred during the mid-Pliocene. He 

suggested that an earlier, more physical weathering phase during the Late Miocene / Early Pliocene caused 

the deep dissection of the greater (western) part of the Khomas planation level, as a result of the steep 

gradient towards its base level, the Atlantic Ocean. The eastern part of the highlands with its lower absolute 

height above its base level – the Kalahari endorheic system – consequently had lower drainage line 

gradients and was less affected by linear erosion processes. This eastern part of the previous Khomas 

niveau thus underwent gradual planation rather than deep vertical incision to form the present Seeis niveau. 

Exposed outcrops of the deeply weathered bedrock are prone to erosion and bedrock-cut gullies are 

common. The saprolite and overlying weathering substrates show alteration by subsequent physical 

weathering during the End-Pliocene to Quaternary (Bertram and Kempf, 2002).  

 

Kempf (1999) observed strong relationships between soil types, weathering status, pedochemistry and 

morpho-position of the soil profile. He concluded that the morpho-position is the most important factor for 

pedogenesis and soil dynamics in this semi-arid climate, with little soil formation today. He postulated that 

Quaternary pedogenesis and soil dynamics as well as morphological development of central Namibia are 

characterised by: 

 Deeply weathered peneplanation relief, probably until the Miocene 

 Existence of fossil ferralitic and fersialitic paleosoils 

 Discrete erosive, periods with temporary re-deposition 

 Quaternary imprint due to intensified physical weathering and more pronounced topography. 

 

Bertram and Broman (1999) and Bertram and Kempf (2002) concluded that slope profiles are mainly convex 

on the crest, sometimes straight in the mid-slopes, with concave footslopes in the eastern Khomas 

Hochland. They found a slight tendency for lithic and skeletic phases to be more frequent on convex slopes. 

Bertram and Broman (1999) found some clay enrichment on convex slopes. They did not find a significant 

correlation between slope angle and soil characteristics. Colluvial soils were not found on slopes above 11o; 

all of those (up to 36o) were Leptosols. However, they did find some Leptosols on valley floors and on slopes 

of only 1o. They mentioned that soil profiles on watersheds show truncation, being eroded down to a thin 

saprolitic layer. Soils were weakly developed and particularly shallow on slopes. Abundance of rock 

fragments varied from 0 to 91 %. Weathering substrates were highly skeletic, especially on scree cones of 

main scarps, in valleys and on steep upper slope positions. The dominant textural class was sandy loam, 

followed by loam and silt loam. Clay content was lower than 5 % and organic matter content was negligible. 

Soil colours were brownish (yellowish brown, bright brown, dull yellowish brown) and greyish and the colluvia 

had lower chromas than the weathering substrate. Surface pavements were common, especially on slopes 

and high planation remnants. Those were composed of strongly weathered schistoid bedrock debris and 

weathering-resistant vein quartz. 

 

Bertram and Broman (1999) described catenary relationships derived from 89 samples from 56 profiles, 
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arranged according to position (upper slope, middle slope, lower slope and valley floor) from 15 slope 

transects. They found that the absolute content of skeletal material (Ø > 2 mm) markedly increased upslope. 

They noticed a tendency for the majority of upper slopes and about two thirds of middle slopes to key out as 

Leptosols. Soils not fully satisfying all criteria for classification as Leptosols, still had leptic and or skeletic 

phases. Lower slopes and valley floors contained weakly developed fine grained brownish grey soil on 

colluvial sediments, classified as Regosols (or Colluvisols, if one follows the suggestion of Bertram and 

Kempf, 2002). They mentioned that coarse material is often found arranged in stonelines, representing 

previous erosion surfaces. 

 

Bertram and Broman (1999) observed that the absolute clay percentage was equally high on lower slopes 

and valley floors, but relative clay content (% of fine earth fraction) was higher on lower slopes than valley 

floors. The absolute sand content decreased rapidly upslope, though the relative sand content was similar in 

all positions. The absolute silt content also decreased upslope, with the relative silt content being lowest on 

lower slopes. In general, sandy loam was the predominant textural class on all slope positions, with 

especially medium sand content being constant throughout most catenas. Sodic properties were mainly 

found in valley floor substrates, which proved to be very susceptible to gully erosion due to rapid colloid 

dispersion on wetting, especially after loosening of topsoil by overgrazing and trampling. Luvic properties – 

clay enrichment in the subsoil – were not restricted to particular slope positions, though it was somewhat 

higher in valley floors (Kempf 1993, 1994). In general, base saturation and pH were found to be higher on 

valley floors and lower slopes. Base saturation, Mg and K peaked in lower slopes positions. However, 

Bertram and Broman could not establish an unambiguous pattern of base saturation (and thus eutric or 

dystric status) with regard to slope position. They found that the variation in chemical characteristics within 

slope classes was larger than between classes. None of the chemical parameters showed continuous 

increase or decrease from the upper slope to the valley floor. Lower slopes seemed to be anomalous in 

many respects (higher or lower than middle slope and valley floors). Most pronounced differences were 

observed between middle slope and lower slopes. They concluded, in contrast to Kempf (1999), that there 

was no good correlation between slope position and soil characteristics. 

 

 

    
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CHAPTER FOUR 

METHODOLOGY 

 

4.1 INTRODUCTION 

Digital elevation data and satellite imagery were used to delineate terrain units, based on the FAO/SOTER 

methodology (FAO, 1977, 1989, 1990, 1995, 2003; ISRIC, 1991). Analytical data from soil samples collected 

from 392 soil profiles in the study area, were extrapolated to these terrain units.  

 

4.2 DATA SOURCES 

4.2.1 TOPOGRAPHICAL MAPS 

The study area is covered by 32 topographical maps at 1:50 000 scale (Surveyor General, 1972 – 1976) 

(Figure 4.1) and two maps (2216 Windhoek and 2218 Gobabis) at 1:250 000 scale (Surveyor General, 1983 

– 1984). These were digitally scanned and used as background layers in the GIS to visually delineate terrain 

types, which were subsequently digitized on-screen (Kutuahupira and Mouton, 2006). 

 

 

Figure 4.1. Layout of 1:50 000 topo sheets 

 

4.2.2 SATELLITE IMAGES  

Landsat 5 TM and Landsat 7 ETM+ images of 1998 - 2000, geo-referenced, radiometrically corrected, 
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mosaiced and cut on the 1:250 000 topographical sheet templates (ICC, MAWRD and AECI, 2000), were 

used to visually interpret and delineate homogeneous terrain and soil units at a scale of 1:50 000 

(Kutuahupira and Mouton, 2006). On-screen digitising was carried out using ArcView 3.2 GIS software 

(ESRI, 1999).  

 

Landsat 7 ETM+ images (P177/R075 2002-08-20; P177/R076 2002-08-20; P178/R075 2001-05-04; 

P178/R076 2001-05-04), with 28.5 m resolution, were used to carry out supervised classification of soil 

colour and oxides, employing ERDAS Imagine 9.1 Professional image processing software (Leica, 2006). 

For that purpose, 217 field observations were used as training pixels. In addition, Definiens Professional 5 

image processing software (Definiens Software, 2006) was used for segmentation of the study area into 

homogeneous units. 

 

4.2.3 DIGITAL ELEVATION DATA 

The methodology employed by the author to delineate Terrain Units, was loosely based on that of Dobos, 

Daroussin and Montanarelle (2005). Shuttle Radar Topography Mission (SRTM) digital elevation data, dated 

2004, with 1 arc-second (approximately 30 m) resolution and in WGS84 geographical latitude / longitude 

coordinates, were used in a digital elevation model. Tiles S22E16, S22E17, S22E18, S22E19, S23E16, 

S23E17, S23E18, S23E19, S24E16, S24E17, S24E18 and S24E19 covered the study area, as well as one 

degree extra on each side.  

 

4.3 FIELD OBSERVATIONS 

Soil profile descriptions, collection of soil samples, preliminary classification of the soils, delineation of terrain 

and soil units, mapping of these units on topographic sheets, and transfer of the data into digital format were 

done by Kutuahupira and Mouton, agricultural research technicians of the AEZ Programme, during 2004 and 

2005 (Kutuahupira and Mouton, 2006). Field and analytical data were also obtained from J. Kempf, a lecturer 

from the University of Würzburg, Germany, and long-time collaborator of the AEZ Programme (Kempf, 

1999c, 2008). The author found it difficult to interpret and apply the terrain and soil units of Kutuahupira and 

Mouton. The author decided to re-map the area in terms of terrain units, in terms of SOTER classes, by 

employing digital elevation data and satellite imagery. Additional fieldwork  was undertaken during 2008, to 

verify computer-generated maps and to obtain data for supervised classification of satellite images. 

 

Kutuahupira and Mouton (2006) described their mapping methodology in detail, so only a summary is given 

here. A subjective sampling strategy was followed: observations were made at sites which were considered 

to be representative of distinct terrain units, identified on the maps prepared in the office and by the 

investigators in the field. A catenary transect approach was used to gain insight into the relationship between 

soils and terrain features, by driving and walking through the identified units. Roadcuts, augurings and 

minipits were employed to test the homogeneity of a unit, where after a full site and profile description was 

made at a representative site. A total of 344 profile descriptions, comprising 1013 horizons, were completed. 

An additional 48 profile descriptions, with analytical data, were obtained from Kempf (1999c, 2008). 



4   3 

 

Field observations and profile descriptions were carried out according to the FAO Guidelines for Soil 

Description (FAO, 1990). The following parameters were recorded on field forms: 

 Location: Profile number; latitude; longitude; elevation; year of profile description; month of profile 

description; location (farm name or relevant description); farm identification (title deed number); 

topographical sheet; land use; vegetation 

 Terrain: slope; landform; land element; position in landscape  

 Lithology: origin of parent material; lithology1; abundance and type of rock outcrops; abundance and 

type of surface fragments; underlying rock. 

 Erosion: surface sealing thickness and hardness; width and abundance of surface cracks; erosion 

type, degree and area affected 

 Profile: effective depth; horizon number; horizon designation; horizon depth; distinctness of horizon 

transition; diagnostic horizon; abundance, type and size of rock fragments; moist matrix colour (some 

descriptions of dry matrix colour); type, grade and size of structure; dry consistence (very few 

descriptions of moist consistence); estimation of clay content, sand grade and textural class; estimation 

of drainage category; mottles; nodules; cutans; cementation; presence of roots; presence of carbonates 

(reaction with 10 % hydrochloric acid); any additional profile information 

 Classification: provisional classification  - WRB (FAO, 1998a) 

 

Soil colour was determined using standard soil colour charts (Eijkelkamp, 1998) based on the original 

Munsell charts. The World Reference Base was used for classification of the soils (FAO, 1998a), with further 

reference to FAO (2001) and the ISSS Working Group RB (1998). 

 

Digital photos were taken of profiles and the surrounding landscape. Representative soil samples were 

collected from the respective horizons for analysis. Not all profiles were sampled, and not all samples 

analysed for all chemical and physical properties, due to time and financial constraints. 

 

4.4 LABORATORY METHODS 

Analyses were carried out to measure the following: pH in a 2:5 soil:water suspension; electrical conductivity 

in a 2:5 soil:water suspension; electrical conductivity in the saturated paste extract; organic carbon; 

extractable calcium, magnesium, potassium and sodium; exchangeable calcium, magnesium, potassium and 

sodium; cation exchange capacity; plant-available phosphorus; extractable iron, manganese, zinc and 

copper; nitrate, nitrite and sulfate of the saturated paste extract; sand, silt and clay; coarse-, medium-, fine- 

and very fine sand fractions.  

 

The bulk of the chemical and physical analyses were carried out by Ms A. Dausas, Mr T Kachote, Ms N. 

Sheya and Ms E. Stanley, agricultural research technician and technical assistants from the Agricultural 

                                            
1 In the respective analyses (Chapters 6 – 10), only three lithological units were considered, namely schist, quartzite and 
Kalahari sand. These were the only units recorded in sufficient numbers and with complete confidence by the technicians 
carrying out the profile descriptions. 
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Laboratory of the Namibian Ministry of Agriculture, Water and Forestry in Windhoek. The laboratory is a 

member of the Agricultural Laboratory Association of Southern Africa, and participates in their inter-

laboratory quality control scheme. Standard Operating Procedures, compiled into a Quality Manual 

(MAWRD, 2000), were followed for all analyses. Nitrate, nitrite and sulfate were measured by Mr M. Gordon 

from the laboratory of the Department Soil Science, University of Stellenbosch. 

 

Organic matter content, sum of extractable bases (Ca, Mg, K, Na), sum of exchangeable bases and base 

saturation were calculated, while textural classes and sand classes were determined from texture triangles. 

Soil hydraulic properties were calculated from particle size data. 

 

4.4.1 SAMPLE PREPARATION 

Samples were dried at room temperature or using mild heat (< 30 oC). Clods were lightly crushed by hand 

with a mortar and pestle, whenever necessary. Samples were sieved to 2 mm (the fine earth fraction) and 

stored in inert plastic jars with screw caps. Stones and gravel were removed by sieving and weighed 

separately where they constituted a significant proportion of the sample. 

 

4.4.2 PH (H2O) 

The pH of the soil was potentiometrically measured in the supernatant of a 2:5 (= 1:2.5) soil:deionised water 

suspension, on a mass to volume basis. This Standard Operating Procedure Soil-109 (MAWRD, 2000) had 

been adapted from the methods of the Non-Affiliated Soil Analysis Work Committee (1990) and Hendershot, 

Lalande and Duquette (1993). A Mettler Toledo MA 235 pH / ion Analyzer was used. 

 

4.4.3 ELECTRICAL CONDUCTIVITY 

Electrical conductivity was measurement in the supernatant of a 2:5 (=1:2.5) soil:deionised water 

suspension, using an Eijkelkamp EC 18.33 meter. It was also measured in the saturated paste extract. To 

prepare a saturated paste extract, water was added to a soil sample until a given mechanical property of the 

soil was attained, equivalent to the liquid limit. Unit of measurement: µS/cm. This Standard Operating 

Procedure Soil-112 (MAWRD, 2000) is based on the work of the Non-Affiliated Soil Analysis Work 

Committee (1990), Bower and Wilcox (1965), Van Reeuwijk (1992) and Richards (1954). 

 

4.4.4 PLANT-AVAILABLE PHOSPHORUS 

The Olsen method of extraction was used, namely a 0.5 M sodium bicarbonate solution at pH 8.5. This 

method is suitable for alkaline to neutral soils. Phosphate in the extract was measured colourimetrically at 

882 nm, using the blue ammonium molybdate method of Murphy and Riley (1962), with ascorbic acid as 

reducing agent. A GBC UV / VIS 916 spectrophotometer was used. Unit of measurement: mg kg-1 P. This 

Standard Operating Procedure Soil-104 (MAWRD, 2000) is based on the work of the Non-Affiliated Soil 
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Analysis Work Committee (1990), Olsen and Dean (1965), Shoenau and Karamanos (1993) and Murphy and 

Riley (1962). 

 

4.4.5 EXTRACTABLE BASES (CA, MG, K, NA) 

Extraction was carried out with 1M ammonium acetate at pH 7. Lanthanum chloride was added as a 

suppressant. Measurement was done with a GBC Avanta atomic absorption spectrometer. Calcium was 

aspirated in a nitrous oxide-acetylene flame, while magnesium, potassium and sodium were aspirated in an 

air-acetylene flame. The respective wavelengths at which adsorption was recorded, were 422.7 nm for 

calcium, 285.2 nm for magnesium, 589.0 for sodium and 766.5 nm for potassium. Unit of measurement: mg 

kg-1 Ca, Mg, Na and K respectively. This Standard Operating Procedure Soil-124 (MAWRD, 2000) was 

developed by Rowell, based on the methods of the Non-Affiliated Soil Analysis Work Committee (1990), 

USDA-SCS Staff (1972) and Van Reeuwiljk (1992). 

 

4.4.6 EXCHANGEABLE BASES (CA, MG, K, NA) AND CATION EXCHANGE CAPACITY 

Soil samples were pre-washed with deionised water to remove soluble salts. Thereafter they were leached 

with ammonium acetate to replace exchangeable bases with ammonium ions. Exchangeable calcium, 

magnesium, sodium and potassium were measured in this effluent by atomic absorption spectroscopy, 

according to Standard Operating Procedure Soil-124. Samples were then leached with sodium acetate to 

saturate the cation exchange complex with sodium ions. The excess sodium was removed by leaching with 

ethanol and the cation exchange capacity determined by measuring the sodium subsequently de-sorbed by 

a further leaching with ammonium acetate. The method used an automatic extractor (SampleTex 24VE 

programmable vacuum extractor) where the soils were mounted in plastic syringes for the leaching 

operations. The method allows some modification for soils containing carbonates and being either saline or 

non-saline.  

 

Carbonate / non-saline soils: If the pH of the 2:5 soil:water extract is higher than 7, with carbonates present, 

and EC (2:5) is lower than 0.4 mS cm-1, no pre-washing is needed. A 50:50 mixture of ammonium acetate at 

pH 7 and ethanol is used to displace the bases. This prevents carbonate dissolution. 

Carbonate / saline soils: If the pH of the 2:5 soil:water extract is higher than 7, with carbonates present, but 

EC (2:5) is higher than 0.4 mS cm-1, then a pre-washing must be done, followed by application of a 50:50 

mixture of ammonium acetate at pH 7 and ethanol to displace the bases. Unit of measurement: cmolc kg-1. 

This Standard Operating Procedure Soil-116 (MAWRD, 2000) was adapted by Rowell, based on the 

methods of the Non-Affiliated Soil Analysis Work Committee (1990), Van Reeuwiljk (1992), Rhoades (1982) 

and Thomas (1982). 

 

4.4.7 PARTICLE SIZE ANALYSIS 

Particle size analysis was carried out by the Rowell (2000a) autopipette method. Samples were pre-treated 
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when necessary and dispersed by shaking with a sodium carbonate and sodium hexametaphosphate 

solution. Silt and clay sized particles were separated by sampling with an autopipette at a depth of 6 cm after 

specific time intervals (related to ambient temperature) determined using Stoke’s Law of Sedimentation. 

These were dried and weighed. Sand was separated by wet sieving through a 53 µm sieve. The sand was 

further separated into very fine, fine, medium and coarse fractions by dry sieving. All particle size fractions 

were expressed as percentage of the fine earth fraction (Ø < 2 mm) (Table 10.12). The textural class was 

determined from the USDA Soil Textural Classes Triangle and Sand Classes Triangle (Non-Affiliated Soil 

Analysis Work Committee, 1990; Van der Watt and Van Rooyen, 1995) (Figure 10.36). The method is 

suitable to determine the proportion of sand, silt and clay in most mineral soils but treatments are needed for 

soils with organic carbon contents of more than 2 % and soils containing high concentrations of soluble salts 

and cementing agents such as calcium carbonate and gypsum. This Standard Operating Procedure Soil-120 

(MAWRD, 2000) was developed by Rowell (2000a), based on the method of Miller and Miller (1987). 

 

4.4.8 ORGANIC CARBON AND ORGANIC MATTER 

An adaptation of the Walkley-Black method was used. Organic matter was oxidised with an excess of a 

concentrated oxidising mixture, containing sulfuric acid and potassium dichromate. The amount of unused 

potassium dichromate was determined colourimetrically at 600 nm with a GBC UV / VIS 915 

spectrophotometer. Results were calibrated against glucose. Unit of measurement: g kg-1 C, which was 

converted to percentage. A factor was used in calculations to take account of incomplete oxidation: organic 

matter (in %) content was calculated as organic-C (in %) x 1.74. The method is suitable for soils low in 

organic matter content. This Standard Operating Procedure Soil-125 (MAWRD, 2000) is based on the work 

of the Non-Affiliated Soil Analysis Work Committee (1990), Sims and Haby (1971), Nelson and Sommers 

(1982), Walkley and Black (1934), DeBolt (1974), as adapted by Rowell (2000b). 

 

4.4.9 AVAILABLE MICRONUTRIENTS (FE, MN, ZN, CU) 

The micronutrients were extracted with a reagent consisting of 0.5M ammonium acetate : 0.5M acetic acid : 

0.02M EDTA, at pH 4.65, using an extraction ratio of 1:5 (soil mass:extractant volume). Fe, Mn, Cu and Zn 

were measured on a GBC Avanta atomic absorption spectrometer. Unit of measurement: mg kg-1.  

 

4.4.10 NITRATE, NITRITE, SULFATE 

Saturated paste extracts were prepared, and the anions measured on a Dionix DX 120 Ion Chromatograph. 

Unit of measurement: mg l-1.    

 

4.4.11 CARBONATE (ESTIMATION) 

Air-dried soil was treated with 10 % hydrochloric acid and effervescence was noted on a scale from 1 (none) 

to 5 (very strong), following the method of Allison and Moodie (1965).  
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4.4.12 SOIL HYDRAULIC PROPERTIES 

Bulk density (g cm-3), saturation (cm3 water cm-3 soil), field capacity (cm3 water cm-3 soil), wilting point (cm3 

water cm-3 soil), available water (cm3 water cm-3 soil) and saturated hydraulic conductivity (cm h-1) were 

calculated (Hydraulic Properties Calculator website), based on the equations of Saxton, Rawls, Romberger 

and Papendick (1986). 

 

4.5 DATABASING AND DATA PROCESSING 

Field observations and profile descriptions were captured on field forms, while analytical data were entered 

into laboratory forms. These data were subsequently transferred into digital format. Databases were 

structured according to the FAO SOTER methodology (FAO, 1989, 1991, 1995, 1996, 2003; ISRIC, 1991, 

1993; Van Engelen and Wen, 1995; Coetzee, 2001a, 2001b), making use of Microsoft Office Access 2003 

and Microsoft Office Excel 2003 (Microsoft Corporation, 2003) software. Data were cleaned, edited and 

validated. 

 

Analytical data were not available for all profiles. The final analytical dataset, used for descriptive statistics, 

consisted of 702 records. The geospatial dataset consisted of 655 records. 

 

4.6 STATISTICAL ANALYSIS 

Statistical analysis was carried out with Statistica version 7 (StatSoft, Inc., 2004) and StatFi 2007 

Professional Build 4.8.6.0 for Excel software (AnalystSoft, 2007). 

 

Descriptive statistics, consisting of the number of valid observations, arithmetic mean, median, standard 

deviation, coefficient of variance, minimum, maximum, range, top and bottom quartiles, inter-quartile range; 

top and bottom deciles, kurtosis and skewness, were compiled for the respective soil characteristics. 

Distribution patterns were made visible through the use of scatter diagrams, decile distribution graphs and 

histograms. Box-and-whisker plots were drawn for all characteristics, but not included in this document. As 

the mean is sensitive to extreme values, the median is considered to be a better measure of central location 

(Keller and Warrack, 1997). Most variables were not normally distributed; therefore, non-parametric 

statistical methods had to be used.  

 

As measure of association between the various chemical and physical characteristics, correlations were 

tested with the Kendall-Tau, Gamma and Spearman methods. As the degree of correlation increases in this 

order (between the three methods), it was decided to use the most conservative one, namely Kendall-Tau. 

Scatterplots were included in the thesis whenever the r2 exceeded 0.30. 

 

The relationships between the chemical and physical characteristics of the soils, and the position in the 

profile (topsoil / subsoil), position in the landscape, slope, land element, topographic class, degree of 

dissection of the landscape, origin and type of parent material and WRB reference soil group, were 

investigated. Means-and-error plots were used to visualise these relationships. 
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4.7 GEOSPATIAL ANALYSIS 

ArcGIS 9.2 (ESRI, Inc., 2006) geographical information system (GIS) software, including the modules 

ArcMap 9.2, ArcCatalogue 9.2, Spatial Analyst 9.2, 3D Analyst 9.2 and GeoStatistical Analyst 9.2, 

as well as ArcView 3.2 (ESRI, Inc., 2006) GIS software, including the extensions ArcView Image Analyst, 

ArcView Spatial Analyst and ArcView 3D Analyst, were used to carry out geospatial analysis. In addition, 

several extensions and scripts written for ArcView and available on the Internet were employed: Texture 

Analysis and Neighbourhood Statistics for Grids (Behrens, 2005), DEMAT - DEM Analysis Tool. (Behrens, 

2005), Xtools (DeLaune, 2003), Grid Pig (Hare, 2007), Surface Areas and Ratios from Elevation Grid 

(Jenness, 2002), Surface Tools (Jenness, 2004), Grid Tools version 1.7 (Jenness, 2006), Topographic 

Position Index TPI version 1.3a (Jenness, 2006), Batch Grid Toolbox (Magadzire, 20006), Grid Projector 

(McVay, 1999), Image-Tools version 2.6 (Patterson, 2004), Basin1 (Petras, 2003), Image Georeferencing 

Tools (Raber, 1999), Grid Analyst Extension version 1.1 (Saraf, 2002), FeatureDensity (Schaub, 2004), 

Terrain Analysis (Schmidt, 2002), Grid Converter version 2.2. (Weigel, 2002) and Gridmachine version 6.77 

(Weigel, 2005). Global Mapper software (Global Mapper Software, LCC.,2005) was used to convert the 

SRTM elevation data into a format accepted by ArcView and ArcGIS.  

 

A digital terrain model was created in ArcView. From that a slope map was created. This formed the basis for 

further analysis. The continuous slope data were reclassified into slope classes, according to the 

FAO/SOTER methodology (FAO, 1977, 1989, 1990, 1995, 2003; ISRIC, 1991). These were, in turn, 

reclassified into two slope classes, with 8 % slope as the division point. Slopes of less than 8 % are generally 

considered to be ‘level land’ and suitable for mechanised agriculture. Height differences within the cells of a 

33-second grid were calculated, to obtain a map of local relief, making use of majority filters to weed out 

extremes. The 1 750 m contour was used to differentiate between highlands (plateaux) and lowlands 

(plains). This contour was selected by visual observation in the field, and studying the change in contour 

density over distance. 

 

Topographic position index (TPI) was calculated according to the methodology of Jenness (2006b), which 

was based on work by Guisan et al. (1999), Jones et al. (2000), Weiss (2001), and Dickson and Beier 

(2006). From the TPI, both position in the landscape (e.g. ridge crest, valley bottom, mid-slope, etc.) and 

landform category (i.e. steep narrow canyons, gentle valleys, plains, open slopes, mesas, etc.) could be 

classified. 

 

Topographic roughness and convolutedness can be estimated from the ratio of the surface area, as 

calculated in three dimensions, and the planimetric area (as if the land is completely flat). The methodology 

of Jenness (2002, 2004a) was employed. His method was based on earlier work by Hobson (1972), Beasom 

(1983), Mandelbrot (1983), Polidori et al. (1991), Lam and De Cola (1993), Lorimer et al. (1994), Berry 

(2000), Hodgson (1995) and Jenness (2000). A surface roughness index (SRI), derived from the surface 

ratios and reclassified in terms of quintile classes, together with feature density analyses of contours and the 

drainage network, were used to delineate areas of high, moderate and low degree of dissection of the 

landscape. 

 

Stream flow, flow accumulation and stream order functions were used to derive a drainage network map for 
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the study area. It was compared with existing digital data (MAWF, 2005) and topographic maps (Surveyor 

General, 1972 – 1976) and proved to be more accurate than those sources. Topographical Wetness Index 

(TWI) was calculated. Topographic classes were calculated from the SRI, TWI and TPI. 

 

The segmentation of the study area, using Definiens Professional 5 image software (Definiens Software, 

2006), culminated in 2249 homogeneous units. For each of these, the FAO slope, topography, local relief, 

degree of dissection, level land and highland / lowland classes were calculated, the respective codes 

assigned (Tables 5.1 – 5.6) and a concatenated terrain code compiled. For example, terrain code 112111 

means FAO slope class 1 (< 0.5 %), topography class 1 (flat), local relief class 2 (5 – 10 m), degree of 

dissection class 1 (low), level land class 1 (< 8 % slope) and highland / lowland class 1 (elevation < 1750 m, 

lowland). Adjacent homogenous units with the same terrain code were merged, to finally form a total of 107 

distinct terrain units ( Chapter 5).  

 

Table 4.1: Classes and codes within terrain units. 

FAO slope class Code 

Slope < 0.5 % 1 

Slope 0.5 – 2 % 2 

Slope 2 – 5 % 3 

Slope 5 – 8 % 4 

Slope 8 – 15 % 5 

Slope > 15  6 

Topography Code 

Flat 1 

Almost flat 2 

Undulating 3 

Rolling 4 

Hilly 5 

Mountainous  6 

Local Relief Code 

< 5 m 1 

5 – 10 m 2 

10 – 30 m 3 

30 – 60 m 4 

60 – 100 m 5 

100 – 300 m 6 

> 300 m 7 

Degree of dissection Code 

Low 1 

Medium 2 

High  3 
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Level land Code 

Slope > 8 % 0 

Slope < 8 % 1 

Highland / lowland Code 

Elevation < 1750 m 1 

Elevation > 1750 m 2 

 

The 655 geo-referenced analytical records were imported into the GIS software and spatially joined with the 

terrain units. Maps of the various chemical and physical characteristics were drawn in the format of point 

data ( Chapters 6 – 10). 

 

 

    
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CHAPTER FIVE 

SPATIAL CHARACTERISATION 

 

5.1 TERRAIN UNITS 

The study area had been divided into 107 terrain units (Figure 5.1; Appendix A), each with a code and 

specific description in terms of FAO slope, topography, local relief, degree of dissection, level land and 

highland/lowland classes. These respective characteristics, in the format of ‘continuous’ raster data as 

originally derived from digital elevation data, are shown below. in addition, these characteristics are also 

represented as they have been allocated to the terrain units, in the format of vector data. Terrain unit codes 

are a combination of the respective codes of FAO slope, topography, local relief, degree of dissection, level 

land and highland / lowland classes in that order. Appendix A contains a large map of terrain units with 

profile positions and a full legend. 

 

5.2 SLOPE 

The slope map (Figure 5.2), containing continuous slope values, shows that the steepest areas occur in the 

western quarter of the study area, with a further southwest to northeast trending series of mountains and hills 

running through the centre of the area. The Witvlei and Gobabis synclinoria can be distinguished, as well as 

the oval valleys within the centres of some anticlines. 

 

Figure 5.3 is the slope map in terms of FAO/SOTER classes. The continuous slope values had been 

reclassified into six distinct slope classes (Table 5.1). 

 
Table 5.1:  FAO slope classes. 

FAO Slope Class Code 

Slope < 0.5 % 1 

Slope 0.5 – 2 % 2 

Slope 2 – 5 % 3 

Slope 5 – 8 % 4 

Slope 8 – 15 % 5 

Slope > 15  6 

 

The majority FAO slope class value of cells within each terrain unit was calculated and assigned to the 

respective units. Thus, Figure 5.4 is another representation of the original slope map, this time of FAO slope 

classes according to terrain units. 
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5.3 TOPOGRAPHY 

The topography changes from flat in the east, through almost flat in the central areas, to undulating, rolling, 

hilly and mountainous in the west. Very few areas keyed out as rolling or hilly. Figure 5.5 is the map of the 

raster data, while Figure 5.6 is the map of the vector data, namely the terrain units classified as to 

topography class (Table 5.2). 

 
Table 5.2: Topography classes. 

Topography Code 

Flat 1 

Almost flat 2 

Undulating 3 

Rolling 4 

Hilly 5 

Mountainous  6 

 

5.4 LOCAL RELIEF 

The local relief refers to the height difference (in m) within an area of 33” x 33” (approximately 0.9 km x 0.9 

km). Mountains, hills, ridges and river valleys can be distinguished quite plainly. Figure 5.7 is a map of the 

raster data, while Figure 5.8 is a map of the vector data, namely the terrain units classified as to local relief of 

the landscape (Table 5.3).  

 
Table 5.3: Local relief classes. 

Local Relief Code 

< 5 m 1 

5 – 10 m 2 

10 – 30 m 3 

30 – 60 m 4 

60 – 100 m 5 

100 – 300 m 6 

> 300 m 7 

 

5.5 DEGREE OF DISSECTION 

The degree of dissection is a more localised feature on top of the broader topography class. Figure 5.9 is a 

map of the raster data, while Figure 5.10 is a map of the vector data, namely the terrain units classified as to 

degree of dissection of the landscape (Table 5.4). Figures 5.11, 5.12 and 5.13 are maps of topographic 

wetness index (original and filtered data) and surface roughness index, which were calculated during the 

process of deriving the topography and degree of dissection classes. 
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Table 5.4: Degree of dissection classes. 

Degree Of Dissection Code 

Low 1 

Medium 2 

High  3 

 
 

5.6 LEVEL LAND 

The slope map was reclassified into two classes: slopes up to and including 8 %, and slopes greater than 8 

% (Table 5.5; Figure 5.14). Terrain Units were classified as to the percentage of level land (with slope < 8 

%), within each unit (Figure 5.15). 

 
Table 5.5: Level land classes. 

Level Land Code 

Slope > 8 % 0 

Slope < 8 % 1 

 

5.7 HIGHLAND / LOWLAND 

The 1750 m contour was used to separate highlands (plateaux) from lowlands (plains) (Table 5.6; Figure 

5.16). The Khomas Hochland is quite evident. 

 
Table 5.6: Highland / lowland classes. 

Highland / Lowland Code 

Elevation < 1750 m 1 

Elevation > 1750 m 2 

 

5.8 LANDFORMS 

The landforms derived by using the methodology of Jenness (2006), were reclassified into nine classes 

(Table 5.7; Figure 5.17). Figure 5.18 is an enlargement of part of Figure 5.17, to show the landforms more 

clearly. 

 
Table 5.7: Landform categories, according to the classification of Jenness (2006). 

Landforms  

Mountain tops and high ridges 

Mesas and upper slopes 

Mid-slope ridges and small hills in plains 

Local ridges and hills in valleys 

Plains and open slopes 

Upland drainages 
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Landforms  

Shallow valleys and mid-slope drainages 

U-shaped valleys 

Deep valleys and deeply incised streams 

  

These categories are, arguably, not the most suitable for the Namibian landscape and will most likely be 

revised in future. They were not used in any further analyses. 

 

5.9 POSITION IN THE LANDSCAPE 

Position in the landscape, as derived with the methodology of Jenness (2006), correlated very well with field 

data. These are shown in Figure 5.19 and Figure 5.20 (which is an enlargement of part of Figure 5.19). 

 

5.10 SOIL DEPTH 

Soil depths as recorded by Loxton, Venn and Associates (1971), Kutuahupira and Mouton (2006), Kempf 

(1999c, 2008), Bertram and Broman (1999), Bertram and Kempf (2002) and fieldwork by the author, were 

spatially joined to terrain units, making use of kriging for interpolation of point data. These are shown in 

Figure 5.21. 

 

5.11 SOIL AND TERRAIN UNITS OF KUTUAHUPIRA AND MOUTON 

The soil and terrain units delineated by Kutuahupira and Mouton (2006) are included for the sake of 

completeness (Tables 5.8 – 5.9; Figures 5.22 – 5.23). They were taken into account during preparation of 

the present terrain units, but with some circumspection. 

 
Table 5.8: Terrain units, according to Kutuahupira and Mouton (2006). 

Terrain types Percentage of level land Local relief Profile type 

C
ode 

M
ap ID

 

C
lass 

%
 of area 

w
ith 

slopes  
< 8 %

 

A
v slope 

(%
) 

C
lass 

 H
eight 

difference 
(m

) 

A
v slope 

length (m
) 

C
lass 

%
 of level 

land on 
low

/high –  
land 

Plains 
A1a 1 A > 75 % of area 

level 
1 1 0 –  30  11  a > 75%  

lowland 
A1d 2 A > 75 % of area 

level 
1 1 0 –  30  18  d > 75%  

highland 
A2a 3 A > 75 % of area 

level 
1.4  2 0 –  30  16  a > 75%  

lowland 
A2c 4 A 50 – 75 % of area 

level 
1 2 0 –  30  23  c 50 –  75% 

highland 
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Terrain types Percentage of level land Local relief Profile type 

C
ode 

M
ap ID

 

C
lass 

%
 of area 

w
ith 

slopes  
< 8 %

 

A
v slope 

(%
) 

C
lass 

 H
eight 

difference 
(m

) 

A
v slope 

length (m
) 

C
lass 

%
 of level 

land on 
low

/high –  
land 

A2d 5 A > 75 % of area 
level 

1.5 2 0 –  30  19  d > 75%  
highland 

B1c 6 B 50 –  75 % of area 
level 

3 1 30 –  100  56  c 50 –  75% 
highland 

B1d 7 B 50 –  75 % of area 
level 

3.3  2 30 –  100  38  d 50 –  75% 
highland 

B2b 8 B 50 –  75 % of area 
level 

3.3 2 30 –  100  38  b 50 –  75% 
lowland 

B2d 9 B 50 –  75 % of area 
level 

2 –  4 2 30 –  100  66  d 50 –  75% 
highland 

Highlands of the central plateau 
A3c 10 A 50 –  75 % of area 

level 
1.5 3 0 –  30  19  d 50 –  75% 

highland 
A3d 11 A 50 –  75 % of area 

level 
1 –  2  3 0 –  30  25  d 50 –  75% 

highland 
A4c 12 A 50 –  75 % of area 

level 
1.4 4 0 –  30  19  d 50 –  75% 

highland 
A5c 13 A 50 –  75 % of area 

level 
2  5 0 –  30  25  d 50 –  75% 

highland 
Plains with hills, ridges and koppies 

B3c 14 B 50 –  75 % of area 
level 

2 –  3 3 100 –  170  130  c 50 –  75% 
highland 

B3d 15 B 50 –  75 % of area 
level 

5 3 100 –  170  145  d 50 –  75% 
highland 

Open or isolated hills, ridges, koppies and mountains 
C1c 16 C 50 –  75 % of area 

level 
8 1 170 –  300  210  c 50 –  75% 

highland 
Hills and mountains 

D1c 17 D < 20% of area is 
level 

33  1 100 – 170  130  c > 75%  
highland 

D1d 18 D < 20% of area is 
level 

33  1 100 –  170  130  d > 75%  
highland 

D2c 19 D < 20% of area is 
level 

31  2 170 –  300  290  c > 75%  
highland 

D3c 20 D < 20% of area is 
level 

33  3 170 –  300  130  c > 75%  
highland 

D3c 21 D < 20% of area is 
level 

33  3 170 –  300  130  c > 75%  
highland 

D4c 22 D < 20% of area is 
level 

31  4 170 –  300  290  c > 75%  
highland 

D5c 23 D < 20% of area is 
level 

53  5 300 –  1000  309  c > 75%  
highland 
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Table 5.9. Soil mapping units, according to Kutuahupira and Mouton (2006). 

Code Soil mapping units 
R Rock outcrops such as the mountains, hills and ridges 
1 Mica-schist outcrops; very shallow soils; unweathered quartz gravels; inclusions of lithic Leptosols 

and hyperskeletic (saprolitic) Leptosols 
2 Very shallow, gravelly, on mica schist; hyperskeletic Regosols (valleys, foot- and midslopes); 

inclusions of hyperskeletic Leptosols and lithi-skeletic Leptosols (ridge crests, hills) 
3 Association of shallow, gravelly hyperskeletic Leptosols, haplic Leptosols and calcaric Cambisols; 

inclusions of moderately deep ferralic Arenosols 
4 Rock outcrops (20%); hyperskeletic Leptosols; inclusions of lithi-skeletic Regosols; shallow and 

gravelly (quartzite) 
5 Rock outcrops (granite, gneiss); lithic Leptosols; lithi-skeletic Leptosols 
6 Association of lepti-skeletic Regosols and lepti-arenic Regosols; inclusions of haplic Luvisols lithi-

skeletic Leptosols; on mica-schist 
7 Association of moderately deep lepti-arenic Regosols, haplic Regosols, eutric Cambisols and leptic 

Cambisols; inclusions of haplic Calcisols and skeletic Leptosols 
8 Association of lepti-skeletic arenic, lithic and haplic Regosols (high); inclusions of eutric Cambisols 

and haplic Luvisols (low) 
9 Shallow skeletic Regosols (high); inclusions of moderately deep haplic Cambisols and lepti-petric 

Calcisols (low) 
10 Deep ferralic Arenosols (flat areas); inclusions of moderately deep arenic Regosols (hummocks, 

ridges) 
11 Associations of moderately deep to deep haplic Cambisols and ferralic Arenosols (lower); 

inclusions of lithic Leptosols, haplic Regosols and skeletic Regosols (higher) [Kalahari] 
12 Association of moderately deep to deep arenic Regosols, ferralic Arenosools, haplic Cambisols; 

inclusions of lithic Leptosols and haplic Regosols 
13 Association of shallow gravelly to moderately deep skeletic Regosols, arenic Regosols, haplic 

Leptosols, lithic Leptosols; inclusions of haplic Cambisols and ferralic Arenosols 
14 Deep to very deep haplic Arenosols; inclusions of ferralic Arenosols (higher) [Kalahari sand 

plateau] 
15 Shallow to moderately deep ferralic Arenosols; inclusions of skeletic Regosols and lithi-skeletic 

Leptosols [highly eroded river terrace] 
16 Association of moderately deep to deep skeletic , leptic and haplic 
17 Very deep ferralic Arenosols; inclusions of haplic Arenosols 
18 Shallow to moderately deep areni-skeletic Regosols; inclusions of petric Calcisols 
19 Association of ferralic Arenosols and skeletic Regosols (higher); inclusions of lithic 

Leptosols(higher) and petric Calcisols (watercourse, depressions) 
20 Association of shallow to moderately deep haplic Arenosols and chromic Cambisols; inclusions of 

lepti-petric Calcisols and lithic Leptosols 
21 Association of shallow to moderately deep lepti-skeletic Cambisols and haplic Cambisols; 

inclusions of lithic Leptosols 
22 Shallow to moderately deep ferralic Arenosols; inclusions of haplic Calcisols and petric Calcisols 

(low) 
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Figure 5.1. Terrain units (see Appendix A for large map and legend) Figure 5.2. Slope (%) 

   
Figure 5.3. FAO slope classes (%) Figure 5.4. FAO slope classes (%), per terrain unit.  
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Figure 5.5. Topography classes Figure 5.6. Topography classes, per terrain unit 

   
Figure 5.7 Local relief  Figure 5.8. Local relief, per terrain unit  
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Figure 5.9. Degree of dissection of the landscape Figure 5.10. Degree of dissection of the landscape, per terrain unit 

   
Figure 5.11. Wetness index (unfiltered) Figure 5.12. Wetness index (filtered) and drainage network  
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Figure 5.13. Surface roughness index Figure 5.14. Level land, with a slope of less than 8 % 

   
Figure 5.15. Percentage of level land, per terrain unit Figure 5.16. Highlands and lowlands 
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Figure 5.17. Landforms (Jenness classification) Figure 5.18. Detail of landforms (centre, left of Figure 5.17 – area around 

Windhoek) 

   
Figure 5.19. Position in the landscape Figure 5.20. Detail of position in the landscape (bottom, right of Figure 5.19 

– showing White Nossob and Black Nossob Rivers with tributaries) 
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Figure 5.21. Depth classes, per terrain unit   

   
Figure 5.22. Terrain units, according to Kutuahupira and 

Mouton (2006) (See Table 5.8 for  legend) 

Figure 5.23. Soil mapping units, according to Kutuahupira and Mouton 

(2006) (See Table 5.9 for legend) 
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CHAPTER SIX 

CHEMICAL CHARACTERISATION – NITROGEN, PHOSPHORUS, SULFUR 

 

6.1 INTRODUCTION 

Data on the chemical composition of the Earth’s crust, soils from all over the globe and several different soil 

orders were reviewed by Helmke (2000). He named the ten most abundant elements in most dry soils as 

oxygen, silicon, aluminium, iron, calcium, potassium, sodium, magnesium, titanium and carbon. He also 

listed typical concentrations of major dissolved components in soils solution, which he defined as the 

aqueous phase of the soil at or below field moisture capacity (in contrast to soil water, which he defines as 

the moisture that fills the pores between soil particles at above field moisture capacity). For the purpose of 

soil fertility assessment, availability of the 13 mineral elements essential for plant growth needs to be 

assessed (Sims, 2000), namely nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 

sulfur (S), boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn). 

Chemical extractants – usually dilute solutions or mixtures of acids, bases, salts and chelates – are 

employed to simulate the absorption of these nutrients by plants. Nutrient availability in soils depends on 

inherent soil properties, such as texture, sesquioxides, carbonates and organic matter, as well as properties 

more sensitive to natural and anthropogenic inputs, such as pH, CEC and Eh (Sims, 2000). 

 

This chapter deals with the macronutrients nitrogen, phosphorus and sulfur. The bases potassium, calcium, 

magnesium and sodium are discussed in Chapter 7, CEC, base saturation and salinity in Chapter 8, while 

the micronutrients iron, manganese, copper and zinc are examined in Chapter 9, and soil organic matter, pH 

and texture in Chapter 10. 

 

6.2 NITROGEN [N] 

Nitrogen constitutes around 0.02 % (200 mg kg-1) of the Earth’s crust. Non-exchangeable nitrogen is found in 

primary silicates, secondary silicates such as illite and vermiculite (Stellenbosch University [US], 2002). 

Insignificant amounts are produced from weathering of rocks, so that soil nitrogen content is virtually 

independent of the nature of the inorganic parent material. 

 
Table 6.1: Typical nitrogen concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead, 2000 Sims, 2000 Bowen, 1966 
Earth’s Crust 200   
Granite 59   
Basalt 52   
Shale 60   

Soils (Total N) 800 – 5 000  
[2 800] 

500 to 1 500 
 

200 - 2 500  
[1 000] 

 

The main source of soil nitrogen is atmospheric molecular nitrogen gas [N2] occurring in soil air, the soil 

solution and adsorbed as gas on the solid phase. The conversion of N2 to ammonia [NH3] and subsequently 
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to organic forms readily available for biological processes, is known as nitrogen fixation (Foth, 1990; Van der 

Watt and Van Rooyen, 1995). It is carried out by symbiotic micro-organisms – such as the actinomycete 

Frankia associated with the non-leguminous casuarinas, and the Rhizobium bacteria associated with roots of 

legumes – and free-living soil organisms, such as Azotobacter and Clostridium bacteria, and Azolla, Nostoc 

and Calothrix blue-green algae (Foth, 1990). Under natural grassland, rhizobial bacteria fix 10 kg N   ha-1 

year–1, while free-living bacteria fix 1 – 2 kg N ha-1 year-1 (Whitehead, 2000).  

 

According to Sims (2000), the soil nitrogen cycle basically consists of: 

 mineralization – conversion of organic nitrogen into ammonium by microbial decomposition, also known 

as ammonification 

 immobilization – assimilation of ammonium and nitrate from the soil solution by microbes, for growth 

and biomass production 

 nitrification – conversion of ammonium to nitrate by some soil bacteria under aerobic conditions  

 ion-exchange – retention of ammonium and nitrate on soil clays or soil organic matter through cation 

exchange, and incorporation into micaceous clays  

 denitrification – conversion of nitrates to molecular nitrogen or various nitrogen oxides by some soil 

bacteria under anaerobic conditions, and subsequent loss of these gases from the soil  

 volatilization – conversion of ammonium to gaseous ammonia under conditions of high pH, and 

subsequent loss to the atmosphere, and 

 leaching – downward loss of nitrate with percolating water. 

 

Most plants take up almost all their nitrogen through the roots as nitrate [NO3
-] and ammonium [NH4

+] ions. 

The exception is legumes, which obtain their nitrogen from symbiotic nitrogen-fixing bacteria. Urea and 

amino acids can be absorbed by roots, but this plays a very minor role in nitrogen uptake. Plants can absorb 

some (< 5 %) of their required nitrogen through their stomata, as the gasses ammonia [NH3] and nitrogen 

dioxide [NO2] (Whitehead, 2000). Atmospheric ammonia originates from volatilisation of urea in livestock 

urine and from nitrogenous fertilizers applied elsewhere. Atmospheric nitrogen oxides [NO, NO2] come from 

combustion of fossil fuels and from lightning discharges (Whitehead, 2000). Volcanic eruptions also 

contribute atmospheric sources of nitrogen to soils (Sims, 2000). The study area, being remote from crop 

producing areas, large urban or industrial centres and volcanoes, receives very few atmospheric inputs apart 

from nitrogen gas.  

 

According to Sims (2000), total nitrogen values in soils typically range from 0.05 to 0.15 % (500 to 1 500 mg 

kg-1) of which more than 98 % is organic in nature. Other writers, such as Whitehead (2000) and Blackmer 

(2000), put the organic nitrogen at around 95 % of total soil nitrogen, and estimate that nitrogen constitutes 

about 5 % of soil organic matter (dry weight). Roughly 35 % of these complex nitrogen-containing organic 

polymers are heterocyclic nitrogen compounds and 20 % are ammoniacal, while hydrolysis would change 

the remainder into amino acids (30 – 40 %) and amino sugars (5 – 6 %) (Whitehead, 2000). The 

heterocyclic nitrogen compounds derive mainly from humus, which forms through biochemical modification of 

plant residues and the reactions of amino compounds and ammonia with phenolic compounds derived from 

lignin (Stevenson, 1994). These organic molecules are for the most part insoluble in water, and their nitrogen 

thus unavailable to plants. Only when they are mineralised to inorganic nitrogen compounds does their 
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nitrogen become accessible for plant uptake. Heterocyclic nitrogen compounds mineralise more slowly than 

linear humus polymers. Mineralisation of organic nitrogen provides a steady supply of plant-available 

nitrogen under natural systems in equilibrium (Whitehead, 2000). 

 

The inorganic mineral fraction of nitrogen in soil consists of ammonium [NH4
+], nitrite [NO2

-] and nitrate [(NO3
-

] ions. In well-aerated warm soils, such as those found in the study area, NO3
- is the dominant nitrogen 

compound in the soil solution, and the preferred form of nitrogen for uptake by most plants (Blackmer, 2000). 

NO2
- is taken up in small quantities by plants, but higher concentrations are toxic to them. NH4

+ is preferred 

by young plants, acid-loving plants and those adapted to waterlogged soils (US, 2002). Ammonium in the soil 

solution is in equilibrium with a much larger quantity of exchangeable ammonium adsorbed on the exchange 

complex (Blackmer, 2000). Mineralization of inaccessible organic forms of soil nitrogen is brought about 

through the biochemical process of ammonification: 

Organic N  NH4
+ + OH- 

Some ammonium is used by plants, some is lost to the atmosphere, but the bulk is further transformed 

through the aerobic biological process of nitrification. Nitrosomonas bacteria transform ammonium into 

nitrites, followed by Nitrobacter bacteria transforming the nitrites to nitrates.  

2NH4
+ + 3O2  2NO2

-  + 4H+ 

2NO2
-  + O2  2NO3

-    

 

NH4
+ + 2O2  NO3

-  + 2H+ + H2O  

 

The rate of mineralisation is enhanced by heat, presence of earthworms, a low carbon to nitrogen ratio and 

soils with good water holding capacity without easily becoming waterlogged. Nitrate, being an anion, is not 

readily adsorbed onto the exchange sites of clay and organic matter. It remains in the soil solution and is 

thus mobile and accessible to plants, but susceptible to leaching and denitrification. Denitrification is the 

biochemical reduction of nitrite and nitrate to gaseous nitrogen, either in the form of molecular nitrogen or 

oxides of nitrogen (Van der Watt and Van Rooyen, 1995): NO3
-   NO2

-   NO  N2O    N2 

Denitrification is favoured by anaerobic conditions and needs electron-donating substrate, such as organic 

residues, to support microbial respiration (Blackmer, 2000).  

 

Ammonium, a cation, is adsorbed on the exchange complex. This restricts its mobility and availability to plant 

roots to some extent, but also protects it from fast leaching and volatilisation. Ammonium in the soil solution 

is readily nitrified. 

 

Nitrogen concentrations are highest in the upper few centimetres of soil, due to the presence of nitrogen-

containing leaf litter and animal excreta, decreasing with depth and practically absent below 30 – 40 cm 

(Whitehead, 2000). Micro-organisms play a crucial role in the nitrogen cycles involving soil and rangeland 

under extensive livestock grazing. They are responsible for the digestion of plant material by ruminants, the 

transformation of plant residues and animal excreta into soil organic matter and the mineralization of nitrogen 

from the latter. Maximum nitrogen availability is between pH 6 and 8, as this is the optimal range for the soil 

microbes that fix nitrogen symbiotically and mineralise organic matter (Foth, 1990). Losses through leaching 

and volatilisation are low in extensively managed grassland systems (Whitehead, 2000). Figure 6.1 shows 



6  4 

the various forms and pathways of nitrogen in grassland, which would also be applicable to the present study 

area. 

 

Plants contain 1 – 5 % nitrogen on a dry weight basis. It is essential to plants as a constituent of amino acids, 

proteins, nucleic acids, nucleotides, chlorophyll and coenzymes (Foth, 1990; Reuter and Robinson, 1997). 

Some of these proteins function as enzymes, such as the essential photosynthetic enzyme ribulose 

biphosphate carboxylase-oxygenase (Whitehead, 2000).  

 

 
Figure 6.1. The major forms of nitrogen involved in the cycling of 

nitrogen in grassland (from Whitehead, 2000) 
  

 
Table 6.2: Estimated nitrogen balances (kg ha-1 year-1) from an extensively managed grassland, grazed by cattle, in the 

United Kingdom (Whitehead, 2000, quoting data from Dampney and Unwin, 1993). 

 ESTIMATED N (KG HA-1 YEAR-1) 

INPUTS  

Fixation of atmospheric N2 8 

Deposition from atmosphere 15 

Fertilizer 0 

Supplementary feeds 0 

ASPECT OF RECYCLING  

Uptake into herbage 60 

Consumption of herbage by animals 30 

Dead herbage to soil 30 

Dead roots to soil 30 

Excreta to soil of grazed area 25 

OUTPUTS  

Milk / live-weight gain 3 

Leaching / runoff 5 

Volatilisation of ammonia 3 
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Denitrification / nitrification 2 

Loss through excreta off sward 0 

GAIN TO SOIL 10 

 

6.2.1 STATISTICAL ANALYSIS: NITRATE AND NITRITE OF THE SATURATED PASTE EXTRACT 

 

Normality was rejected for nitrate and nitrite of the saturated paste extract by the statistical tests employed, 

namely the Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in 

skewness, on kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 6.3: Descriptive statistics – nitrate (n = 79) and nitrite (n = 80) content of the saturated paste extract. 

  Nitrate Nitrite 
 mg l-1 mg l-1 
Mean 16.28 6.15 
Median 1.80 1.30 
Standard Deviation 29.88 11.13 
Minimum 0.00 0.00 
Maximum 166.70 49.70 
Range 166.70 49.70 
Lower Quartile 0.20 0.00 
Upper Quartile 20.80 5.75 
Quartile Range 20.60 5.75 
Percentile 10 0.00 0.00 
Percentile 90 54.60 24.65 
Skewness  2.83 2.38 
Kurtosis  9.29 5.06 

 
Table 6.4: Distribution in terms of deciles – nitrate (n = 79) and nitrite (n = 80). 

NO3
- NO2

-   Decile mg l-1 mg l-1 
minimum  0.0 0.0 
  1 0.0 0.0 
  2 0.0 0.0 
  3 0.3 0.2 
  4 0.6 0.7 
median 5 1.8 1.3 
  6 6.3 2.3 
  7 15.9 3.5 
  8 25.6 6.7 
  9 56.4 24.0 
maximum 10 166.7 49.7 

 

The nitrate content of 79 samples varies between 0 and 166.7 mg l-1, with a mean of 16.28, median of 1.80 

and standard deviation of 29.88. The quartile range is 20.60, from 0.20 (lower quartile) to 20.80 mg l-1 (upper 

quartile). The distribution is greatly skewed, with skewness of 2.83 and kurtosis of 9.29 (Table 6.4; Figures 

6.2 – 6.3). 
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Figure 6.2. Decile distribution of nitrate content (mg l-1) Figure 6.3. Histogram of nitrate content (mg l-1) 

 

Statistically significant, but weak, correlations, at p < 0.05, were found between nitrate content and electrical 

conductivity measured in the saturated paste extract (r2 = 0.21) (Figure 6.4), sulfate content of the saturated 

paste extract (r2 = 0.10), and electrical conductivity measured in a 2:5 soil:water suspension (r2 = 0.10). 

 

  
Figure 6.4. NO3

- (saturated paste) content (mg l-1) vs 

EC (saturated paste) (uS cm-1) 

 

The nitrite content of 80 samples varies between 0 and 49.70 mg l-1, with a mean of 6.15, a median of 1.30 

and a standard deviation of 11.13. The quartile range is 5.75, from 0.00 (lower quartile) to 5.75 (upper 

quartile). The distribution is greatly skewed, with skewness of 2.38 and kurtosis of 5.06 (Table 6.4; Figures 

6.5 – 6.6). 

 

  
Figure 6.5. Decile distribution of nitrite content (mg l-1) Figure 6.6. Histogram of nitrite content (mg l-1) 

 

A statistically significant, but weak, correlation, at p < 0.05, was found between nitrite content and electrical 

conductivity measured in the saturated paste extract (r2 = 0.20). 
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Both nitrate and nitrite concentrations are higher in the topsoil than the subsoil (Table 6.5; Figures 6.7, 6.81), 

as expected from the contribution of leaf litter and animal excreta to soil nitrogen, and in line with literature, 

e.g. Whitehead (2000), Hartemink and Hunting (2008). 

 

  
Figure 6.7. Nitrate content (mg l-1), per topsoil and 

subsoil 

Figure 6.8. Nitrite content (mg l-1), per topsoil and 

subsoil 

 
Table 6.5: Nitrate and nitrite content, per topsoil (n = 35) and subsoil (n = 37) . 

NO3
-  

mg l-1 
NO2

-  
mg l-1  

Topsoil  Subsoil Topsoil Subsoil 
Mean 26.00 8.96 7.38 3.93 
Median 6.31 0.44 2.42 0.26 
Standard Deviation 39.93 17.16 12.43 8.57 
Minimum 0.00 0.00 0.00 0.00 
Maximum 166.70 75.79 49.69 34.81 
Range 166.70 75.79 49.69 34.81 
Lower Quartile 0.58 0.00 0.67 0.00 
Upper Quartile 31.30 9.53 7.81 3.20 
Quartile Range 30.72 9.53 7.14 3.20 
Percentile 10 0.00 0.00 0.00 0.00 
Percentile 90 79.74 32.53 28.38 15.00 

 

When disregarding clay loam and sandy clay soils, of which there are too few samples to be representative, 

it emerges that sandy soils have relatively low mean nitrate and nitrite concentrations (Figures 6.9 and 6.10). 

Sand also has the smallest spread of nitrite values in the ±0.95 confidence interval. 

 

   
Figure 6.9. Nitrate content (mg l-1), per textural class Figure 6.10. Nitrite content (mg l-1), per textural class 
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Nitrate concentrations are highest in Leptosols, Cambisolsand Arenosols, and lowest in Calcisols en Luvisols 

(Table 6.6; Figure 6.11). The spread in values is very large in Leptosols. Nitrite concentrations are highest in 

Leptosols, and lowest in Luvisols, Arenosols and Calcisols (Table 6.6; Figure 6.12). In most cases the mean 

values are much higher than the medians, as the result of a few high extremes. The spread in values is very 

large in Leptosols. 

 

  
Figure 6.11. Nitrate content (mg l-1), per WRB 

reference soil group 

Figure 6.12. Nitrite content (mg l-1), per WRB reference 

soil group 

 
Table 6.6: Nitrate and nitrite content, per WRB reference soil group. 
NO3

-  
mg l-1 

Arenosols 
(n = 9) 

Calcisols 
(n = 9) 

Leptosols 
(n = 8) 

Cambisols 
(n = 14) 

Regosols 
(n = 25) 

Luvisols 
(n = 3) 

Mean 13.50 6.77 45.84 13.57 10.13 0.26 
Median 8.37 0.75 34.21 3.61 0.43 0.00 
Std. Dev. 12.38 10.11 49.57 19.04 21.72 0.45 
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 
Maximum 32.53 24.24 109.85 54.55 77.46 0.78 
Range 32.53 24.24 109.85 54.55 77.46 0.78 
Lower Quartile 3.62 0.00 0.31 0.26 0.00 0.00 
Upper Quartile 18.43 11.40 93.92 25.13 6.32 0.78 
Quartile Range 14.81 11.40 93.61 24.87 6.32 0.78 
Percentile 10 0.00 0.00 0.00 0.00 0.00 0.00 
Percentile 90 32.53 24.24 109.85 51.80 32.29 0.78 
NO2

-  
mg l-1 

Arenosols 
(n = 9) 

Calcisols 
(n = 9) 

Leptosols 
(n = 9) 

Cambisols 
(n = 14) 

Regosols 
(n = 25) 

Luvisols 
(n = 3) 

Mean 1.25 3.18 11.36 6.01 6.61 0.59 
Median 0.67 0.25 1.17 4.03 0.68 0.00 
Std.Dev. 1.88 6.29 20.38 7.68 11.21 1.03 
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 
Maximum 6.04 19.54 49.69 28.38 34.81 1.78 
Range 6.04 19.54 49.69 28.38 34.81 1.78 
Lower Quartile 0.26 0.00 0.38 0.95 0.00 0.00 
Upper Quartile 1.34 2.71 2.87 6.61 9.62 1.78 
Quartile Range 1.08 2.71 2.49 5.66 9.62 1.78 
Percentile 10 0.00 0.00 0.00 0.00 0.00 0.00 
Percentile 90 6.04 19.54 49.69 15.90 28.48 1.78 
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The nitrate and nitrite levels of profiles, of topsoil and subsoil respectively, are shown in Figures 6.13 – 6.16.  

 

  
Figure 6.13. Nitrate content (mg l-1) of  topsoil Figure 6.14. Nitrate content (mg l-1) of subsoil 

 

  
Figure 6.15. Nitrite content (mg l-1) of topsoil Figure 6.16. Nitrite content (mg l-1) of subsoil 

 

6.3 PHOSPHORUS [P] 

Phosphorus occurs in more than 60 minerals. It is abundant in the apatite group [3{Ca3(PO4)2}.CaX2, where 

X = CO3
2- / OH- / F- / Cl-], for example hydroxylapatite [Ca5(PO4)3OH], fluorapatite [Ca5(PO4)3F] and 

chlorapatite [Ca5(PO4)3Cl]. It occurs to a lesser extent in strenghite [FePO4.2H2O], variscite [AlPO4.2H2O] 

(Whitehead, 2000) and phosphophyllite [Zn2(Fe,Mn)(PO4)2.4H2O].  

 
Table 6.7: Typical P concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead, 2000 Sharpley, 2000 Helmke, 2000 
Earth’s Crust 800   
Granite 390   
Basalt 610   
Shale 700   
Sandstone 170   
Limestone 400   
Soils From Granite 900   
Soils From Shale 1 200   
Soils From Sandstone 400   
Entisol   662 
Spodosol   3 000 
Alfisol   455 
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Mollisol   880 
Soils (Total) 400 – 4 000 100 – 3 000 650 

Soils (plant-available P)  5 – 80 
(North America)  

 

Inorganic phosphorus, which usually constitutes between 50 and 70 % of the total P in grassland soils 

(Whitehead, 2000; Sharpley, 2000), occurs as phosphates in unweathered minerals, adsorbed by 1:1 lattice 

clays (e.g. kaolinite), adsorbed by Fe and Al oxides and hydroxides, precipitated by Ca (e.g. in apatite) and 

as soluble H2PO4
- and HPO4

2- ions in the soil solution (Whitehead, 2000). On weathering, soluble H2PO4
- and 

HPO4
2- are formed, but most are soon adsorbed or re-precipitated by calcium (at neutral or high pH) or iron 

and aluminium (at low pH) (Sharpley, 2000; Whitehead, 2000). This causes low mobility of phosphorus in 

soil, with low levels of leaching. Phosphorus can be lost from grassland through surface runoff, both in 

soluble form and in suspended particles (Whitehead, 2000). 

 

Maximum phosphorus availability is between pH 6.5 and 7.5. It is also highly available above pH 8.5 due to 

sodium phosphates having high solubility. Between pH 7.5 and 8.3 bioavailability is reduced by the presence 

of calcium carbonate that represses the dissolution of calcium phosphate. Below pH 6.5, acidity allows more 

iron and aluminium to go in solution, allowing the formation of relatively insoluble iron and aluminium 

phosphates (Foth, 1990). Most organic soil P occurs as the insoluble Ca, Fe and Al salts of inositol 

phosphates, with some P immobilized in complex humus polymers, nucleotides, nucleic acids and 

phospholipids (Whitehead, 2000). There is more organic phosphorus in microbial matter than in plant 

material in the soil (Whitehead, 2000). The rate of mineralisation of organic soil phosphorus is increased by 

high temperatures and distinct wet and dry cycles (Sharpley, 2000). 

 

 
Figure 6.17. The major forms of phosphorus involved in the cycling of  

phosphorus in grassland (from Whitehead, 2000) 

 

Soil P is well correlated with P of the parent material (Whitehead, 2000), but is also influenced by soil texture, 

extent of pedogenesis and management factors (Sharpley, 2000). According to Whitehead (2000) and 

Sharpley (2000), P concentrations are highest in the surface horizons of grassland soils, due to the 
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contribution from leaf litter and animal excreta, and greater biological activity. A typical extensively managed 

natural grassland, such as the study area, producing around 1 000 kg dry dead herbage material, per ha, per 

annum, containing about 0.1 % P, would see replacement of about 1 kg P per ha per year in the soil 

(Whitehead, 2000). Figure 6.17 shows the various forms and pathways of phosphorus in grassland, which 

would also be applicable to the present study area. 

 
Table 6.8: Estimated phosphorus balances (kg ha-1 year-1) from an extensively-managed grassland, grazed by beef 

cattle (Whitehead, 2000). 

 ESTIMATED P (KG HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 0 

ASPECT OF RECYCLING  

Uptake into herbage 6 

Consumption of herbage by animals 3 

Dead herbage to soil 5 

Dead roots to soil 2 

Excreta to soil of grazed area 2.7 

OUTPUTS  

Milk / live-weight gain 0.8 

Leaching / runoff 0.1 

Loss through excreta off sward 0 

GAIN TO SOIL 0.1 

 

Phosphorus is important in energy transfer as a constituent of adenosine triphosphate (ATP). It is also a 

component of many proteins, coenzymes, nucleotides, nucleic acids, metabolic substrates (Foth, 1990) and 

phospholipids (Reuter and Robinson, 1997). It plays essential roles in cell division and germination of seeds 

(Whitehead, 2000). 

 

6.3.1 STATISTICAL ANALYSIS: PLANT-AVAILABLE PHOSPHORUS (OLSEN-METHOD) 

 

Normality was rejected for plant-available phosphorus by the statistical tests employed, namely the Shapiro-

Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in skewness, on kurtosis, 

and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 6.9: Descriptive statistics – plant-available phosphorus content (n = 555) 

Plant-available P    mg kg-1 
Mean 4.50 
Median 2.00 
Standard Deviation 5.93 
Coefficient of Variation 1.32 
Minimum 0.00 
Maximum 49.00 
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Range 49.00 
Lower Quartile 0.50 
Upper Quartile 6.40 
Quartile Range 5.90 
Percentile 10 0.10 
Percentile 90 12.00 
Skewness  2.50 
Kurtosis  9.72 

 
Table 6.10: Distribution in terms of deciles – plant-available phosphorus content (n = 555). 

Plant-available P    Decile mg kg-1 
minimum  0.0 
  1 0.1 
  2 0.3 
  3 0.7 
  4 1.3 
median 5 2.0 
  6 3.1 
  7 5.3 
  8 8.0 
  9 12.0 
maximum 10 49.0 

 

The plant available phosphorus content of 555 samples from the study area ranges from 0 to 49.0 mg kg-1. 

The distribution is positively skewed, with skewness of 2.50 and kurtosis of 9.72, thus the mean (4.5) is less 

useful as a measure of central location than the median (2.0). The standard deviation is 5.93. Half the 

samples have phosphorus concentrations of between 0.5 (1st quartile) and 6.4 (3rd quartile), for a quartile 

range of 5.9. In 90 % of samples, the P content is below 12 mg kg-1, which is low for a soil under natural 

grassland, but in line with the prevailing arid climate and low biomass production. The frequency distribution 

is shown in Table 6.10 and Figures 6.18 - 6.19. 

 

 
Figure 6.18. Decile distribution of plant-available P 

content (mg kg-1) 

Figure 6.19. Histogram of plant-available P content 

(mg kg-1) 

 

The concentrations of P found in the study area are lower than those found by Ellis (1988) in comparable 

areas in southern Africa: median 17 mg kg-1 and range 73 mg kg-1 for A horizons, median 9 mg kg-1 and 

range 52 mg kg-1 for B horizons in the eastern Boesmanland; median 28 mg kg-1 and range 137 mg kg-1 for 

A horizons, median 8 mg kg-1 and range 292 mg kg-1 for B horizons in western Boesmanland, South Africa. It 

is also slightly lower than the concentrations found by Kotze and Du Preez (2008) in soils from the eastern 

Free State in South Africa, namely 12.1 to 6.0 mg kg-1, from the surface to a depth of 45 cm. It does, 
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however, agree with P concentrations recorded elsewhere in Namibia (Coetzee, Beernaert and Calitz, 1999; 

Kempf, 1999a, 1999b, 1999c; Coetzee, 2001b; Kutuahupira, Mouton and Coetzee, 2001a, 2001b; 

Kutuahupira, Mouton and Beukes, 2003) and in South Africa (Materechera, Mandiringana and Mbokodi, 

1998). 

 

Statistically significant, but weak, correlations, at p < 0.05, were found between plant-available phosphorus 

content and electrical conductivity measured in a 2:5 soil:water suspension (r2 = 0.20), zinc (r2 = 0.17), iron 

content (r2 = 0.14) (Figures 6.20 – 6.22), organic matter content (r2 = 0.16), extractable sodium content (r2 = 

0.13), and electrical conductivity measured in a saturated paste (r2 = 0.10). 

 

  
Figure 6.20. Plant-available P content (ppm = mg kg-1) 

vs EC (2:5 soil : water) (uS cm-1) 

Figure 6.20. Plant-available P (ppm = mg kg-1) content 

vs Zn content (ppm = mg kg-1) 

 

 
Figure 6.22. Plant-available P (ppm = mg kg-1) content 

vs Fe content (ppm = mg kg-1) 

 

Topsoil P concentrations are noticeably higher than those of the subsoil (Table 6.11; Figures 6.23 and 6.24), 

as also noted by Whitehead (2000), Sharpley (2000), Materechera et al. (1998), Kotze and Du Preez (2008) 

and Ellis (1988). This is most likely caused by enrichment of the topsoil by decaying plant material, and the 

low mobility of P in soil.  
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Figure 6.23. Plant-available P content (ppm = mg kg-1), 

per topsoil and subsoil 

Figure 6.24. Plant-available P content (ppm = mg kg-1) 

at various depths 

 
Table 6.11: Plant-available P content, per topsoil (n – 208) and subsoil (n = 300). 

Topsoil  Subsoil  Plant-available P  
 mg kg-1 mg kg-1 
Mean 6.24 3.41 
Median 4.21 0.95 
Std. Dev. 6.32 5.63 
Minimum 0.00 0.00 
Maximum 37.80 49.00 
Range 37.80 49.00 
Lower Quartile 1.70 0.26 
Upper Quartile 9.02 4.00 
Quartile Range 7.32 3.74 
Percentile 10 0.41 0.00 
Percentile 90 14.00 10.00 

 

Deep soils seem to have less plant-available P than very shallow soils, while shallow and moderately deep 

soils lie between these two extremes (Figure 6.25). 

 

 
Figure 6.25. Plant-available P content (ppm = mg kg-1), 

for soils of various depths 

 

When disregarding clay loam and sandy clay soils, of which there are too few samples to be representative, 

it emerges that sandy soils have the lowest P content, followed by loamy sand and sandy loam soils, while 

sandy clay loam and loam soils have higher mean concentrations, but also a wide spread in the ±0.95 

confidence intervals (Figure 6.26). 
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Figure 6.26. Plant-available P content (ppm = mg kg-1), 

per textural class 

Figure 6.27. Plant-available P content (ppm = mg kg-1), 

per WRB reference soil group 

 

Arenosols have the lowest P concentrations, followed by Regosols, Calcisols and Cambisols. Leptosols and 

Fluvisols are richest in P (Table 6.12 and Figure 6.27). The enrichment of Fluvisols happens mainly through 

transport of particulate matter containing phosphorus by surface runoff (Whitehead, 2000). 

 
Table 6.12: Plant-available P content, per WRB reference soil group. 

P available 
mg kg-1 

Arenosols 
(n = 131) 

Calcisols 
(n = 17) 

Leptosols 
(n = 24) 

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 1.57 3.51 8.06 13.67 5.13 2.34 10.46 
Median 0.56 1.90 6.18 13.00 2.88 0.94 3.51 
Std. Dev. 2.71 4.04 7.97 4.76 6.44 3.88 14.11 
Minimum 0.00 0.00 0.43 8.00 0.00 0.00 1.18 
Maximum 15.25 12.04 37.80 21.00 37.20 25.00 26.70 
Range 15.25 12.04 37.37 13.00 37.20 25.00 25.52 
Lower Quartile 0.16 0.57 2.77 10.00 0.69 0.31 1.18 
Upper Quartile 1.70 5.49 11.30 17.00 7.06 2.29 26.70 
Quartile Range 1.54 4.92 8.53 7.00 6.37 1.98 25.52 
Percentile 10 0.00 0.16 0.97 8.00 0.23 0.10 1.18 
Percentile 90 3.66 10.90 14.37 21.00 13.40 7.09 26.70 

 

According to the classification of Kutuahupira and Mouton (2006), the very shallow soils of the Khomas 

Hochland are richest in P, while the deep, reddish sandy soils of the Kalahari plains are poorest (Figure 

6.28). This agrees with above results with regard to the P content according to textural class and soil depth.  

 

  
Figure 6.28. Plant-available P content (ppm = mg kg-1), 

per broad soil group 

Figure 6.29. Plant-available P content (ppm = mg kg-1), 

per origin of parent material 
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Soils of aeolian origin have the lowest P content, followed by those formed through in situ weathering, while 

soils from alluvial and colluvial origin have higher, comparable, P concentrations (Figure 6.29). This agrees 

with the results above, as the soils of aeolian origin are the sandy soils of the deep Kalahari sand plains, 

while alluvial soils are classified as Fluvisols, and colluvial soils as Lepto- and, in some cases, Regosols. 

 

Soils originally formed in the Kalahari sands are poorer in plant-available P than those formed from the schist 

of the Khomas Hochland – a consequence of the mineral composition of the respective parent materials 

(Figure 6.30). The noticeable correlation between soil P and its parent material is noted in literature, e.g. by 

Whitehead (2000). In this analysis and all those that follow, only three lithological units were considered, 

namely schist, quartzite and Kalahari sand. These were the only units recorded in sufficient numbers and 

with complete confidence by the technicians carrying out the profile descriptions.  

 

  
Figure 6.30. Plant-available P content (ppm = mg kg-1), 

per type of parent material  

Figure 6.31. Plant-available P content (ppm = mg kg-1), 

per degree of dissection of the landscape 

 

P concentrations increase with the degree of dissection (Figure 6.31). One explanation is greater rates of 

erosion and subsequent weathering of P-containing parent material in more dissected terrain. Secondly, the 

highly dissected terrain of the study area occurs mainly on schist, quartzite and calcrete, whereas the less 

dissected areas, towards the east, are mainly covered with Kalahari sands, which are quite poor in P. 

 

In support of above result, it is also apparent that P concentrations are lower in areas of low local relief, than 

in areas of high local relief (Figure 6.32). 

 

  
Figure 6.32. Plant-available P content (ppm = mg kg-1), 

per local relief 

Figure 6.33. Plant-available P content (ppm = mg kg-1), 

per topographic class 
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A similar result is found when considering the topographic classes: flat, almost flat and undulating land has 

lower P content than rolling, hilly and mountainous land (Figure 6.33). 

 

Despite the well-known influence of pH on availability of soil P reported widely in literature, no clear-cut 

correlations were seen during this study: the correlation coefficient was -0.00193 at p < 0.05 (Figures 6.34 – 

6.35). This could perhaps be explained by the choice of analytical method: the Olsen method is less 

sensitive at lower pH. 

 

  
Figure 6.34. Plant-available P content  (ppm = mg kg-1) 

vs pH (H2O) 

Figure 6.35. Plant-available P content (ppm = mg kg-1), 

per pH-interval 

 

The plant-available phosphorus levels of profiles, of topsoil and subsoil respectively, are shown in Figures 

6.36 – 6.37.  

 

  
Figure 6.36. Plant-available P content (mg kg-1) of 

topsoil 

Figure 6.37. Plant-available P content (mg kg-1) of 

subsoil 

 

6.4 SULFUR1 

Sulfur commonly occurs in igneous rocks as sulfides, such as pyrite [FeS2], cinnabar [HgS], galena [PbS], 

sphalerite [(Zn,Fe)S], chalcopyrite [CuFeS2], pentlandite [(Fe,Ni)9S8] and stibnite/antimonite [Sb2S3]. It also 
                                            
1 International Union of Pure and Applied Chemistry (IUPAC) adopted the spelling ‘sulfur’, rather than ‘sulphur’ in 1990 
(Leigh, Favre and Metanomski, 1998). 
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occurs as sulfates in evaporitic settings and hydrothermal vein systems, e.g. as gypsum [CaSO4.2H2O], 

epsomite [MgSO4.7H2O], alunite [KAl3(SO4)2(OH)6] and barite [BaSO4]. Sedimentary rocks which are formed 

under reducing conditions, e.g. shales, contain insoluble sulfides which are slowly oxidized to sulfates during 

weathering, on exposure to oxygen. Clay minerals and hydrous iron and aluminium oxides retain sulfate by 

adsorption (Whitehead, 2000). 

 
Table 6.13: Typical sulfur concentrations (in mg kg-1) found in some common rocks and soils. 

SOURCE Whitehead,  
2000 

Bowen,  
1966 

Camberato & Pan, 
2000 

Eriksen, Murphy & 
Schnug, 1998 

Earth’s crust     
Granite 58    
Basalt 123    
Shale 2 400    
Sandstone 240    
Limestone 1 200    
Soils from Granite 600    
Soils from Shale 1 000    
Soils from 
Sandstone 200    

Mineral Soils 
(general) 

1 000 
[200 – 2 000] 

700 
[30 – 900] 129 - 717 54 - 593 

 

Deposition of atmospheric sulfur, in the form of sulfur dioxide [SO2], hydrogen sulfide [H2S], carbon disulfide 

[CS2], dimethyl sulfide [(CH3)2S] and sulfate aerosols derived from sea spray, volcanic eruptions and burning 

of fossil fuels, contribute to soil sulfur content. Such contributions may vary from 1 – 2 kg ha-1 a-1 inland, to 8 

– 10 kg ha-1  a-1 at the coast, for areas far from industrial development (such as Australia, New Zealand, 

South America), and 20 – 30 kg ha-1 a-1 near industrialized areas (Saggar, Hedley and Phimsarn, 1998). 

Fertilizers are also a source of soil sulfur in areas of intensive agriculture, but it is of no consequence in the 

study area. 

 

Sulfur is relatively abundant in organic matter. In soil that has been under grassland for a long period, up to 

90 % of all soil sulfur may be in organic forms. The remainder occur as sulfates in the soil solution and 

adsorbed on exchange sites (Whitehead, 2000). Grassland soils generally contain more sulfur than arable 

soils (Whitehead, 2000; Saggar et al., 1998). Calcium and magnesium sulfates are precipitated under arid 

conditions, but are leached out under humid conditions. Typical S concentrations in saline soils of arid and 

semi-arid regions are more than 3 000 mg S kg-1 soil, humid temperate grassland soils contain between 200 

and 1 000 mg S kg-1, while leached sandy soils generally contain less than 200 mg S kg-1 (Whitehead, 2000). 

High Fe and Al oxide content and low pH decrease bioavailability of S from exchange sites (Saggar et al., 

1998). Mineralisation of organic soil S occurs at a rate of about 2 – 5 % of the organic-S (Saggar et al., 

1998). 

Plants absorb sulfur in the form of the sulfate ion [SO4
2-]. Sulfur is a component of several amino acids (e.g. 

cysteine, methionine), co-enzymes (e.g. biotin, thiamine), sulfonic acids, ferredoxins, sulfolipids, sulfated 

polysaccharides and proteins (Reuter and Robinson, 1997; Eriksen, Murphy and Schnug, 1998). The ratio of 

nitrogen to sulfur in plant proteins is generally around 36:1 in the number of atoms, or 15.7:1 on weight basis 

(Whitehead, 2000). Sulfur links adjacent polypeptide chains through the disulfide bonds of two cysteine units, 

thus playing an important role in the synthesis and functioning of proteins. As most enzymes are proteins, 



6  19 

sulfur is crucial for many physiological processes. Sulfur is found in glutathione, an antioxidant that protects 

plant tissues against damage from oxidation. Glutathione is a precursor of several compounds involved in 

detoxification of heavy metals, and it is a reservoir of reduced sulfur (Whitehead, 2000). Sulfolipids are 

structural elements of all biological membranes, and probably involved in regulation of ion transport across 

membranes (Whitehead, 2000). Methionine is a constituent of several proteins and is involved in the 

production of lignin, pectin, chlorophyll and flavonoids (Whitehead, 2000). Sulfur also plays a role in energy 

transfer and in plant structure (Reuter and Robinson, 1997).  

 

 
Figure 6.38. The major forms of sulfur involved in the cycling of sulfur 

in grassland (from Whitehead, 2000) 
  

 
Table 6.14: Estimated sulfur balances (kg ha-1 year-1) from an extensively managed grassland, grazed by beef cattle, in 

the United Kingdom (Whitehead, 2000). 

 ESTIMATED S (KG HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 15 

ASPECT OF RECYCLING  

Uptake into herbage 6 

Consumption of herbage by animals 3 

Dead herbage to soil 5 

Dead roots to soil 3 

Excreta to soil of grazed area 2.8 

OUTPUTS  

Animal products 0.16 

Leaching / runoff 8 

Loss through excreta off sward 0 

GAIN TO SOIL 6 
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6.4.1 STATISTICAL ANALYSIS: SULFATE OF THE SATURATED PASTE EXTRACT 

 
 Table 6.15: Descriptive statistics – sulfate content (mg l-1) of the saturated paste extract (n = 79). 

  Sulfate  
 mg l-1 

Mean 10.96 
Median 9.1 
Standard Deviation 6.09 
Coefficient of Variation 0.56 
Minimum 3.0 
Maximum 29.5 
Range 26.5 
Lower Quartile 6.8 
Upper Quartile 12.2 
Quartile Range 5.4 
Percentile 10 5.4 
Percentile 90 20.9 
Skewness  1.42 
Kurtosis  1.47 

 

Normality was rejected for sulfate by the statistical tests employed, namely the Shapiro-Wilk W test, 

Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in skewness, on kurtosis, and on a 

combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 6.16: Distribution in terms of deciles – sulfate content (mg l-1) (n = 79) 

Sulfate 
  Decile mg l-1 

minimum  3.0 
  1 5.4 
  2 6.3 
  3 7.0 
  4 8.1 
median 5 9.1 
  6 10.2 
  7 11.8 
  8 14.5 
  9 20.9 
maximum 10 29.5 

 

The sulfate content of 79 samples from the study area ranges from 3.0 to 29.5 mg    l-1. The mean (10.96 

mg l-1) is higher than the median (9.10 mg l-1), with a skewness of 1.42 and kurtosis of 1.47. The standard 

deviation is 6.09. Half the samples have sulfate concentrations of between 6.8 (1st quartile) and 12.2 mg l-1 

(3rd quartile), for a quartile range of 5.4. In 80 % of samples, the sulfate content is between 5.4 (1st decile) 

and 20.9 mg l-1 (9th decile). The frequency distribution is shown in Table 6.16 and Figures 6.39 – 6.40. 

 



6  21 

  
Figure 6.39. Decile distribution of sulfate content (mg l-1) Figure 6.40. Histogram of sulfate content (mg l-1) 

 

A statistically significant correlation, at p < 0.05, was found between sulfate content and electrical conductivity 

of the saturated paste extract (r2 = 0.36) (Figure 6.41). Significant, but weak, correlations, at p < 0.05, were 

found with exchangeable potassium (r2 = 0.22), electrical conductivity of the 2:5 soil:water suspension (r2 = 

0.20), chloride (r2 = 0.14), coarse sand (r2 = 0.12), extractable potassium (r2 = 0.11), and organic matter (r2 = 

0.10). 

 

  
Figure 6.41. Sulfate (saturated paste) content (mg l-1) 

vs EC (saturated paste) (uS cm-1) 

 

Topsoil sulfate concentrations are virtually the same as those of the subsoil (Table 6.17; Figure 6.42). The 

prevailing semi-arid climate, and subsequent low organic matter content, is probably the reason why there is 

no significant sulfate enrichment of the topsoil. 

 

  
Figure 6.42. Sulfate content (mg l-1), per topsoil and 

subsoil 

Figure 6.43. Sulfate content (mg l-1), per textural class 



6  22 

Table 6.17: Sulfate content (mg l-1), per topsoil and subsoil. 

Sulfate  
mg l-1 Topsoil (n = 34) Subsoil (n = 37) 

Mean 11.73 10.83 
Median 9.12 9.54 
Std. Dev. 6.64 6.00 
Minimum 3.70 3.02 
Maximum 29.39 29.45 
Range 25.69 26.43 
Lower Quartile 6.77 6.85 
Upper Quartile 16.25 11.95 
Quartile Range 9.48 5.10 
Percentile 10 6.21 5.44 
Percentile 90 22.78 20.88 

 

Sulfate increases in the order sand  loamy sand  sandy loam  loam, though there is considerable 

overlap in the ±0.95 confidence limits (Figure 6.43). 

 

Sulfate concentrations increase in the order: soils formed in situ  aeolian origin  alluvial origin  colluvial 

origin of parent material, though there is considerable overlap in the ±0.95 confidence limits (Figure 6.44). 

 

  
Figure 6.44. Sulfate content (mg l-1), per origin of parent 

material 

Figure 6.45. Sulfate content (mg l-1), per type of parent 

material

 

Sulfate concentrations are somewhat lower in the Kalahari sands than in soils formed on the schist of the 

Khomas Hochland – a consequence of the mineral composition of the respective parent materials (Figure 

6.45). 

 

Arenosols and Regosols have lower SO4
2- concentrations than Leptosols, Luvisols, Calcisols and, especially, 

Cambisols (Table 6.18; Figure 6.46).  
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Figure 6.46. Sulfate  content (mg l-1), per WRB 

reference soil group 

Figure 6.47. Sulfate content (mg l-1), per degree of 

dissection of the landscape 

 
Table 6.18: Sulfate content, per WRB reference soil group. 

Sulfate 

mg l-1 
Arenosols 

(n = 9) 
Calcisols 

(n = 9)  
Leptosols 

(n = 9)  
Cambisols 

(n = 14) 
Regosols 
(n = 25) 

Luvisols 
(n = 3) 

Mean 8.01 12.69 12.01 14.90 9.03 9.99 
Median 8.91 10.23 8.05 15.62 6.95 10.13 
Std. Dev. 2.54 6.66 8.42 6.54 4.36 2.26 
Minimum 4.71 5.81 3.70 6.67 3.02 7.66 
Maximum 11.10 25.20 26.00 29.39 21.63 12.18 
Range 6.39 19.39 22.30 22.72 18.61 4.52 
Lower Quartile 4.96 9.43 6.77 7.91 6.21 7.66 
Upper Quartile 10.08 11.61 16.25 18.94 11.27 12.18 
Quartile Range 5.12 2.18 9.48 11.03 5.06 4.52 
Percentile 10 4.71 5.81 3.70 7.21 5.78 7.66 
Percentile 90 11.10 25.20 26.00 20.92 15.52 12.18 

 

There is a slight increase in sulfate concentrations from low to high degree of dissection of the landscape, 

though there is considerable overlap in the ±0.95 confidence limits (Figure 6.47). 

 

The sulfate (saturated paste extract) levels of profiles, of topsoil and subsoil respectively, are shown in 

Figures 6.48 – 6.49.  

 

  
Figure 6.48. Sulfate content (mg l-1) of topsoil Figure 6.49. Sulfate content (mg l-1) of subsoil 

    
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CHAPTER SEVEN 

CHEMICAL CHARACTERISATION – BASES 

 

7.1 INTRODUCTION 

Calcium and magnesium – alkaline earth metals – and potassium and sodium – alkali metals – are known as 

basic cations or bases, as soils tend to be alkaline (basic) when the cation exchange complex is entirely 

saturated with them (Forth, 1990). Calcium, magnesium and potassium are essential plant nutrients, 

whereas sodium has been shown to be beneficial to some plants, without satisfying the criteria for 

essentiality (Whitehead, 2000). 

 

7.2 CALCIUM 

Calcium is the 5th most plentiful element in the Earth’s crust. It occurs commonly in sedimentary rocks in the 

minerals calcite [CaCO3], dolomite [CaMg(CO3)2] and gypsum [CaSO4·2H2O], as well as in igneous and 

metamorphic rocks, mainly in the silicate minerals augite [(Ca,Mg,Fe)SiO3], epidote [Ca2(Al, 

Fe)3(SiO4)3(OH)], hornblende [Ca2(Mg, Fe, Al)5 (Al, Si)8O22(OH)2], plagioclase [NaAlSi3O8 to CaAl2Si2O8], 

amphiboles [Ca2Mg5Si8O22 (OH)2 and Ca2(Fe,Mg)5 Si8O22(OH)2 and (Na,Ca)2(Mg,Fe,Al)5(SiAl)8O22(OH)2], 

pyroxenes [CaMgSi2O6 and Ca(Mg,Fe,Al)Si2O2] and some types of garnets [Ca3Y2(SiO4)3, where Y can be 

Al3+/Fe3+/Cr3+]. There are about 159 minerals containing calcium. Relative abundance in some parent 

materials decreases from calcareous sedimentary rock through basic igneous rock to acid igneous rock 

(Jenny, 1941).  

 
Table 7.1: Typical calcium concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead, 2000 Bruce, 1999 Helmke, 2000 
Earth’s crust  36 000  
Granite 9 900   
Basalt 78 300   
Shale 22 100   
Sandstone 39 100   
Limestone 302 300   
Soils from Granite 3 600   
Soils from Shale 1 300   
Soils from Sandstone 5 300   
Entisol   17 600 
Spodosol   19 300 
Alfisol   150 000 
Mollisol   11 000 

Soils (general) 18 000 
[10 000 – 250 000] 

1 000 – 10 000 
(non-calcareous); 

10 000  
(calcareous) 

13 700 
[7 000 – 500 000] 

 

 

Calcium occurs in minerals, as constituents of inorganic and organic compounds, as ions on the exchange 

complex and in the soil solution. Bioavailability is governed by parent material, ion exchange reactions, 
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biological transformations, loss from the crop root zone by leaching and crop removal from the field and 

replenishment via atmospheric deposition, fertilizer and soil amendments (Camberato and Pan, 2000). 

Calcium is more tightly retained by 2:1 than by 1:1 clay minerals and organic matter. It is readily available in 

alkaline soil, while acidity suppresses its availability through lower cation exchange capacity and lower 

quantities of basic cations in the soil. 

 

Much of the plant calcium is bound to the galacturonic acid component of pectin (Whitehead, 2000). Calcium 

oxalates and other calcium organic acids are found in the apoplasm or vacuoles (Camberato and Pan, 

2000). It contributes to maintenance of osmotic potential, cation-anion balance and cellular pH (Reuter and 

Robinson, 1997). It plays a role in the structure, integrity, permeability and selectivity of membranes (Foth, 

1990), with calcium being an important constituent of middle lamellae of cell walls (Whitehead, 2000). Being 

divalent, calcium can link adjacent polymer molecules that contain acidic groups, playing a role cell division 

and elongation (Reuter and Robinson, 1997), and thus in the growth of meristems and root tips (Whitehead, 

2000). Calcium is required by a number of enzymes such as α-amylase and some nucleases (Clarkson and 

Hanson, 1980; Blevins, 1994). It functions as a messenger in environmental signals (Reuter and Robinson, 

1997). Parker and Truog (1920) established that grasses contain far less calcium (4 000 mg Ca kg-1) than 

dicotyledons, legumes and brassicas (12 000 – 18 000 mg Ca    kg-1). 

 

7.2.1 STATISTICAL ANALYSIS: EXTRACTABLE AND EXCHANGEABLE CALCIUM CONTENT 

 

Normality was rejected for extractable and exchangeable Ca content by the statistical tests employed, 

namely the Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in 

skewness, on kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 7.2: Descriptive statistics – extractable calcium content (n = 535) and exchangeable calcium content (n = 396). 

  Ca extractable Ca exchangeable 
 mg kg-1 cmolc kg-1 cmolc kg-1 
Mean 613.45 3.07 2.30 
Median 412 2.06 1.32 
Standard Deviation 750.08 3.75 2.99 
Coefficient of Variation 1.22 1.22 1.30 
Minimum 8 0.04 0.00 
Maximum 6 606 33.03 19.46 
Range 6 598 32.99 19.46 
Lower Quartile 218 1.09 0.61 
Upper Quartile 680 3.40 2.60 
Quartile Range 462 2.31 1.99 
Percentile 10 122 0.61 0.21 
Percentile 90 1146 5.73 6.02 
Skewness 3.67 3.67 2.75 
Kurtosis 17.64 17.64 8.92 

 

The extractable calcium content of 535 samples from the study area ranges from 0.04 to 33.03 cmolc kg-1. 

The mean (3.07 cmolc kg-1) is considerably higher than the median (2.06 cmolc kg-1), with a skewness of 3.67 

and kurtosis of 17.64. The standard deviation is 3.75 cmolc kg-1. Half the samples have calcium 
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concentrations of between 1.09 (1st quartile) and 3.40 cmolc kg-1 (3rd quartile), for a quartile range of 2.32 

cmolc kg-1. In 80 % of samples, the Ca content is between 0.61 (1st decile) and 5.73 cmolc kg-1 (9th decile). 

The lower 90 % of samples are fairly normally distributed, with the upper 10 % contributing most to the 

skewness. The frequency distribution is shown in Table 7.3 and Figures 7.1 – 7.2. 

 

  
Figure 7.1. Decile distribution of extractable calcium 

content (mg kg-1) 

Figure 7.2. Histogram of extractable calcium content 

(mg kg-1) 

 

Table 7.3: Distribution in terms of deciles – extractable calcium content (n = 535) and exchangeable calcium content (n = 

396). 

Ca extractable Ca exchangeable   Decile mg kg-1 cmolc kg-1 cmolc kg-1 
minimum  8 0.04 0.00 
  1 122 0.61 0.21 
  2 191 0.96 0.39 
  3 249 1.25 0.78 
  4 314 1.57 1.04 
median 5 411 2.06 1.32 
  6 506 2.53 1.65 
  7 615 3.08 2.11 
  8 781 3.91 3.09 
  9 1 145 5.73 6.02 
maximum 10 6 606 33.03 19.46 

 

Statistically significant correlations, at p < 0.05, were found between extractable calcium content and 

respectively the sum of extractable bases (r2 = 0.95), sum of exchangeable bases (S-value) (r2 = 0.64), 

exchangeable calcium content (r2 = 0.62), cation exchange capacity (r2 = 0.59), fluoride content (r2 = 0.45), 

and pH (H2O) (r2 = 0.35), as shown in Figures 7.3 – 7.8.  

 

  
Figure 7.3. Extractable Ca content (mg kg-1) vs sum of 

extractable bases (cmolc kg-1) 

Figure 7.4. Extractable Ca content (mg kg-1) vs sum of 

exchangeable bases (cmolc kg-1) 
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Figure 7.5. Extractable Ca content (mg kg-1) vs 

exchangeable Ca content (cmolc kg-1)  

Figure 7.6. Extractable Ca (mg kg-1) content vs CEC 

(cmolc kg-1) 

 

  
Figure 7.7. Extractable Ca content (mg kg-1) vs F 

content (mg l-1) 

Figure 7.8. Extractable Ca content (mg kg-1) vs pH 

(H2O)  

 

Significant, but weak, correlations were found with extractable magnesium content (r2 = 0.23), electrical 

conductivity measured in a saturated paste (r2 = 0.22), exchangeable magnesium content (r2 = 0.18), clay 

content (r2 = 0.13), sand content (r2 = 0.11). 

 

The exchangeable calcium content content of 396 samples from the study area ranges from 0 to 19.46 

cmolc kg-1 (Figures 7.17 – 7.21). The mean (2.30 cmolc kg-1) is considerably higher than the median (1.32 

cmolc kg-1), with a skewness of 2.75 and kurtosis of 8.92. The standard deviation is 2.99. Half the samples 

have calcium content concentrations of between 0.61 (1st quartile) and 2.60 cmolc kg-1 (3rd quartile), for a 

quartile range of 1.99. In 80 % of samples, the exchangeable Ca content is between 0.21 (1st decile) and 

6.02 cmolc kg-1. See Table 7.3 and Figures 7.9 – 7.10 for the frequency distribution. 

 

 
Figure 7.9. Decile distribution of exchangeable calcium 

content (cmolc kg-1) 

Figure 7.10. Histogram of exchangeable calcium content 

(cmolc kg-1) 
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The concentrations of exchangeable calcium content found in the study area are consistent with values 

quoted in literature, such as 30 – 40 cmolc kg-1 for neutral to alkaline Australian soils (Bruce, 1999); means of 

2.4 cmolc kg-1 for acidic Australian topsoils and 0.74 cmolc kg-1 for acidic Australian subsoils, respectively 

(Bruce, 1999); 14.0 – 16.1 cmolc kg-1 (Forth, 1990). 

 

Statistically significant correlations, at p < 0.05, were found between exchangeable calcium content and 

respectively the sum of exchangeable bases (S-value) (r2 = 0.93), cation exchange capacity (r2 = 0.82), 

extractable calcium content (r2 = 0.62), the sum of extractable bases (r2 = 0.57), and pH (r2 = 0.45), as shown 

in Figures 7.5 and 7.11 - 7.14.  

 

  
Figure 7.11. Exchangeable Ca content (cmolc kg-1) vs 

sum of exchangeable bases (cmolc kg-1) 

Figure 7.12. Exchangeable Ca content (cmolc kg-1) vs 

CEC (cmolc kg-1)  

 

  
Figure 7.13. Exchangeable Ca content (cmolc kg-1) vs 

sum of extractable bases (cmolc kg-1) 

Figure 7.14. Exchangeable Ca content (cmolc kg-1) vs 

pH (H2O)  

 

Significant, but weak, correlations were found with fluoride content (r2 = 0.27), exchangeable magnesium 

content (r2 = 0.17), electrical conductivity measured in a 2:5 soil:water suspension (r2 = 0.16), sand content 

(r2 = 0.15), and extractable magnesium content (r2 = 0.15). 

 

Topsoil Ca concentrations (both extractable and exchangeable) are noticeably lower than subsoil Ca 

concentrations (Table 7.4; Figures 7.15 – 7.16). This is most likely caused by removal of topsoil calcium 

through grazing, eluviation of topsoil, accumulation of leached calcium lower down in the profile and 

additions through weathering of parent material. These results are consistent with literature, for example the 

findings of Materechera, Mandiringana and Mbokodi (1998) and Kotze and Du Preez (2008).  
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Figure 7.15. Extractable Ca content (ppm = mg kg-1), 

per topsoil and subsoil  

Figure 7.16. Exchangeable Ca content (cmolc kg-1), per 

topsoil and subsoil 

 
Table 7.4: Descriptive statistics of extractable Ca content (mg kg-1 and cmolc kg-1) and exchangeable Ca content (cmolc 
kg-1), per topsoil and subsoil. 

Ca extractable  Ca exchangeable  
Topsoil  
(n = 199) 

Subsoil  
(n = 289) 

Topsoil  
(n = 161) 

Subsoil  
(n = 202)  

mg kg-1 cmolc kg-1 mg kg-1 cmolc kg-1 cmolc kg-1 cmolc kg-1 
Mean 483.54 2.42 697.69 3.49 1.44 2.78 
Median 342.0 1.71 457.0 2.29 0.98 1.57 
Std Dev 624.63 3.12 804.1 4.02 1.89 3.37 
Minimum 8.0 0.04 24.0 0.12 0.00 0.00 
Maximum 5610 28.05 6 606.0 33.03 12.94 19.46 
Range 5602 28.01 6 582.0 32.19 12.94 19.46 
Lower Quartile 182 0.91 266.0 1.33 0.34 0.80 
Upper Quartile 618 3.09 780.0 3.9 1.66 3.31 
Quartile Range 436 2.18 514.0 2.57 1.32 2.51 
Percentile10 108 0.54 138.00 0.69 0.17 0.23 
Percentile 90 823 4.12 1412.0 7.06 2.91 6.94 

 

When disregarding clay loam and sandy clay soils (too few samples to be representative), it emerges that 

sandy, loamy sand and loam soils have noticeably lower concentrations of both extractable and 

exchangeable Ca, than those of sandy loams and sandy clay loams (Figures 7.17 – 7.18). 

 

  
Figure 7.17. Extractable Ca content (ppm = mg kg-1), 

per textural class 

Figure 7.18. Exchangeable Ca content (cmolc kg-1), per 

textural class 
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Alluvial parent material contains significantly more extractable and exchangeable Ca than those of aeolian or 

colluvial origin, or soils formed by weathering in situ (Figures 7.19 – 7.20).  

 

  
Figure 7.19. Extractable Ca content (ppm = mg kg-1), 

per origin of parent material 

Figure 7.20. Exchangeable Ca content (cmolc kg-1), per 

origin of parent material 

 

Extractable Ca concentrations are significantly lower in the Kalahari sands than the soils formed on the 

schist of the Khomas Hochland – a direct consequence of the mineral composition of the respective parent 

materials (Figures 7.21 – 7.22). The means of extractable Ca content in the case of quartzite, and of 

exchangeable Ca content in the case of sandstone and quartzite are also lower than those of schist, though 

the ±0.95 confidence intervals overlap, precluding firm predictions. 

 

  
Figure 7.21. Extractable Ca content (ppm = mg kg-1), 

per type of parent material 

Figure 7.22. Exchangeable Ca content (cmolc kg-1), per 

type of parent material 

 

As expected, Calcisols from the study area contain far more extractable and exchangeable Ca than any of 

the other soil types (Figures 7.23 – 7.24). Cambisols and Luvisols have higher extractable Ca concentrations 

than Arenosols and Regosols. Cambisols have higher exchangeable Ca concentrations than Arenosols, 

Regosols and Luvisols. The mean exchangeable Ca content of Leptosols is considerably higher than those 

of Arenosols, Regosols, Cambisols and Luvisols, but there is an appreciable overlap in the ±0.95 confidence 

intervals.  
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Figure 7.23. Extractable Ca content (ppm = mg kg-1), 

per WRB reference soil group 

Figure 7.24. Exchangeable Ca content (cmolc kg-1), per 

WRB reference soil group 

 
Table 7.5: Descriptive statistics of extractable Ca content (mg kg-1 and cmolckg-1) and exchangeable Ca content 
(cmolckg-1), per WRB reference soil group. 
Ca extractable 
mg kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols  
(n = 24) 

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 394.7 2917.9 777.5 620.2 776.0 425.1 1 074.0 
Median 220.50 3 054 534 654.5 631 328 1 034 
Std.Dev. 545.9 1 859.2 816.1 217.2 637.2 303.4 113.4 
Minimum 8 496 26 360 54 56 986 
Maximum 2 892 6 606 3 622 872 3 202 1 406 1 202 
Range 2 884 6 110 3 596 512 3 148 1 350 216 
Lower Quartile 126.5 1 130 296 368 368 202 986 
Upper Quartile 469.5 4104 848 812 1 022 590 1 202 
Quartile Range 343 2974 552 444 654 388 216 
Percentile 10 80 630 150 360 254 120 986 
Percentile 90 612 5 610 1 734 872 1 386 932 1 202 
Ca extractable 
cmolc kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols  
(n = 24) 

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 1.97 14.59 3.89 3.10 3.88 2.13 5.37 
Median 1.10 15.27 2.67 3.27 3.16 1.64 5.17 
Std.Dev. 2.73 9.30 4.08 1.09 3.19 1.52 0.57 
Minimum 0.04 2.48 0.13 1.80 0.27 0.28 4.93 
Maximum 14.46 33.03 18.11 4.36 16.01 7.03 6.01 
Range 14.42 30.55 17.98 2.56 15.74 6.75 1.08 
Lower Quartile 0.63 5.65 1.48 1.84 1.84 1.01 4.93 
Upper Quartile 2.35 20.52 4.24 4.06 5.11 2.95 6.01 
Quartile Range 1.72 14.87 2.76 2.22 3.27 1.94 1.08 
Percentile 10 0.40 3.15 0.75 1.80 1.27 0.60 4.93 
Percentile 90 3.06 28.05 8.67 4.36 6.93 4.66 6.01 
Ca 
exchangeable 
cmolc kg-1 

Arenosols 
(n = 129) 

Calcisols 
(n = 13)  

Leptosols  
(n = 15) 

Fluvisols 
(n = 0) 

Cambisols 
(n = 61) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 1.45 7.49 3.35 -  2.26 1.44 1.13 
Median 0.80 7.20 1.01 - 1.58 1.06 1.00 
Std.Dev. 2.34 5.48 5.54 - 2.15 1.38 0.27 
Minimum 0.00 0.60 0.09 - 0.00 0.00 0.95 
Maximum 19.14 16.27 19.46 - 12.35 6.81 1.45 
Range 19.14 15.67 19.37 - 12.35 6.81 0.50 
Lower Quartile 0.29 2.70 0.21 - 0.80 0.47 0.95 
Upper Quartile 1.67 12.62 3.99 - 3.09 1.82 1.45 
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Quartile Range 1.38 9.92 3.78 - 2.29 1.35 0.50 
Percentile 10 0.03 1.00 0.11 - 0.26 0.22 0.95 
Percentile 90 2.72 13.36 11.93 - 5.05 2.94 1.45 

 

Exchangeable Ca concentrations are highest in the lowest landscape positions (valleys and lower slopes), 

and lowest in the higher landscape positions (mid-slopes, upper slopes and ridges) (Figure 7.26). There is 

more ambiguity in the case of extractable Ca content, with upper slopes containing higher than expected Ca 

concentrations, and a wide ±0.95 confidence interval (Figure 7.25).  

 

  
Figure 7.25. Extractable Ca content (ppm = mg kg-1), 

per position in the landscape 

Figure 7.26. Exchangeable Ca content (cmolc kg-1), per 

position in the landscape 

 

Exchangeable Ca concentrations increase with the degree of dissection (Figure 7.28). The same trend, 

though with more overlap in the ±0.95 confidence intervals, is apparent in the case of extractable Ca content 

(Figure 7.27). One explanation is greater rates of erosion and subsequent weathering in more dissected 

terrain. Secondly, the highly dissected terrain of the study area occurs mainly on schist, quartzite and 

calcrete, whereas the less dissected areas, towards the east, are mainly covered with Kalahari sands. 

 

  
Figure 7.27. Extractable Ca content (ppm = mg kg-1), 

per degree of dissection of the landscape 

Figure 7.28. Exchangeable Ca content (cmolc kg-1), 

per degree of dissection of the landscape 

 

The extractable and exchangeable Ca content of profiles in the study area of topsoil and subsoil 

respectively, are shown in Figures 7.29 – 7.32.  
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Figure 7.29. Extractable Ca content (cmolc kg-1) of 

topsoil 

Figure 7.30. Extractable Ca content (cmolc kg-1) of 

subsoil 

 

  
Figure 7.31. Exchangeable Ca content (cmolc kg-1) of 

topsoil 

Figure 7.32. Exchangeable Ca content (cmolc kg-1) of 

subsoil 

 

7.3 MAGNESIUM [Mg] 

Magnesium is the ninth most abundant element in the universe by mass and the eighth most abundant 

element in the lithosphere (Barber, 1994). It occurs in more than 100 minerals, mainly in the primary minerals 

olivine [Mg2SiO4], pyroxene [CaMgSi2O6 and Ca(Mg,Fe,Al)Si2O2], amphibole [Ca2Mg5Si8O22 (OH)2 and 

Ca2(Fe,Mg)5 Si8O22(OH)2 and (Na,Ca)2(Mg,Fe,Al)5(SiAl)8O22(OH)2], serpentine [Mg3Si2O5(OH)4], talc 

[Mg3Si4O10(OH)2] and biotite mica [K(MgFe)3AlSi3O10]. It is also found in the secondary minerals magnesite 

[MgCO3], dolomite [CaCO3.MgCO3], vermiculite [(MgFe,Al)3(Al,Si)4O10(OH)2·4H2O], montmorillonite 

[(Na,Ca)0.33(Al,Mg)2 (Si4O10) (OH)2 ·nH2O] and chlorite [(Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6]. Relative 

abundance in some parent materials decreases from basic igneous- through acid igneous- to sedimentary 

rock (Metson, 1974). Soils from granite, sandstone and most shales are relatively low in magnesium, while 

those from mafic (ferromagnesian) igneous rocks are high in magnesium (Mayland and Wilkinson, 1989). 
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Table 7.6: Typical magnesium concentrations (in mg kg-1) found in the earth’s crust, some common rocks, and soils. 

SOURCE Whitehead,  
2000 

Foth,  
1999 

Barber,  
1994 

Mayland and 
Wilkinson, 1989 Helmke, 2000 

Earth’s crust   21 000 21 000 21 000  
Granite 2 400     
Basalt 29 900     
Shale 15 000     
Sandstone 7 000     

Limestone 47 000   30 000 –  
120 000  

Soils from 
Granite 1 400     

Soils from 
Shale 9 600     

Soils from 
Sandstone 3 900     

Entisol     23 200 
Spodosol     5 400 
Alfisol     50 700 
Mollisol     5 500 

Soils (general) 8 000 
[1 000 – 15 000]  5 000 5 000 600 – 6 000 

[5 000] 
 

Magnesium in soils occurs in minerals, as ions on the exchange complex, and in the soil solution. 

Bioavailability is governed by parent material, ion exchange reactions, biological transformations, loss from 

the crop root zone by leaching and crop removal from the field, and replenishment via atmospheric 

deposition, fertilizer and soil amendments (Camberato and Pan, 2000).  

 

Magnesium contributes to maintenance of osmotic potential, cation-anion balance and cellular pH (Reuter 

and Robinson, 1997). It is the centrally coordinated atom in the chlorophyll molecule and thus plays a major 

role in photosynthesis (Foth, 1990). It contributes to protein synthesis by being involved in the functioning of 

ribosomes (Whitehead, 2000). Magnesium acts as a cofactor for many enzymes, especially those involved in 

the transfer of energy through substrates such as ATP (Blevins, 1994); in other words, magnesium activates 

various enzyme systems involved with carbohydrate and nitrogen metabolism, protein-, vitamin-, fat- and oil 

synthesis (Whitehead, 2000). It is involved in uptake and transportation of phosphate within the plant. It 

contributes, with calcium, to keeping protoplasm in a favourable colloidal condition for life processes 

(Whitehead, 2000).  

 

Magnesium is readily available in alkaline soil, though the relative proportions of competing cations (Ca2+, K+, 

Na+) influence magnesium activity (Mayland and Wilkinson, 1989). Acidity suppresses magnesium’s 

availability as a result of lower CEC and lower quantities of basic cations in the soil. If magnesium comprises 

less than about 5 % of the exchangeable cations, deficiencies may be found in plants (Mayland and 

Wilkinson, 1989). 
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7.3.1 STATISTICAL ANALYSIS: EXTRACTABLE AND EXCHANGEABLE MAGNESIUM CONTENT 

 

Normality was rejected for extractable and exchangeable Mg by the statistical tests employed, namely the 

Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in skewness, on 

kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  
 

Table 7.7: Descriptive statistics – extractable magnesium content (n = 532) and exchangeable magnesium content (n = 

399).  

Mg extractable Mg exchangeable   mg kg-1 cmolc kg-1 cmolc kg-1 
Mean 106.9 0.88 0.84 
Median 65.0 0.53 0.57 
Standard Deviation 114.2 0.94 0.92 
Coefficient of Variation 1.1 1.07 1.09 
Minimum 0.0 0.00 0.00 
Maximum 627.0 5.14 6.50 
Range 627.0 5.14 6.50 
Lower Quartile 33.0 0.27 0.23 
Upper Quartile 141.5 1.16 1.14 
Quartile Range 108.5 0.89 0.91 
Percentile 10 15.0 0.12 0.12 
Percentile 90 278.0 2.28 2.01 
Skewness  1.9 1.89 2.48 
Kurtosis  3.5 3.52 8.72 

 

The extractable magnesium content of 532 samples from the study area ranges from 0 to 5.14 cmolc kg-1. 

The mean (0.88 cmolc kg-1) is considerably higher than the median (0.53 cmolc kg-1), with a skewness of 1.89 

and kurtosis of 3.52. The standard deviation is 0.94. Half the samples have magnesium concentrations of 

between 0.27 (1st quartile) and 1.16 cmolc kg-1 (3rd quartile), for a quartile range of 0.89. In 80 % of samples, 

the Mg content is between 0.12 (1st decile) and 2.28 cmolc kg-1 (9th decile). The frequency distribution is 

shown in Table 7.8 and Figures 7.33 – 7.34. 

 

  
Figure 7.33. Decile distribution of extractable 

magnesium content (mg kg-1) 

Figure 7.34. Histogram of extractable magnesium 

content (mg kg-1) 
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Table 7.8: Distribution in terms of deciles – extractable (n = 532) and exchangeable magnesium content (n = 399). 

Mg extractable  Mg exchangeable    Decile mg kg-1 cmolc kg-1 cmolc kg-1 
minimum  0 0.00 0.00 
  1 15 0.12 0.12 
  2 26 0.21 0.19 
  3 39 0.32 0.27 
  4 46 0.38 0.40 
median 5 65 0.53 0.57 
  6 82 0.67 0.71 
  7 112 0.92 0.96 
  8 172 1.41 1.30 
  9 277 2.27 2.01 
maximum 10 627 5.14 6.50 

 

Statistically significant correlations, at p<0.05, were found between extractable magnesium content and 

respectively exchangeable magnesium content (r2 = 0.69), the sum of extractable bases (r2 = 0.42) and the 

sum of exchangeable bases (S-value) (r2 = 0.32) (Figures 7.35 - 7.37).  

 

 
Figure 7.35. Extractable Mg content (mg kg-1) vs 

exchangeable Mg content (cmolc kg-1) 

 

  
Figure 7.36. Extractable Mg content (mg kg-1) vs sum 

of extractable bases (cmolc kg-1) 

Figure 7.37. Extractable Mg content (mg kg-1) vs sum 

of exchangeable bases (cmolc kg-1) 

 

Significant, but weak, correlations were found with cation exchange capacity (r2 = 0.29), extractable calcium 

content (r2 = 0.23), clay (r2 = 0.23), electrical conductivity measured in a saturated paste (r2 = 0.20), 

manganese content (r2 = 0.18), extractable potassium content (r2 = 0.18), exchangeable potassium content 

(r2 = 0.17), fluoride content (r2 = 0.15), exchangeable calcium content (r2 = 0.15), iron (r2 = 0.14), sand 

content (r2 = 0.10), pH (r2 = 0.10), and copper content (r2 = 0.10).  

 

The exchangeable magnesium content of 399 samples from the study area ranges from 0 to 6.50 cmolc  
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kg-1, and is not normally distributed. The mean (0.84 cmolc kg-1) is considerably higher than the median (0.57 

cmolc kg-1), with a skewness of 2.48 and kurtosis of 8.72. The standard deviation is 0.92. Half the samples 

have magnesium concentrations of between 0.23 (1st quartile) and 1.14 cmolc kg-1 (3rd quartile), for a quartile 

range of 0.91. Eighty percent of samples lies between 0.12 (1st decile) and 2.01 cmolc kg-1 (9th decile). The 

frequency distribution is shown in Table 7.6 and Figures 7.38 – 7.39. 

 

  
Figure 7.38. Decile distribution of exchangeable 

magnesium content (cmolc kg-1) 

Figure 7.39. Histogram of exchangeable magnesium 

content (cmolc kg-1) 

 

The range of exchangeable magnesium content (0 – 6.5 cmolc kg-1) is consistent with values quoted in 

literature, such as 0.5 – 14 cmolc kg-1 (Barber, 1994); 0.81 – 8.1 cmolc kg-1 (Baker, 1972); 0.21 – 14.4 cmolc 

kg-1 (Mokwunye and Melsted, 1972); 3.4 – 5.6 cmolc kg-1 (Forth, 1990). 

 

Statistically significant correlations, at p<0.05, were found between exchangeable magnesium content and 

respectively extractable magnesium content (r2 = 0.69), sand content (r2 = 0.41), the sum of exchangeable 

bases (S-value) (r2 = 0.40), cation exchange capacity (r2 = 0.38), clay content (r2 = 0.37), and the sum of 

extractable bases (r2 = 0.33) (Figures 7.35;  7.40 – 7.44).  

  

  
Figure 7.40. Exchangeable Mg content (cmolc kg-1) vs 

sand content (%) 

Figure 7.41. Exchangeable Mg content (cmolc kg-1) 

vs sum of exchangeable bases (cmolc kg-1) 
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Figure 7.42 Exchangeable Mg content (cmolc kg-1) vs 

CEC (cmolc kg-1) 

Figure 7.43. Exchangeable Mg content (cmolc kg-1) 

vs clay content (%) 

 

  
Figure 7.44. Exchangeable Mg (cmolc kg-1) content vs 

sum of extractable bases (cmolc kg-1) 
 

 

Significant, but weak, correlations were found with manganese (r2 = 0.24), exchangeable potassium content 

(r2 = 0.23), extractable potassium content (r2 = 0.18), pH (r2 = 0.18), extractable calcium content (r2 = 0.19), 

exchangeable calcium content (r2 = 0.17), iron content (r2 = 0.16), copper content (r2 = 0.15), silt (r2 = 0.10), 

medium sand content (r2 = 0.10) and fluoride content (r2 = 0.10).  

 

Topsoil Mg concentrations (both extractable and exchangeable) are considerably lower than subsoil Mg 

concentrations (Table 7.9 and Figures 7.45 and 7.46). This is most likely caused by removal of topsoil 

magnesium through grazing, eluviation of topsoil magnesium, accumulation of leached magnesium lower 

down in the profile and additions through weathering of parent material. This trend is also found in literature, 

for example as noted by Troeh and Thompson (2005) and Materechera et al. (1998).  

 

   
Figure 7.45. Extractable Mg content (ppm = mg kg-1), 

per topsoil and subsoil  

Figure 7.46. Exchangeable Mg content (cmolc kg-1), 

per topsoil and subsoil 
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Table 7.9: Extractable Mg content (mg kg-1 and cmolc kg-1) and exchangeable Mg content (cmolc kg-1), per topsoil and 

subsoil. 

Mg extractable  Mg exchangeable  
Topsoil  
(n = 199) 

Subsoil 
(n = 286) 

Topsoil 
(n = 162) 

Subsoil 
(n = 203)  

mg kg-1 cmolc kg-1 mg kg-1 cmolc kg-1 cmolc kg-1 cmolc kg-1 
Mean 78.97 0.65 117.61 0.96 0.55 1.00 
Median 52.0 0.43 68.5 0.56 0.39 0.69 
Std Deviation 81.12 0.66 122.20 1.00 0.56 1.01 
Minimum 2.0 0.02 0.0 0.00 0.00 0.00 
Maximum 486.0 3.98 577.0 4.73 3.13 6.50 
Range 484.0 3.97 577.0 4.73 3.13 6.50 
Lower Quartile 26.0 0.21 35.0 0.29 0.18 0.26 
Upper Quartile 100.0 0.82 166.0 1.36 0.71 1.52 
Quartile Range 74.0 0.61 131.0 1.07 0.53 1.26 
Percentile10 12.0 0.10 18.0 0.15 0.06 0.14 
Percentile 90 194.0 1.59 300.0 2.46 1.24 2.22 

 

When disregarding clay loam and sandy clay soils, of which there are too few samples to be representative, 

it emerges that sandy soils and loamy sands have considerably lower concentrations of both extractable and 

exchangeable Mg than sandy loams and sandy clay loams (Figures 7.47 and 7.48). This result is supported 

by literature (Troeh and Thompson, 2005). Mokwunye and Melsted (1972) found that the clay portion of 

tropical and temperate soils contain 51 – 70 % of total Mg, silt 22 – 42 % and the sand fraction only 0.1 – 1 

% of the total Mg. 

 

  
Figure 7.47. Extractable Mg content (ppm = mg kg-1), 

per textural class 

Figure 7.48. Exchangeable Mg content (cmolc kg-1), per 

textural class 

 

Aeolian parent material, as embodied by the Kalahari sands, contains significantly less extractable and 

exchangeable Mg than those of alluvial or colluvial origin (Figures 7.49 and 7.50). It also contains less 

extractable Mg than soils formed in situ, though the latter has comparable concentrations of exchangeable 

Mg.  
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Figure 7.49. Extractable Mg content (ppm = mg kg-1), 

per origin of parent material 

Figure 7.50. Exchangeable Mg content (cmolc kg-1), 

per origin of parent material 
 

Both extractable and exchangeable Mg concentrations are significantly lower in the Kalahari sands than the 

soils formed on the schist of the Khomas Hochland – a direct consequence of the mineral composition of the 

respective parent materials (Figures 7.51 and 7.52). 

 

  
Figure 7.51. Extractable Mg content (ppm = mg kg-1), 

per type of parent material 

Figure 7.52. Exchangeable Mg content (cmolc kg-1), 

per type of parent material 

 

Arenosols and Regosols of the study area contain significantly lower concentrations of both extractable and 

exchangeable Mg than Cambisols, Calcisols and Luvisols. This is also the case with extractable Mg of 

Leptosols (Figures 7.53 and 7.54). The mean of exchangeable Mg of Leptosols is considerably higher than 

those of Arenosols and Regosols, but there is an appreciable overlap in the ±0.95 confidence intervals. The 

lower Mg concentrations in Arenosols are caused by low base concentrations in the parent material, low 

CEC, and greater rates of leaching due to sandy texture. Calcisols, being rich in calcium and accompanying 

magnesium, Cambisols, being young soils formed on schist (in the study area), and Luvisols, being soils with 

accumulations of fine material, all contain considerable amounts of both extractable and exchangeable Mg. 
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Figure 7.53. Extractable Mg content (ppm = mg kg-1), 

per WRB reference soil group 

Figure 7.54. Exchangeable Mg content (cmolc kg-1), 

per WRB reference soil group 

 
Table 7.10: Extractable Mg content (mg kg-1 and cmolc kg-1) and exchangeable Mg content (cmolc kg-1), per WRB 
reference soil group. 
Mg extractable 
 mg kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 61.9 232.3 148.5 116.3 195.7 68.8 376.7 
Median 34.0 212.0 75.0 110.5 162.0 40.0 354.0 
Std.Dev. 77.1 145.4 152.2 49.9 139.7 83.3 59.3 
Minimum 0 52 8 47 7 3 332 
Maximum 444 547 534 201 577 366 444 
Range 444 495 526 154 570 363 112 
Lower Quartile 14 126 44 101 78 19 332 
Upper Quartile 69 312 215 128 296 76 444 
Quartile Range 56 186 171 27 218 57 112 
Percentile 10 8 62 33 47 48 10 332 
Percentile 90 183 460 458 201 384 204 444 
Mg extractable 
cmolc kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 0.51 1.90 1.22 0.95 1.60 0.56 3.09 
Median 0.28 1.74 0.61 0.91 1.33 0.33 2.90 
Std.Dev. 0.63 1.19 1.25 0.41 1.15 0.68 0.49 
Minimum 0.00 0.43 0.07 0.39 0.06 0.02 2.72 
Maximum 3.64 4.48 4.38 1.65 4.73 3.00 3.64 
Range 3.64 4.06 4.31 1.26 4.67 2.98 0.92 
Lower Quartile 0.11 1.03 0.36 0.83 0.64 0.16 2.72 
Upper Quartile 0.57 2.56 1.76 1.05 2.43 0.62 3.64 
Quartile Range 0.46 1.52 1.40 0.22 1.79 0.47 0.92 
Percentile 10 0.07 0.51 0.27 0.39 0.39 0.08 2.72 
Percentile 90 1.50 3.77 3.75 1.65 3.15 1.67 3.64 
Mg 
exchangeable 
 cmolc kg-1 

Arenosols 
(n = 129) 

Calcisols 
(n = 15)  

Leptosols 
(n = 15)  

Fluvisols 
(n = 0) 

Cambisols 
(n = 61) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 0.47 1.43 0.93 -  1.64 0.51 1.87 
Median 0.25 1.37 0.45 -  1.32 0.42 1.65 
Std.Dev. 0.57 0.70 0.92 -  1.33 0.43 0.45 
Minimum 0.00 0.63 0.15 -  0.02 0.00 1.56 
Maximum 3.13 3.31 2.80 -  6.50 1.65 2.39 
Range 3.13 2.68 2.65 -  6.48 1.65 0.82 
Lower Quartile 0.16 0.90 0.35 -  0.77 0.17 1.56 
Upper Quartile 0.58 1.65 1.15 -  2.37 0.74 2.39 
Quartile Range 0.42 0.75 0.81 -  1.60 0.57 0.82 
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Percentile 10 0.06 0.76 0.21 -  0.36 0.00 1.56 
Percentile 90 1.16 2.22 2.80 -  3.11 1.15 2.39 

 

Both extractable and exchangeable Mg concentrations are highest in the lowest landscape positions (valleys 

and lower slopes), and lowest in the higher landscape positions (upper slopes and ridges) (Figures 7.55 and 

7.56). This can be explained by mass movement of Mg-containing colluvial material down inclines, as well as 

vertical and lateral displacement of Mg by, percolating water. 

 

  
Figure 7.55. Extractable Mg content (ppm = mg kg-1), 

per position in the landscape 

Figure 7.56. Exchangeable Mg content (cmolc kg-1), 

per position in the landscape 

 

Both extractable and exchangeable Mg concentrations are significantly higher in terrain with a moderate to 

high degree of dissection (Figures 7.57 and 7.58). One explanation is greater rates of erosion and 

subsequent weathering in more dissected terrain. Secondly, the highly dissected terrain of the study area 

occurs mainly on schist, quartzite and calcrete, whereas the less dissected areas, towards the east, are 

mainly covered with Kalahari sands. 

 

  
Figure 7.57. Extractable Mg content (ppm = mg kg-1), 

per degree of dissection of the landscape 

Figure 7.58. Exchangeable Mg content (cmolc kg-1), 

per degree of dissection of the landscape 

 

Extractable Mg concentrations of moderately deep soils on plains with koppies are significantly higher than 

soils in other parts of the landscape (Figure 7.59). The trend is the same for exchangeable Mg, though there 

is greater overlap between the ±0.95 confidence intervals (Figure 7.60). 
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Figure 7.59. Extractable Mg content (ppm = mg kg-1), 

per broad soil unit 

Figure 7.60. Exchangeable Mg content (cmolc kg-1), 

per broad soil unit 

 

The extractable and exchangeable Mg levels in profiles of the study area, of topsoil and subsoil respectively, 

are shown in Figures 7.61 – 7.64.  

 

  
Figure 7.61. Extractable Mg content (cmolc kg-1) of 

topsoil 

Figure 7.62. Extractable Mg content (cmolc kg-1) of 

subsoil 

 

  
Figure 7.63. Exchangeable Mg content (cmolc kg-1) of 

topsoil  

Figure 7.64. Exchangeable Mg content (cmolc kg-1) of 

subsoil 

 

It can be concluded that concentrations of extractable and exchangeable soil magnesium of the study area 

corresponds with values reported in literature. Highest concentrations are found in the subsoil, in relatively 
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young soils, of sandy loam and sandy clay loam texture, in moderate to highly dissected terrain, in parent 

material of alluvial and colluvial origin, particularly those derived from schist, in lower positions in the 

landscape and in association with carbonates. 

 

7.4 POTASSIUM [K] 

Potassium is the 7th most abundant element in the Earth’s crust, with a concentration of approximately 2.4 - 

2.6 %. Locally it varies according to parent material, the degree of weathering and leaching, and removal by 

crops (or grazing of grass, in the case of the study area). Granites contain about 4.6 %, syenites 5.4 %, 

basalts 0.7%, peridotes 0.2 %, clayey shales 3.0 % and limestones on average 0.6 % potassium (Malavolta, 

1985). Potassium is found in more than 50 minerals, including potassium feldspars such as orthoclase and 

microcline [KalSi3O8] – occurring mainly in sand and silt fractions of poorly weathered soil. It is also found in 

the primary mica clay minerals biotite [K(MgFe)3AlSi3O10] and muscovite [KAl2AlSi3O10(OH)2] – in the finer 

sand and silt fractions – and in vermiculite [(K,Ca,Mg)(MgFe)3AlSi3O10(OH)2], which is common in fine sand, 

silt and clay fractions. The secondary clay mineral illite [(K)Al2(Al,Si)4O10(OH)2] contains less potassium. 

Potassium is released more readily from biotite than from muscovite, and more readily from muscovite than 

from orthoclase or microcline (Whitehead, 2000).  

 
Table 7.11: Typical potassium concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead,  
2000 

Foth,  
1999 

Helmke,  
2000 

Troeh and Thompson,  
2005 

Earth’s crust   26 000    
Granite 45 100    
Basalt 5 300    
Shale 26 600    
Sandstone 10 700    
Limestone 2 700    
Soils from Granite 39 000    
Soils from Shale 15 000    
Soils from Sandstone 17 000    
Entisol   26 300  

Spodosol   24 400 
17 000 a 
29 000 b 
31 000 c 

Alfisol   11 700 
14 000 – 17 000 a 
16 000 – 19 000 b 
15 000 – 19 000 c 

Mollisol   17 200 
16 000 – 18 000 a 

17 000 b 
13 000 – 16 000 c 

Inceptisol    
17 000 – 21 000 a 
18 000 – 25 000 b 
24 000 – 26 000 c 

Oxisol    
1 100 a 
1 000 b 
1 000 c 

Aridisol    
23 000 a 
15 000 b 
18 000 c 

Ultisol    
1 000 – 13 000 a 
1 000 – 19 000 b 
2 000 – 35 000 c 
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Soils (general) 3 000 – 25 000 
[15 000]  400 – 30 000 

[14 000]  
a A-horizon; b B-horizon; c C-horizon 
 

Potassium occurs in four forms in soils: soluble, exchangeable, fixed / non-exchangeable and structural / 

mineral (Sparks, 2000). Hydrated potassium ions in the soil solution (about 0.01 % of the total) and adsorbed 

on the exchange complex (about 1 % of the total) are readily available to plants, but the major portion (98 - 

99 % of the total) is locked up in minerals, and thus unavailable to plants in the short term (Sparks, 2000; 

Troeh and Thompson, 2005). Potassium is readily available in alkaline soil, while acidity suppresses its 

availability as a result of lower CEC and lower quantities of basic cations in the soil. 

 

Potassium contributes to regulation of osmotic potential, cation-anion balance and cellular pH (Reuter and 

Robinson, 1997). It is involved in opening and closing of stomata, through its influence on the osmotic 

potential and turgor of the guard cells (Whitehead, 2000). Plants deficient in potassium are more susceptible 

to drought. It also contributes to transport of photosynthate from the leaves. Potassium is an activator of 

many enzymes, including some involved in protein synthesis (Blevins, 1994). According to Foth (1990), 

potassium has some functions in photosynthesis, carbohydrate translocation and protein synthesis. 

 

7.4.1 STATISTICAL ANALYSIS: EXTRACTABLE AND EXCHANGEABLE POTASSIUM CONTENT 

 

Normality was rejected for extractable and exchangeable K by the statistical tests employed, namely the 

Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in skewness, on 

kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 7.12: Descriptive statistics – extractable potassium content (n = 532) and exchangeable potassium content (n = 

399). 

K extractable K exchangeable   
mg kg-1 cmolc kg-1 cmolc kg-1 

Mean 137.36 0.35 0.30 
Median 114 0.29 0.26 
Standard Deviation 93.79 0.24 0.21 
Coefficient of Variation 0.68 0.68 0.71 
Minimum 4 0.01 0.03 
Maximum 756 1.93 1.74 
Range 752 1.92 1.71 
Lower Quartile 82 0.21 0.17 
Upper Quartile 169 0.43 0.36 
Quartile Range 87 0.22 0.19 
Percentile 10 51 0.13 0.12 
Percentile 90 213 0.54 0.49 
Skewness  2.55 2.55 3.03 
Kurtosis  9.44 9.44 13.95 

 

The extractable potassium content of 532 samples from the study area ranges from 0.01 to 1.93 cmolc kg-1. 

The lower 90 % of samples are fairly normally distributed, but the upper 10 % skews the distribution (Table 
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7.13; Figures 7.65 – 7.66). The mean (0.35 cmolc kg-1) is higher than the median (0.29 cmolc kg-1), with a 

skewness of 2.55 and kurtosis of 9.44. The standard deviation is 0.24. Half the samples have concentrations 

of between 0.21 (1st quartile) and 0.43 cmolc kg-1 (3rd quartile), for a quartile range of 0.22. In 80 % of 

samples, the K content is between 0.13 (1st decile) and 0.54 cmolc kg-1 (9th decile).  

 

  
Figure 7.65. Decile distribution of extractable K 

content (mg kg-1) 

Figure 7.66. Histogram of extractable K content (mg kg-1) 

 
Table 7.13: Distribution in terms of deciles – extractable potassium content (n = 532) and exchangeable potassium 

content (n = 399). 

K extractable  K exchangeable   Decile mg kg-1 cmolc kg-1 cmolc kg-1 
minimum  4 0.01 0.03 
 1 51 0.13 0.12 
 2 74 0.19 0.15 
 3 88 0.23 0.19 
 4 104 0.27 0.23 
median 5 114 0.29 0.26 
 6 132 0.34 0.29 
 7 154 0.39 0.33 
 8 181 0.46 0.39 
 9 213 0.54 0.49 
maximum 10 756 1.93 1.74 
 

A statistically significant correlation, at p < 0.05, was found between extractable potassium content and 

exchangeable potassium content (r2 = 0.55), as shown in Figure 7.67. 

 

 
Figure 7.67. Extractable K content (ppm = mg kg-1) vs 

exchangeable K (cmolc kg-1)  content 
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Significant, but weak, correlations were found with extractable magnesium content (r2 = 0.16), iron (r2 = 

0.13), exchangeable magnesium content (r2 = 0.12), electrical conductivity of the saturated paste (r2 = 0.11), 

clay content (r2 = 0.11), sulfate content (r2 = 0.11) and manganese content (r2 = 0.10), respectively.  

 

The exchangeable potassium content of 399 samples from the study area ranges from 0.03 to 1.74 cmolc 

kg-1. The lower 90 % of samples are normally distributed, but the upper 10 % skews the distribution (Table 

7.13; Figures 7.68 – 7.69).The mean (0.30 cmolc kg-1) is thus higher than the median (0.26 cmolc kg-1), with a 

skewness of 3.03 and kurtosis of 13.95. The standard deviation is 0.21. Half the samples have potassium 

concentrations of between 0.17 (1st quartile) and 0.36 cmolc kg-1 (3rd quartile), for a quartile range of 0.19. In 

80 % of samples, the K content is between 0.12 (1st decile) and 0.49 cmolc kg-1 (9th decile).  

 

These values correspond to exchangeable K concentrations reported in literature, such as 0.3 – 0.5 cmolc 

kg-1 (Forth, 1990); 0.40 – 0.46 cmolc kg-1 (Alfisols), 0.20 – 0.40 cmolc kg-1 (Inceptisols) and 0.11 – 0.33 cmolc 

kg-1 (Ultisols) of the United States of America and West Africa (Sparks, 2000). 

 

  
Figure 7.68. Decile distribution of exchangeable K 

content (cmolc kg-1) 

Figure 7.69. Histogram of exchangeable K content 

(cmolc kg-1) 

 

A statistically significant correlation, at p < 0.05, was found between exchangeable potassium content and 

extractable potassium content (r2 = 0.55) (Figure 7.67).  

 

Significant, but weak, correlations were found with sulphate content (r2 = 0.22), exchangeable magnesium 

content (r2 = 0.18), sand content (r2 = 0.17), iron (r2 = 0.15), manganese content (r2 = 0.14), electrical 

conductivity of the 2:5 soil:water suspension (r2 = 0.14), electrical conductivity of the saturated paste (r2 = 

0.14), extractable magnesium content (r2 = 0.13), clay content (r2 = 0.13), zinc content (r2 = 0.13), sum of 

extractable bases (r2 = 0.11) and sum of exchangeable bases (S-value) (r2 = 0.10).  

 

Topsoil and subsoil K concentrations (both extractable and exchangeable) do not differ significantly (Table 

7.14; Figures 7.70 and 7.71), in accord with most reports in literature (Troeh and Thompson, 2005). The 

exchangeable potassium percentage also remains constant with increase in depth (Table 7.15). Other 

sources, however, report a decrease in K with depth (Materechera et al., 1998; Kotze and Du Preez, 2008).  
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Figure 7.70. Extractable K content (ppm = mg kg-1), 

per topsoil and subsoil  

Figure 7.71. Exchangeable K content (cmolc kg-1), per 

topsoil and subsoil 

 
Table 7.14: Extractable K content (mg kg-1 and cmolc kg-1) and exchangeable K content (cmolc kg-1), per topsoil and 
subsoil. 

K extractable  K exchangeable  
Topsoil 
(n = 199) 

Subsoil 
(n = 286) 

Topsoil 
(n = 161) 

Subsoil 
(n = 204)  

mg kg-1 cmolc kg-1 mg kg-1 cmolc kg-1 cmolc kg-1 cmolc kg-1 
Mean 133.84  133.43  0.29 0.28 
Median 118.00  109.00  0.26 0.24 
Std.Dev. 83.62  95.45  0.19 0.17 
Minimum 24.00  17.00  0.07 0.03 
Maximum 630.00  756.00  1.51 1.26 
Range 606.00  739.00  1.44 1.23 
Lower Quartile 85.00  76.00  0.17 0.15 
Upper Quartile 166.00  166.00  0.34 0.36 
Quartile Range 81.00  90.00  0.17 0.21 
Percentile 10 58.00  47.00  0.12 0.11 
Percercentile 90 199.00  221.00  0.44 0.48 

 
Table 7.15: Exchangeable K calculated as a percentage of CEC, at various depths. 

Exchangeable potassium percentage   
Depth 

  
0 – 10 cm 
(n = 35) 

11 – 20 cm 
(n = 91) 

21 – 30 cm 
(n = 201) 

> 30 cm 
(n = 33) 

Mean 17.41 18.71 14.18 15.19 
Median 13.82 16.53 11.48 12.79 
Standard. Deviation 12.92 13.31 14.28 9.65 
Minimum 0.00 1.38 0.41 1.07 
Maximum 61.15 89.44 100.00 40.56 
Range 61.15 88.06 99.59 39.48 
Lower Quartile 9.18 10.00 5.76 9.48 
Upper Quartile 22.37 23.42 16.22 17.06 
Quartile Range 13.19 13.42 10.47 7.58 
Percentile 10 5.88 7.17 3.21 5.97 
Percentile 90 36.56 34.76 29.33 29.78 

 

When disregarding clay loam and sandy clay soils, of which there are too few samples to be representative, 

extractable K concentrations decrease in the order sandy clay loam > sandy loam > loamy sand > sand 

(Figure 7.72). Exchangeable K concentrations decrease in the same order (Figure 7.73). 
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Figure 7.72. Extractable K content (ppm = mg kg-1), 

per textural class 

Figure 7.73. Exchangeable K content (cmolc kg-1), per 

textural class 

 

Aeolian parent material, as embodied by the Kalahari sands, contains significantly less extractable and 

exchangeable K than those of alluvial or colluvial origin (Figures 7.74 and 7.75). It also contains less 

extractable K than soils formed in situ. 

 

  
Figure 7.74. Extractable K content (ppm = mg kg-1), 

per origin of parent material 

Figure 7.75. Exchangeable K content (cmolc kg-1), per 

origin of parent material 

 

Both extractable and exchangeable K concentrations are significantly lower in the Kalahari sands than the 

soils formed on the Khomas Hochland schist, due to the mineral composition of the parent materials (Figures 

7.76 – 7.77). 

 

  
Figure 7.76. Extractable K content (ppm = mg kg-1), 

per type of parent material 

Figure 7.77. Exchangeable K content (cmolc kg-1), per 

type of parent material 
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Arenosols, Regosols and Leptosols of the study area contain significantly lower concentrations of extractable 

and exchangeable K than Cambisols and Calcisols (Figures 7.80 – 7.81). The ±0.95 confidence interval of 

Luvisols is too large to allow predictions of this class (Figures 7.78 – 7.79). The lower K concentrations in 

Arenosols are caused by low base concentrations in the parent material, low CEC, and greater rates of 

leaching due to sandy texture. Calcisols, being rich in calcium and accompanying bases, and Cambisols, 

being young soils formed on schist, contain considerable amounts of both extractable and exchangeable K. 

 

 
Figure 7.78. Extractable K content (ppm = mg kg-1), 

per WRB reference soil group 

Figure 7.79. Extractable K content (ppm = mg kg-1), 

per WRB reference soil group, excluding Luvisols 

 

  
Figure 7.80. Exchangeable K content (cmolc kg-1), per 

WRB reference soil group 

Figure 7.81. Exchangeable K content (cmolc kg-1), per 

WRB reference soil group, excluding Luvisols 

 
Table 7.16: Extractable K content (mg kg-1 and cmolc kg-1) and exchangeable K content (cmolc kg-1), per WRB reference 

soil group. 

K extractable 
 mg kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 101.2 173.2 121.0 144.2 182.8 134.9 498.0 
Median 84.5 178.0 112.5 125.5 166.0 117.0 462.0 
Std.Dev. 77.9 70.0 55.4 47.6 111.1 77.3 118.2 
Minimum 18 58 27 104 57 35 402 
Maximum 756 326 268 212 592 564 630 
Range 738 268 241 108 535 529 228 
Lower Quartile 52 130 81 106 114 96 402 
Upper Quartile 130 213 154 192 196 152 630 
Quartile Range 78 83 73 86 82 56 228 
Percentile 10 43 72 58 104 96 70 402 
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Percentile 90 170 248 188 212 258 188 630 
K extractable 
 cmolc kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 0.26 0.44 0.31 0.37 0.47 0.35 1.27 
Median 0.22 0.46 0.29 0.32 0.42 0.30 1.18 
Std.Dev. 0.20 0.18 0.14 0.12 0.28 0.20 0.30 
Minimum 0.05 0.15 0.07 0.27 0.15 0.09 1.03 
Maximum 1.93 0.83 0.69 0.54 1.51 1.44 1.61 
Range 1.89 0.69 0.62 0.28 1.37 1.35 0.58 
Lower Quartile 0.13 0.33 0.21 0.27 0.29 0.25 1.03 
Upper Quartile 0.33 0.54 0.39 0.49 0.50 0.39 1.61 
Quartile Range 0.20 0.21 0.19 0.22 0.21 0.14 0.58 
Percentile 10 0.11 0.18 0.15 0.27 0.25 0.18 1.03 
Percentile 90 0.43 0.63 0.48 0.54 0.66 0.48 1.61 
K 
exchangeable 
 cmolc kg-1 

Arenosols 
(n = 129) 

Calcisols 
(n = 11)  

Leptosols 
(n = 15)  

Fluvisols 
(n = 0) 

Cambisols 
(n = 61) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 0.21 0.41 0.25  - 0.39 0.27 0.68 
Median 0.16 0.34 0.23 - 0.36 0.25 0.59 
Std.Dev. 0.13 0.20 0.12 - 0.20 0.12 0.31 
Minimum 0.03 0.20 0.12 - 0.14 0.07 0.44 
Maximum 0.90 0.88 0.45 - 1.51 0.87 1.02 
Range 0.87 0.68 0.34 - 1.37 0.80 0.59 
Lower Quartile 0.12 0.24 0.13 - 0.27 0.20 0.44 
Upper Quartile 0.27 0.51 0.36 - 0.47 0.33 1.02 
Quartile Range 0.15 0.27 0.23 - 0.20 0.13 0.59 
Percentile 10 0.08 0.21 0.12 - 0.24 0.14 0.44 
Percentile 90 0.38 0.75 0.44 - 0.59 0.39 1.02 

 

Both extractable and exchangeable K concentrations tend to be highest in the lowest landscape positions 

(valleys and lower slopes), and lowest in the higher landscape positions (upper slopes and ridges) (Figures 

7.82 – 7.83). This can be explained by mass movement of K-containing colluvial material down inclines, as 

well as vertical and lateral displacement of K by, percolating water. 

 

  
Figure 7.82. Extractable K content (ppm = mg kg-1), 

per position in the landscape 

Figure 7.83. Extractable K content (ppm = mg kg-1), 

per position in the landscape 

 

Both extractable and exchangeable K concentrations are significantly higher in terrain with a moderate to 

high degree of dissection (Figures 7.84 – 7.85). One explanation is greater rates of erosion and subsequent 

weathering in more dissected terrain. Secondly, the highly dissected terrain of the study area occurs mainly 
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on schist, quartzite and calcrete, whereas the less dissected areas, towards the east, are mainly covered 

with Kalahari sands. 

 

  
Figure 7.84. Extractable K content (ppm = mg kg-1), 

per degree of dissection of the landscape 

Figure 7.85. Exchangeable K content (cmolc kg-1), per 

degree of dissection of the landscape 

 

The extractable and exchangeable K levels of profiles from the study area, of topsoil and subsoil 

respectively, are shown in Figures 7.86 – 7.89.  

 

  
Figure 7.86. Extractable K content (cmolc kg-1) of topsoil Figure 7.87. Extractable K content (cmolc kg-1) of subsoil 

 

  
Figure 7.88. Exchangeable K content (cmolc kg-1) of 

topsoil 

Figure 7.89. Exchangeable K content (cmolc kg-1) of 

subsoil 
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7.5 SODIUM [Na] 

Sodium is the 6th most abundant element in the Earth’s crust. It occurs in more than 100 minerals, such as 

the primary minerals plagioclase feldspars [NaAlSi3O8], amphiboles [(Na,Ca)2(Mg,Fe,Al)5(SiAl)8 O22(OH)2] 

and halite (rock salt) [NaCl] , and secondary minerals such as montmorillonite [(Na,Ca)0.33(Al,Mg)2(Si4O10) 

(OH)2·nH2O]. It occurs in simple compounds such as sulphate [Na2SO4], carbonate [Na2CO3], bicarbonate 

[NaHCO3] and phosphate [Na3PO4] (Whitehead, 2000).  

  
Table 7.17: Typical sodium concentrations (in mg kg-1) found in the earth’s crust, some common rocks, and soils. 

SOURCE Whitehead, 2000 Foth, 1999 Helmke, 2000 
Earth’s crust   28 000  
Granite 24 600   
Basalt 16 000   
Shale 9 600   
Sandstone 3 300   
Limestone 400   
Soils from Granite 16 000   
Soils from Shale 12 000   
Soils from Sandstone 7 100   
Entisol   20 100 
Spodosol   18 600 
Alfisol   7 500 
Mollisol   10 000 

Soils (general) 200-10 000  750 – 7 500 
[6 300] 

 

Sodium in soils occurs in minerals, as ions on the exchange complex, and as the mobile Na+ ion in the soil 

solution. It moves within the soil mainly by diffusion. Sodium is easily lost through leaching, especially from 

sandy soils, removal of herbage through grazing, and surface runoff. Replenishment is from weathering of 

parent materials, livestock excreta and atmospheric input, particularly in coastal areas. Atmospheric inputs of 

between 2 and 70 kg ha-1 a-1 had been reported in literature, with the more usual range between 21 and 41 

kg ha-1 a-1 (Whitehead, 2000). 

 
Table 7.18: Estimated sodium balances (g ha-1 year-1) from an extensively managed clover-grassland, grazed by cattle 

(Whitehead, 2000). 

 Estimated Na (g ha-1 year-1) 
Inputs  
Deposition from atmosphere 20 
Aspect of recycling  
Uptake into herbage 3.7 
Consumption of herbage by animals 2.2 
Dead herbage to soil 4.5 
Dead roots to soil 7 
Excreta to soil of grazed area 1.7 
Outputs  
Milk / live-weight gain 0.5 
Leaching / runoff 2.0 
Loss through excreta off sward 0 
Gain to soil 0 

 

Sodium is not generally considered to be an essential plant nutrient, though it is found in plants and can 

apparently substitute for potassium in some non-specific functions, such as maintenance of osmotic potential 

and pH (Whitehead, 2000). It activates some enzyme systems and may be involved in carbon assimilation 
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(Foth, 1990). It apparently protects mesophyll chloroplasts (Mengel et al., 2001). Positive yield responses 

had been recorded for additions of sodium in cases of slight to moderate potassium deficiency (Mundy, 

1984; Webb et al., 1990). Atriplex species (old man’s salt bush) need sodium, while beetroot, sugar, celery, 

spinach and turnips react well to sodium, provided that sufficient potassium is also available. Herbage 

concentrations of sodium may vary from traces to more than 2 % (Whitehead, 2000), though it is most often 

around 0.1 – 0.2 %. It is an essential nutrient for animals, where it contributes to maintenance of osmotic 

potential and cellular pH, and is involved in muscle contraction, the active transport of amino acids and 

glucose, the absorption and transport of calcium, and milk production (Whitehead, 2000). The main reason 

for sodium analysis is to diagnose sodicity problems. 

 

7.5.1 STATISTICAL ANALYSIS: EXTRACTABLE AND EXCHANGEABLE SODIUM CONTENT 

 

Normality was rejected for extractable and exchangeable Na content by the statistical tests employed, 

namely the Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based in 

skewness, on kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 7.19: Descriptive statistics – extractable sodium content (n = 529) and exchangeable sodium content (n = 400). 

Na extractable Na exchangeable   
mg kg-1 cmolc kg-1 cmolc kg-1 

Mean 57.43 0.25 0.05 
Median 31 0.13 0.02 
Standard Deviation 105.27 0.46 0.10 
Coefficient of Variation 1.83 1.83 1.98 
Minimum 0 0.00 0.00 
Maximum 820 3.57 0.79 
Range 820 3.57 0.79 
Lower Quartile 19 0.08 0.00 
Upper Quartile 55 0.24 0.05 
Quartile Range 36 0.16 0.05 
Percentile 10 11 0.05 0.00 
Percentile 90 87 0.38 0.13 
Skewness  5.20 5.20 3.50 
Kurtosis  29.34 29.34 14.56 

 

The extractable sodium content of 529 samples from the study area ranges from 0 to 3.57 cmolc kg-1. The 

lower 90 % of samples are fairly normally distributed, but the upper 10 % skews the distribution (Table 7.20; 

Figures 7.90 – 7.91). The mean (0.25 cmolc kg-1) is higher than the median (0.13 cmolc kg-1), with a 

skewness of 5.20 and kurtosis of 29.34. The standard deviation is 0.46. Half the samples have 

concentrations of between 0.08 (1st quartile) and 0.24 cmolc kg-1 (3rd quartile), for a quartile range of 0.16. In 

80 % of samples, the Na content is between 0.05 (1st decile) and 0.38 cmolc kg-1 (9th decile).  
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Figure 7.90. Decile distribution of extractable sodium 

content (mg kg-1) 

Figure 7.91. Histogram of extractable sodium content 

(mg kg-1) 

 
Table 7.20: Distribution in terms of deciles – extractable sodium content (n = 529) and exchangeable sodium content (n = 

400).  

Na extractable  Na exchangeable   Decile mg kg-1 cmolc kg-1 cmolc kg-1 
minimum  0 0.00 0.00 
 1 11 0.05 0.00 
 2 17 0.07 0.00 
 3 21 0.09 0.00 
 4 27 0.12 0.01 
median 5 31 0.13 0.02 
 6 41 0.18 0.02 
 7 50 0.22 0.04 
 8 60 0.26 0.06 
 9 87 0.38 0.12 
maximum 10 820 3.57 0.79 

 

A statistically significant correlation, at p < 0.05, was found between extractable sodium content and the 

electrical conductivity of the 2:5 soil:water suspension (r2 = 0.43). Significant, but weak, correlations were 

found with exchangeable sodium content (r2 = 0.18), available phosphorus (r2 = 0.13) and exchangeable 

potassium content (r2 = 0.10).  

 

The exchangeable sodium content of 400 samples from the study area ranges from 0.00 to 0.79 cmolc kg-1. 

The lower 90 % of samples is normally distributed, but the upper 10 % skews the distribution (Table 7.20; 

Figures 7.92 – 7.93).The mean (0.05 cmolc kg-1) is thus higher than the median (0.02 cmolc kg-1), with a 

skewness of 3.50 and kurtosis of 14.56. The standard deviation is 0.10. Half the samples have sodium 

concentrations of between 0.00 (1st quartile) and 0.05 cmolc kg-1 (3rd quartile), for a quartile range of 0.05. In 

80 % of samples, the Na content is between 0.00 (1st decile) and 0.13 cmolc.kg-1 (9th decile). These values 

correspond to exchangeable Na concentrations reported in literature, such as 0.1 – 0.2 cmolc kg-1 (Forth, 

1990) and 0.0 – 0.02 cmolc kg-1 for Kalahari soils (Dougill and Cox, 1995) 
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Figure 7.92. Decile distribution of exchangeable 

sodium content (cmolckg-1) 

Figure 7.93. Histogram of exchangeable sodium 

content (cmolckg-1) 

 

Topsoil and subsoil concentrations of exchangeable Na do not differ significantly (Table 7.21; Figure 7.95). 

The mean of extractable Na content is higher in the subsoil than the topsoil. There is, however, a large 

overlap of the ±0.95 confidence intervals (Table 7.21; Figure 7.94). 

 

  
Figure 7.94. Extractable Na content (ppm = mg kg-1), 

per topsoil and subsoil  

Figure 7.95. Exchangeable Na content (cmolckg-1), per 

topsoil and subsoil 

 
Table 7.21. Extractable Na content (mg kg-1 and cmolckg-1) and exchangeable Na content (cmolckg-1), per topsoil and 

subsoil. 

Na extractable   Na exchangeable  
Topsoil 
(n = 199) 

Subsoil 
(n = 283) 

Topsoil 
(n = 163) 

Subsoil 
(n = 203)  

mg kg-1 cmolc kg-1 mg kg-1 cmolc kg-1 cmolc kg-1 cmolc kg-1 
Mean 48.46 0.21 66.40 0.29 0.05 0.05 
Median 29.00 0.13 33.00 0.14 0.02 0.02 
Std Dev 89.97 0.39 121.43 0.53 0.11 0.10 
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 
Maximum 721.00 3.13 820.00 3.57 0.79 0.61 
Range 721.00 3.13 820.00 3.57 0.79 0.61 
Lower Quartile 18.00 0.08 19.00 0.08 0.00 0.00 
Upper Quartile 51.00 0.22 60.00 0.26 0.05 0.05 
Quartile Range 33.00 0.14 41.00 0.18 0.05 0.05 
Percentile10 10.00 0.04 12.00 0.05 0.00 0.00 
Percentile 90 69.00 0.30 103.00 0.45 0.15 0.12 

  

Arenosols of the study area contain significantly lower concentrations of extractable Na than Cambisols and 

Regosols. The ±0.95 confidence intervals of Fluvisols, Calcisols and Luvisols are too large to allow 
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predictions of these classes (Table 7.22; Figures 7.96 – 7.97). Furthermore, Arenosols and Leptosols of the 

study area contain significantly lower concentrations of exchangeable Na than Cambisols, Regosols and 

Luvisols. The ±0.95 confidence interval of Calcisols is too large to allow predictions of this class (Figure 

7.98).  

 

 
Figure 7.96. Extractable Na content (ppm = mg kg-1), 

per WRB reference soil group

Figure 7.97. Extractable Na content (ppm = mg kg-1), 

per WRB reference soil group, excluding Fluvisols 

 

 
Figure 7.98. Exchangeable Na content (cmolc kg-1), per 

WRB reference soil group, excluding Fluvisols 
  

 
Table 7.22. Extractable Na content (mg kg-1 and cmolc kg-1) and exchangeable Na content (cmolc kg-1), per WRB 

reference soil group. 

Na extr 
 mg kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 29.5 67.7 41.4 309.7 41.6 52.2 57.7 
Median 28.0 43.0 37.5 219.0 41.5 46.0 64.0 
Std.Dev. 20.1 94.4 29.0 324.0 19.0 78.9 15.5 
Minimum 0 10 17 14 3 2 40 
Maximum 86 407 156 698 92 721 69 
Range 86 397 139 684 89 719 29 
Lower Quartile 14 26 21 27 27 26 40 
Upper Quartile 40 60 50 681 52 58 69 
Quartile Range 26 34 29 654 25 33 29 
Percentile 10 6 12 18 14 18 15 40 
Percentile 90 63 164 61 698 67 73 69 
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Na extr 
cmolc kg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 0.13 0.29 0.18 1.35 0.18 0.23 0.25 
Median 0.12 0.19 0.16 0.95 0.18 0.20 0.28 
Std.Dev. 0.09 0.41 0.13 1.41 0.08 0.34 0.07 
Minimum 0.00 0.04 0.07 0.06 0.01 0.01 0.17 
Maximum 0.37 1.77 0.68 3.03 0.40 3.13 0.30 
Range 0.37 1.73 0.60 2.97 0.39 3.13 0.13 
Lower Quartile 0.06 0.11 0.09 0.12 0.12 0.11 0.17 
Upper Quartile 0.17 0.26 0.22 2.96 0.23 0.25 0.30 
Quartile Range 0.11 0.15 0.13 2.84 0.11 0.14 0.13 
Percentile 10 0.03 0.05 0.08 0.06 0.08 0.07 0.17 
Percentile 90 0.27 0.71 0.27 3.03 0.29 0.32 0.30 
Na exch 
 cmolc kg-1 

Arenosols 
(n = 129) 

Calcisols 
(n = 17)  

Leptosols 
(n = 15)  

Fluvisols 
(n = 0) 

Cambisols 
(n = 61) 

Regosols 
(n = 87) 

Luvisols 
(n = 3) 

Mean 0.03 0.07 0.02 -  0.05 0.10 0.09 
Median 0.02 0.02 0.00 -  0.00 0.02 0.10 
Std.Dev. 0.05 0.15 0.03 -  0.09 0.15 0.02 
Minimum 0.00 0.00 0.00 -  0.00 0.00 0.07 
Maximum 0.44 0.61 0.09 -  0.42 0.79 0.10 
Range 0.44 0.61 0.09 -  0.42 0.79 0.03 
Lower Quartile 0.00 0.00 0.00 -  0.00 0.01 0.07 
Upper Quartile 0.04 0.06 0.04 -  0.06 0.12 0.10 
Quartile Range 0.04 0.06 0.04 -  0.06 0.11 0.03 
Percentile 10 0.00 0.00 0.00 -  0.00 0.00 0.07 
Percentile 90 0.06 0.14 0.06 -  0.16 0.34 0.10 

 

There are no clear relationships between extractable or exchangeable Na concentrations and positions in 

the landscape (Figures 7.99 – 7.100). 

 

  
Figure 7.99. Extractable Na content (ppm = mg kg-1), 

per position in the landscape 

Figure 7.100. Exchangeable Na content (cmolc kg-1), 

per position in the landscape 

 

Extractable Na concentrations are significantly higher in terrain with a moderate to high degree of dissection 

(Figure 7.101), but there is no discernable relationship for exchangeable Na (Figure 7.102).  
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Figure 7.101. Extractable Na content (ppm = mg kg-1), 

per degree of dissection of the landscape 

Figure 7.102. Exchangeable Na content (cmolc kg-1), 

per degree of dissection of the landscape 

 

The extractable and exchangeable Na levels, of topsoil and subsoil respectively, are shown in Figures 7.103 

– 7.106, while Figures 7.107 and 7.108 depicts exchangeable sodium percentage.  

 

  
Figure 7.103. Extractable Na content (cmolc kg-1) of 
topsoil 

Figure 7.104. Extractable Na content (cmolc kg-1) of 
subsoil 

 

  
Figure 7.105. Exchangeable Na content (cmolc kg-1) of 
topsoil 

Figure 7.106. Exchangeable Na content (cmolc kg-1) of 
subsoil 
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Figure 7.107. Exchangeable Na as a percentage of 
CEC, in topsoil  

Figure 7.108. Exchangeable Na as a percentage of 
CEC, in subsoil 

 

 

    



 8  1 

CHAPTER EIGHT 

CHEMICAL CHARACTERISATION – CEC, BASE SATURATION AND SALINITY 

 

8.1 CATION EXCHANGE CAPACITY, SUM OF EXCHANGEABLE BASES, SUM OF 
EXTRACTABLE BASES 

The cation exchange capacity (CEC) is the sum total of exchangeable cations that a soil can adsorb, due 

to the negative electrical charge of the colloidal fraction of soil (Van der Watt and Van Rooyen, 1995). It is 

expressed in cmolc kg-1 (or cmol(+) kg-1) of soil or clay, and is associated with phyllosilicates and soil organic 

matter, and under alkaline conditions also with secondary iron and aluminium phases (Bühmann, Beukes 

and Turner, 2006). These colloids all carry negative charges that are balanced through the adsorption of 

cations from the soil solution. In the case of phyllosilicates, the charges are partly the result of isomorphous 

replacement and partly due to the displacement of H+ from the edges of the lattice structure. The number of 

adsoption sites, and thus the cation exchange capacity, determines the nutrient storage capacity of the soil. 

Adsorbed cations are potentially available to plants, but not readily susceptible to leaching. The more 

strongly a cation is bound to an exchange site, the less susceptible it is to leaching. CEC of organic matter is 

entirely pH dependent (increasing with pH), through dissociation of H+ ions from carboxyl and phenolic 

hydroxyl groups of organic matter (Foth, 1990; Whitehead, 2000), while the CEC of a small component of 

inorganic matter is also pH dependent through dissociation of H+ from functional groups of clay minerals and 

amorphous compounds (Van der Watt and Van Rooyen, 1995).  

 

Exchange of cations depends on their relative concentrations and strength of ionic bonding, with trivalent 

cations generally bound more strongly than divalent cations, which are, in turn, bound more strongly than 

monovalent cations. This in not always straightforward, as the degree of hydration of a cation, and thus the 

diameter of the hydrated cation determines how close it can come to exchange sites. When unhydrated, Na+ 

is smaller than K+, while Mg2+ is smaller than Ca2+. When hydrated, however, K+ is smaller than Na+, while 

Ca2+ is smaller than Mg2+ (Mengel and Kirby, 1987). 

 

In non-acidic soils, Ca2+ and Mg2+ dominate the exchange sites, accounting for up to 90% of cations, while 

K+ accounts for around 5%. Na+ content is generally very low, except in arid saline soils. In acid soils the 

ratios of nutrient cations are completely different, with H+ and Al3+, released from clay minerals and hydrous 

oxides, forming up to 90% of exchangeable cations, and Ca2+ and Mg2+ accounting for less than 10% 

(Whitehead, 2000). 

 

8.1.1 STATISTICAL ANALYSIS: CEC, SUM OF EXCHANGEABLE BASES, SUM OF EXTRACTABLE BASES 

 

Normality was rejected for cation exchange capacity, sum of extractable bases and sum of exchangeable 

bases by the statistical tests employed, namely the Shapiro-Wilk W test, Kolmogorov-Smirnov / Lilliefors test, 

and three D’Agostino tests based on skewness, on kurtosis, and on a combination of skewness and kurtosis 
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(AnalystSoft, 2007).  

 
Table 8.1: Descriptive statistics – Cation exchange capacity (n = 426), sum of exchangeable bases (n = 535) and  sum of 

extractable bases (n = 391).  

CEC ∑ Exchangeable Bases  ∑ Extractable Bases   
cmolc kg-1 cmolc kg-1 cmolc kg-1 

Mean 3.57 3.48 4.53 
Median 2.39 2.30 3.21 
Std. Dev. 3.57 3.61 4.39 
CV 1.00 1.04 0.97 
Minimum 0.10 0.11 0.37 
Maximum 22.47 22.47 34.12 
Range 22.37 22.36 33.75 
Skewness  2.27 2.26 2.83 
Kurtosis  6.31 5.74 10.60 

 

The cation exchange capacity of 426 samples from the study area ranges from 0.10 to 22.47 cmolc kg-1 

(Table 8.1; Figures 8.1 – 8.2). The mean (3.57 cmolc kg-1) is higher than the median (2.39 cmolc kg-1), with a 

skewness of 2.27 and kurtosis of 6.31. The standard deviation is 3.57. Most soils have a low ability to retain 

nutrients against leaching, as shown by the 345 samples with CEC < 7 cmolc kg-1 soil, which is considered 

the threshold for low nutrient retention properties by FAO (1989b). 

 

The sum of exchangeable bases (S-value) of 391 samples from the study area ranges from 0.11 to 22.47 

cmolc kg-1 (Table 8.1; Figures 8.3 – 8.4). The mean (3.48 cmolc kg-1) is higher than the median (2.30 cmolc 

kg-1), with a skewness of 2.26 and kurtosis of 5.74. The standard deviation is 3.61. Tucker (1983) found the 

mean sum of exchangeable bases of 75 Australian soil profiles to be 10 cmolc kg-1, and the median 8.4 cmolc 

kg-1. These values are lower in the study area, namely 3.48 and 2.30 cmolc kg-1 respectively. 

 

The CEC and the sum of exchangeable bases (S-value) are virtually identical (Table 8.1; Figures 8.1 – 8.4; 

8.7), which indicate the almost complete absence of exchangeable H+ and Al3+ in the soil of the study area. 

This is as expected from a semi-arid climate. 

 

The sum of extractable bases of 535 samples from the study area ranges from 0.37 to 34.12 cmolc kg-1 

(Table 8.1; Figures 8.5 – 8.6). The mean (4.53 cmolc kg-1) is higher than the median (3.21 cmolc kg-1), with a 

skewness of 2.83 and kurtosis of 10.60. The standard deviation is 4.39.  

 

  
 Figure 8.1. Decile distribution of CEC (cmolc kg-1) Figure 8.2. Histogram of CEC (cmolc kg-1) 
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Figure 8.3. Decile distribution of sum of exchangeable 

bases (cmolc kg-1) 

Figure 8.4. Histogram of sum of exchangeable bases 

(cmolc kg-1) 

 

  
Figure 8.5. Decile distribution of sum of extractable 

bases (cmolc kg-1) 

Figure 8.6. Histogram of sum of extractable bases 

(cmolc kg-1) 

 

 
Figure 8.7. Distribution of CEC (cmolc kg-1), sum of 

extractable bases (cmolc kg-1) and sum of 

exchangeable bases (cmolc kg-1) 

   

 

Topsoil CEC, sum of exchangeable bases and sum of extractable bases are lower than those of subsoil 

(Table 8.2; Figure 8.8). The prevailing hot semi-arid climate of the study area leads to low levels of biomass 

production and subsequent low levels of organic matter in the soil, combined with high rates of mineralization 

of organic matter. Exchange sites are thus provided to a relatively larger extent by clay than organic matter, 

when compared to temperate climate soils. The illuviation of clay in subsoil thus contributes more to the CEC 

(and exchangeable bases) than organic matter accumulation in the topsoil. Although leaching is lower than 

in tropical and temperate climates, there is some displacement of soluble bases towards deeper soil layers. 
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Figure 8.8. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), per topsoil and subsoil 

   
Table 8.2: CEC, sum of exchangeable bases, sum of extractable bases, per topsoil and subsoil. 

 
CEC (Soil)  
cmolc kg-1 

∑ Exchangeable Bases  
cmolc kg-1 

∑ Extractable Bases  
cmolc kg-1 

 
Topsoil 
(n = 184) 

Subsoil 
(n = 242) 

Topsoil 
(n = 172) 

Subsoil 
(n = 221) 

Topsoil 
(n = 184) 

Subsoil 
(n = 242) 

Mean 2.54 4.35 2.45 4.30 2.54 4.35 
Median 1.90 3.02 1.76 2.90 1.90 3.02 
Std Dev 2.43 4.07 2.53 4.08 2.43 4.07 
CV 0.96 0.93 1.03 0.95 0.96 0.93 
Minimum 0.15 0.10 0.15 0.11 0.15 0.10 
Maximum 14.97 22.47 14.97 22.47 14.97 22.47 
Range 14.82 22.37 14.82 22.36 14.82 22.37 
Lower Quartile 1.10 1.57 1.03 1.55 1.10 1.57 
Upper Quartile 2.72 5.30 2.55 5.18 2.72 5.30 
Quartile Range 1.62 3.73 1.52 3.63 1.62 3.73 
Percentile 10 0.59 0.69 0.55 0.61 0.59 0.69 
Percentile 90 5.70 9.16 4.13 9.24 5.70 9.16 

 

Tucker (1983) found the mean sum of exchangeable bases of 102 Australian topsoil samples to be 14 cmolc 

kg-1 and the median 10 cmolc kg-1. These values are lower in the study area, namely 2.45 and 1.76 cmolc kg-1 

respectively. 

 

No clear pattern could be discerned for CEC or sum of exchangeable bases with depth (Table 8.3). 

 
Table 8.3: CEC and sum of exchangeable bases at various depths. 

CEC (Soil)  
cmolc kg-1    

Depth  
cm  

0 – 10 
(n = 7) 

10 – 20 
(n = 29) 

20 – 30 
(n = 5) 

>30 
(n = 88) 

Mean 1.67 1.48 1.42 2.43 
Std.Dev. 1.10 1.47 1.05 2.85 
Minimum 0.54 0.18 0.36 0.10 
Maximum 3.41 8.17 2.71 19.46 
Range 2.87 7.99 2.35 19.36 
Percentile 10 0.54 0.26 0.36 0.37 
Percentile 90 3.41 2.29 2.71 4.55 
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∑ Exchangeable Bases  
cmolc kg-1   

Depth  
cm 0 – 10 

(n = 7) 
10 – 20 
(n = 29) 

20 – 30 
(n = 5) 

>30 
(n = 88) 

Mean 1.69 1.49 1.46 2.46 
Std.Dev. 1.10 1.47 1.05 2.85 
Minimum 0.58 0.18 0.41 0.11 
Maximum 3.45 8.17 2.75 19.48 
Range 2.87 7.99 2.34 19.37 
Percentile 10 0.58 0.27 0.41 0.38 
Percentile 90 3.45 2.29 2.75 4.56 

 

When disregarding sandy clay and clay loam soils, of which there are too few samples to be statistically 

meaningful, the CEC, sum of exchangeable bases and sum of extractable bases increase in the order sand  

loamy sand  sandy loam  sandy clay loam  loam (Figure 8.9).  

 

 
Figure 8.9. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), per textural class 

  

 

When disregarding the pH interval 9.01 – 9.50, which has too large a ±0.95 confidence interval to be of any 

predictive value (Figure 8.10), the CEC, sum of exchangeable bases and sum of extractable bases increase 

with increasing pH (Figure 8.11).  

 

  
Figure 8.10. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), with increasing pH 

Figure 8.11. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), with increasing pH, excluding pH interval 9.01 – 

9.50 



 

 8  6 

CEC, sum of exchangeable bases and sum of extractable bases increase in the order aeolian origin (as 

embodied by the Kalahari sands)  formed in situ  colluvial origin  alluvial origin (Figure 8.12). 

 

  
Figure 8.12. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), per origin of parent material 

 Figure 8.13. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), per type of parent material  

 

CEC, sum of exchangeable bases and sum of extractable bases are significantly lower in the Kalahari sands 

than the soils formed on the schist of the Khomas Hochland – a consequence of the mineral composition of 

the respective parent materials (Figure 8.13). 

 

Arenosols, Cambisols, Regosols and Luvisols of the study area contain significantly lower CEC, sum of 
exchangeable bases and sum of extractable bases than Calcisols (Table 8.4 and Figure 8.14). The spread in 

±0.95 confidence intervals of Leptosols and Fluvisols are too large to allow predictions of these classes.  

 

  
Figure 8.14. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1) and sum of extractable bases (cmolc 

kg-1), per WRB reference soil group 

   

 
Table 8.4: CEC, sum of exchangeable bases and sum of extractable bases, per WRB Reference Soil Group. 

 CEC  
cmolckg-1 

Arenosols 
(n = 129) 

Calcisols 
(n = 13) 

Leptosols 
(n = 18) 

Fluvisols 
(n = 4) 

Cambisols 
(n = 62) 

Regosols 
(n = 88) 

Luvisols 
(n = 3) 

Mean 2.13 9.42 5.08 6.02 4.39 2.42 3.73 
Median 1.43 8.53 2.20 5.50 3.72 2.05 3.61 
Std Dev  2.50 5.61 5.97 2.30 3.04 2.04 0.63 
Minimum 0.10 2.09 0.38 3.84 0.44 0.20 3.18 
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Maximum 19.46 18.78 22.47 9.25 13.85 15.00 4.42 
Range 19.36 16.69 22.08 5.41 13.41 14.81 3.18 
Lower Quartile 0.66 3.94 1.16 4.55 2.06 1.27 3.18 
Upper Quartile 2.54 14.68 7.65 7.49 6.09 2.75 4.42 
Quartile Range 1.88 10.74 6.49 2.94 4.03 1.48 1.25 
Percentile 10 0.37 3.16 0.56 3.84 1.32 0.79 4.42 
Percentile 90 4.13 15.21 14.97 9.25 8.70 4.11 1.25 
∑Exch Bases 
cmolckg-1 

Arenosols 
(n = 129) 

Calcisols 
 (n = 13) 

Leptosols 
 (n = 15) 

Fluvisols 
(n = 0) 

Cambisols 
(n = 61) 

Regosols 
(n = 87) 

Luvisols 
(n = 3) 

Mean 2.16 9.47 4.55 - 4.35 2.30 3.77 
Median 1.45 8.54 2.08 - 3.63 2.06 3.61 
Std Dev  2.51 5.63 6.37 - 3.02 1.54 0.69 
Minimum 0.11 2.09 0.47 - 0.45 0.21 3.18 
Maximum 19.48 18.78 22.47 - 13.85 7.82 4.52 
Range 19.37 16.69 22.00 - 13.40 7.61 1.34 
Lower Quartile 0.66 3.95 0.76 - 2.12 1.25 3.18 
Upper Quartile 2.65 14.70 5.06 - 5.82 2.76 4.52 
Quartile Range 1.99 10.75 4.30 - 3.71 1.51 1.34 
Percentile 10 0.38 3.20 0.55 - 1.33 0.77 3.18 
Percentile 90 4.15 15.28 14.97 - 8.70 3.88 4.52 

∑Extr Bases 
cmolckg-1 

Arenosols 
(n = 132) 

Calcisols 
(n = 17)  

Leptosols 
(n = 24)  

Fluvisols 
(n = 6) 

Cambisols 
(n = 66) 

 
Regosols 
(n = 89) 

Luvisols 
(n = 3) 

Mean 2.93 17.33 5.66 5.85 6.24 3.34 10.27 
Median 1.88 17.15 4.30 5.96 5.50 2.50 9.93 
Std Dev  2.97 9.11 5.19 1.63 4.06 2.13 0.88 
Minimum 0.37 4.19 0.59 3.27 0.98 0.82 9.61 
Maximum 16.08 34.19 22.78 8.05 19.50 10.24 11.27 
Range 15.71 30.00 22.18 4.79 18.52 9.43 1.66 
Lower Quartile 1.17 9.02 2.61 5.13 3.05 1.83 9.61 
Upper Quartile 3.74 24.67 6.26 6.74 7.70 4.52 11.27 
Quartile Range 2.57 15.65 3.66 1.61 4.65 2.69 1.66 
Percentile 10 0.82 6.26 1.65 3.27 2.48 1.17 9.61 
Percentile 90 5.44 29.00 13.07 8.05 11.27 6.59 11.27 

 

The CEC values of Arenosols in 10 cm depth intervals from the study area are comparable to those found in 

Zimbabwe and somewhat lower than those of other southern African countries, recorded by Hartemink and 

Hunting (2008), as shown in Table 8.5.  

 
Table 8.5. CEC of Arenosols in southern Africa (mean ± 1 SD). 

CEC  
cmolc kg-1 

 
Depth  

cm n 0 – 10  10 – 20  20 – 30  > 30  
Present study 7, 29, 5, 88 1.67 ± 1.10 1.48 ± 1.47 1.42 ± 1.05 2.43 ± 2.85 
Angola a 60 3.4 ± 1.5 2.9 ± 1.3 2.5 ±1.2 - 
Botswana a 6 3.3 ±2.0 3.2 ± 2.0 3.1 ± 1.9 - 
Mozambique a 30 4.1 ± 2.9 3.8 ± 3.1 3.8 ± 3.1 - 
Namibia a 3 1.5 ± 1.3 1.6 ± 1.4 1.6 ± 1.9 - 
South Africa a 39 3.0 ± 2.0 3.0 ± 2.1 2.9 ± 2.0 - 
Zimbabwe a 12 1.7 ± 0.8 1.5 ± 0.7 1.4 ± 1.0 - 

(a Hartemink and Hunting, 2008) 
 

CEC, sum of exchangeable bases and sum of extractable bases increase in the order low  moderate  



 

 8  8 

high degree of dissection of the terrain (Figure 8.15). One explanation is greater rates of erosion and 

subsequent exposure of fresh parent material in more dissected terrain. Secondly, the highly dissected 

terrain of the study area occurs mainly on schist, quartzite and calcrete, whereas the less dissected areas, 

towards the east, are mainly covered with Kalahari sands. 

 

 
Figure 8.15. CEC (cmolc kg-1), sum of exchangeable 

bases (cmolc kg-1)and sum of extractable bases (cmolc 

kg-1), per degree of dissection of the landscape 

   

 

The CEC, sum of exchangeable bases and sum of extractable bases levels, of topsoil and subsoil 

respectively, are shown in Figures 8.16 – 8.21. 

 

  
Figure 8.16. CEC (cmolc kg-1) of topsoil Figure 8.17. CEC (cmolc kg-1) of subsoil 

 

  
Figure 8.18. Sum of exchangeable bases (cmolc kg-1) 

of topsoil 

Figure 8.19. Sum of exchangeable bases (cmolc kg-1) 

of subsoil 
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Figure 8.20. Sum of extractable bases (cmolc kg-1) of 

topsoil 

Figure 8.21. Sum of extractable bases (cmolc kg-1) of 

subsoil 

 

8.2 CA-, MG-, K-, NA SATURATION, BASE STATUS AND BASE SATURATION 

Calcium-, magnesium-, potassium and sodium saturation refers to the proportion of the cation exchange 

sites in the soil that are occupied by the respective cations ( Table 8.6; Figures 8.22 – 8.23). It is calculated 

as follows for Na (and similarly for Ca, Mg and K): 

 
Exchangeable sodium percentage (ESP) =  exchangeable Na x 100 
 CEC 

 
Base status is a qualitative expression of base saturation (Van der Watt and Van Rooyen, 1995). An 

eutrophic soil has undergone little or no leaching, so that the sum of exchangeable Ca, Mg, K and Na (Sclay), 

expressed in cmolckg-1 clay, is more than 15. This value is less than 5 in dystrophic soil, which has 

undergone marked leaching, and between 5 and 15 in mesotrophic soil, which has undergone moderate 

leaching (Van der Watt and Van Rooyen, 1995). 

 
Base saturation is the sum of exchangeable Ca, Mg, K and Na (known as the S-value, in cmolc kg-1 soil), 

expressed as a percentage of the total cation exchange capacity of the soil at a specific pH (Van der Watt 

and Van Rooyen, 1995; McVicar et al., 1977; Soil Classification Working Group, 1991). 

 

Base Saturation [%] =    S [cmolc kg-1 soil]       x 100 
 CEC [cmolc kg-1 soil] 

 

S [cmolc kg-1 soil] = Ca2+
exch

 + Mg2+
 exch + K+

 exch + Na+
 exch 
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8.2.1 STATISTICAL ANALYSIS: CA, MG, K AND NA SATURATION; BASE STATUS; BASE SATURATION  

 

Ca, Mg, K, Na saturation  
Table 8.6: Calcium saturation (n = 361), magnesium saturation (n = 361), potassium saturation (n = 360) and sodium 

saturation (n = 360). 

Ca saturation Mg saturation K saturation Na saturation 
  

% % % % 
Mean 60.9 28.6 15.7 2.9 
Median 58.8 26.6 12.6 0.8 
SD 38.7 18.1 13.6 5.8 

 

  
Figure 8.22. Cumulative Ca-, Mg-, K- and Na 

saturation (%), including outliers 

Figure 8.23. Cumulative Ca-, Mg-, K- and Na saturation 

(%), excluding outliers 

 

No consistent pattern could be discerned for exchangeable sodium percentage with increase in depth (Table 

8.7).  

 
Table 8.7: Exchangeable sodium percentage (ESP) at various depths. 

ESP %  
Depth  

cm 
All 

(n = 393) 
0 – 10  

(n = 35) 
10 – 20  
(n = 92) 

20 – 30  
(n = 201) 

> 30 
(n = 32)  

Mean 2.8 5.83 2.92 2.37 3.30 
Median 0.7 1.17 0.74 0.88 0.02 
SD 5.6 9.53 5.63 4.72 6.68 
Minimum 0.0 0.00 0.00 0.00 0.00 
Maximum 38.5 36.84 40.23 31.54 25.41 
Range 38.5 36.84 40.23 31.54 25.41 

 

No consistent pattern could be discerned for exchangeable sodium percentage of Arenosols, with increase in 

depth (Table 8.8). Values are somewhat higher than those found in Angola, Botswana, Mozambique and 

elsewhere in Namibia, but similar to values recorded in South Africa and Zimbabwe (Hartemink and Hunting, 

2008). 
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Table 8.8 Exchangeable sodium percentage (ESP) of Arenosols in southern Africa (mean ± 1 SD). 

ESP %  
Depth  

cm 
Valid N 0 – 10  10 – 20  20 – 30  > 30  

Present study 35; 92; 201; 32 6 ± 10 3 ± 6 2 ± 5 3 ± 7 
Angola a 60 1 ± 1 2 ± 1 2 ± 1 - 
Botswana a 6 1 ± 2 2 ± 2 2 ± 3 - 
Mozambique a 30 2 ± 4 2 ± 4 3 ± 3 - 
Namibia a 3 3 ± 1 2 ± 1 2 ± 0.2 - 
South Africa a 39 5 ± 7 5 ± 6 5 ± 8 - 
Zimbabwe a 12 5 ± 8 5 ± 8 3 ± 4 - 

(a Hartemink and Hunting, 2008) 
 

One third of the samples (120) exhibit low potassium reserves properties, as defined by FAO (1989b), 

namely < 0.20 cmolc kg-1 exchangeable K, or K less than 2 % of sum of bases, if bases < 10 cmolc kg-1.  

 

Base status: Of 360 samples, 10 (2.8 % of samples) were found to be dystrophic (Sclay ≤ 5 cmolc kg-1 clay), 

60 (16.7 %) mesotrophic (5 < Sclay < 15 cmolc kg-1clay) and 290 (77,8 %) eutrophic (Sclay ≥ 15 cmolc kg-1 

clay).  

 

The Sclay normally decreases with depth up to a point, when primary minerals present in deeper horizons 

start contributing to the value. This trend is discernable in the study area (Table 8.9 and Figures 8.24 – 8.26). 

 

 
Figure 8.24. Mean (green) and median (blue) Sclay (cmolc 
kg-1 clay) at various depths 
 

 
Table 8.9: Descriptive statistics – Sclay (cmolc kg-1 clay) at various depths. 

Sclay  
cmolc kg-1 clay  Depth 

Class  
cm 

0 – 10 
(n = 33) 

11 – 20 
(n = 91) 

21 – 30 
(n = 32) 

31 – 40 
(n = 25) 

41 – 50 
(n = 43) 

51 – 80 
(n = 63) 

81 – 100 
(n = 13) 

>100 
(n = 53) 

Mean 48.2 44.5 36.1 40.9 36.6 33.6 39.3 48.0 
Median 38.4 29.0 29.8 39.2 32.7 24.8 33.2 33.9 
Std Dev 43.9 52.8 27.9 23.4 28.0 28.0 31.0 48.3 
Minimum 1.7 1.0 7.5 5.2 1.4 1.4 2.7 1.8 
Maximum 211.5 294.8 121.3 92.2 141.3 172.1 126.3 215.6 
Range 209.8 293.7 113.8 86.9 139.9 170.7 123.6 213.7 
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Figure 8.25. Sclay (cmolc kg-1 clay) of topsoil 1 Figure 8.26. Sclay (cmolc kg-1 clay) of subsoil 

 

The base saturation of 358 samples from the study area ranges from 88.19 to 372.14 % (Table 8.8; Figures 

8.27 – 8.28).The mean (108.22 %) is higher than the median (100.46 %), with a skewness of 5.38 and 

kurtosis of 31.46. The standard deviation is 32.56. Free lime (calcium carbonate) is the most likely 

explanation for base saturation, percentages higher than 100. 

 
Table 8.10: Descriptive statistics – base saturation (Ca + Mg + K + Na) (n = 358) and Sclay (n = 360). 

Base Saturation Sclay    % cmolc kg-1 clay 
Mean 108.22 40.81 
Median 100.45 30.67 
Std. Dev. 32.56 40.09 
Minimum 86.19 1.01 
Maximum 372.14 294.75 
Range 285.95 293.74 
Skewness  5.38 3.02 
Kurtosis  31.46 12.59 

 

  
Figure 8.27. Decile distribution of total base saturation (%) Figure 8.28. Histogram of total base saturation (%)  

 

The base saturation of Arenosols at 10 cm depth intervals from the study area are higher than those in all 

other southern African countries, recorded by Hartemink and Hunting (2008), as shown in Table 8.11. This 

can probably be ascribed to the more arid climate of the study area. 

 

                                            
1 Blank areas indicate either the absence of sufficient analytical data to extrapolate to the respective terrain 
units, or contradictory data from different profiles within a terrain unit. 



 

8  13 

Table 8.11. Base Saturation of Arenosols in southern Africa (mean ± 1 SD). 

Base Saturation  
% 

 
Depth  

cm n 0 – 10  10 – 20  20 – 30  > 30  
Present study 34; 91; 32; 200 113 ± 38 103 ± 15 102 ± 9 109 ± 34 
Angola a 60 40 ± 30 35 ± 31 32 ± 31 - 
Botswana a 6 80 ± 19 79 ± 19 75 ± 25 - 
Mozambique a 30 86 ± 71 77 ± 80 68 ± 81 - 
Namibia a 3 100 ± 0 100 ± 0 100 ± 0 - 
South Africa a 39 80 ± 27 80 ± 27 96 ± 48 - 
Zimbabwe a 12 80 ± 22 80 ± 24 100 ± 15 - 

(a Hartemink and Hunting, 2008) 

 

8.3 ELECTRICAL CONDUCTIVITY [EC] 

 

The exchangeable sodium percentage (ESP) and electrical conductivity of the saturated paste give an 

indication of salinity and/or sodicity of soils (Van der Watt and Van Rooyen, (1995).  

 

8.3.1 STATISTICAL ANALYSIS: ELECTRICAL CONDUCTIVITY OF THE SATURATED PASTE EXTRACT; ELECTRICAL 

CONDUCTIVITY OF THE 2:5 SOIL:WATER SUSPENSION 

 
Table 8.12: Descriptive statistics – EC (2:5) (n = 524) and EC (saturated paste extract) (n = 79) 

 EC (2:5) EC (saturated paste) 
 uS cm-1 mS m-1 uS cm-1 mS m-1 

Mean 61.02 6.10 192.47 19.25 
Median 25 2.5 169 16.9 
Std Dev 118.31 11.83 103.09 10.31 
Minimum 5 0.5 48 4.8 
Maximum 924 92.4 469 46.9 
Range 919 91.9 421 42.1 
Skewness 4.89 0.49 0.93 0.09 
Kurtosis 26.61 2.66 0.21 0.02 

1 mS cm-1 = 100 mS m-1 = 1 dS m-1 = 1 000 µS cm-1; 10 µS cm-1 = 1 mS m-1 

 

Table 8.12 contains the descriptive statistics of the EC, as measured in the supernatant of a 2:5 soil:water 

suspension, and in the saturated extract (Figures 8.29 – 8.30). Of 79 samples, none had EC (saturated 

paste) above 400 mS m-1. In fact, the maximum was 46.9 mS m-1. There were, thus, no profiles with saline 

soils in the study area. Of 393 samples, 17 had ESP > 15, so they are sodic (Van der Watt and Van Rooyen, 

1995). 
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Figure 8.29. Deciles of EC (saturated paste) (mS m-1) Figure 8.30. Deciles of EC (2:5) (mS m-1) 

 

EC (2:5) was highest in Calci- and Leptosols, and lowest in Luvisols, Arenosols, Regosols and Fluvisols 

(Table 8.11). EC (saturated paste) was highest in Calcisols, Cambisols and Leptosols, and lowest in Luvisols 

and Arenosols (Table 8.13). 

 
Table 8.13: Electrical conductivity, per WRB reference soil group. 

EC 2:5 
uS/cm 

Arenosols 
(n = 141) 

Calcisols 
(n = 20) 

Leptosols 
(n = 21) 

Fluvisols 
(n = 8) 

Cambisols 
(n = 72) 

Regosols 
(n = 99) 

Luvisols 
(n = 3) 

Mean 23.3 114.1 67.1 102.6 52.6 27.2 32.7 
Median 17 78 68 21 33.5 19 13 
Std.Dev. 26.9 146.1 45.8 207.7 60.1 26.7 35.8 
Minimum 5 15 7 12 8 7 11 
Maximum 281 710 166 612 310 180 74 
Range 276 695 159 600 302 173 63 
Lower Quartile 12 64 21 17 22 13 11 
Upper Quartile 24 98.5 100 60.5 59 29 74 
Quartile Range 12 34.5 79 43.5 37 16 63 
Percentile 10 9 39 12 12 15 9 11 
Percentile 90 42 174.5 116 612 94 53 74 
EC sat 
uS cm-1 

Arenosols 
(n = 9) 

Calcisols 
(n = 9) 

Leptosols 
(n = 8) 

Fluvisols 
(n = 0) 

Cambisols 
(n = 14) 

Regosols 
(n = 25) 

Luvisols 
(n = 3) 

Mean 106.7 266.8 212.4 -  218.8 156.3 160.1 
Median 113.0 261.0 171.1 -  193.8 141.1 110.6 
Std.Dev. 21.2 107.0 160.8 -  94.9 59.8 88.3 
Minimum 65.30 92.2 47.5 -  114.0 51.2 107.6 
Maximum 135.0 445.0 446.0 -  469.0 309.0 262.0 
Range 69.7 352.8 398.5 -  355.0 257.8 154.4 
Lower Quartile 99.5 221.0 74.65 -  150.7 123.9 107.6 
Upper Quartile 118.2 290.0 357.0 -  265.0 177.9 262.0 
Quartile Range 18.7 69.0 282.4 -  114.3 54.0 154.4 
Percentile 10 65.3 92.2 47.5 - 124.8 88.5 107.6 
Percentile 90 135.0 445.0 446.0 - 327.0 239.0 262.0 

 

The EC (saturated paste) and EC (2:5) levels, of topsoil and subsoil respectively, are shown in Figures 8.31 

– 8.34. 
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Figure 8.31. EC (sat paste) (uS cm-1) of topsoil Figure 8.32. EC (sat paste) (uS cm-1) of subsoil 

 

  
Figure 8.33. EC (2:5) (uS cm-1) of topsoil Figure 8.34. EC (2:5) (uS cm-1) of subsoil 
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CHAPTER NINE 

CHEMICAL CHARACTERISATION - IRON, MANGANESE, ZINC, COPPER 

 

9.1 INTRODUCTION 

Micronutrients (B, Cu, Fe, Mn, Mo, Zn, Cl) are elements which are essential for plant growth, but are required 

in much smaller quantities than the major nutrients (N, P, K, Mg, Ca, S) (Mortvedt, 2000). This chapter deals 

with the plant-available iron, manganese, zinc and copper concentrations in the soils of the study area. 

 

9.2 IRON [Fe] 

Iron is the 6th most abundant element in the universe, the most abundant element on Earth – when taking 

Earth’s core into consideration – and the 4th most plentiful element in the Earth’s crust. It occurs in both the 

ferrous [Fe2+] and ferric [Fe3+] forms as oxides, silicates, sulphates and carbonates in igneous rocks. It is 

common in primary minerals such as biotite [K(Si3Al)(MgFe)3O10(OH)2], augite [Ca(Mg,Fe,Al) (Si,Al)2O6], and 

hornblende [(Ca,Na)2(Mg,Fe,Al)5(Si,Al)8O22(OH)2] (Whitehead, 2000). During weathering, iron is largely 

retained in clay minerals by substituting for aluminium in the lattice structure. it is found inter alia in the clay 

minerals montmorillonite [(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O] and vermiculite [(Mg,Fe,Al)3(Al,Si)4 

O10(OH)2·4H2O], in the yellow hydroxide goethite [FeOOH] and red oxide haematite [Fe2O3], the sulphur-

containing pyrite [FeS2], siderite [FeCO3], magnetite [Fe3O4], pyrrhotite [Fe1-xS] and jarosite [KFe3(OH)6 

(SO4)4] (Vlek and Harmsen, 1985; Mortvedt, 2000; mindat website, 2008; webmineral website, 2008). Soil 

iron is derived almost entirely from the parent material, though there is some contribution from atmospheric 

deposition: in Europe, the United Kingdom and North America atmospheric deposition contributes between 1 

400 and 7 700 g ha-1 year-1 (Whitehead, 2000). 

 
Table 9.1: Typical iron concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead,  
2000 

Helmke,  
2000 

Bradford et 
al., 1967 

Haynes & 
Swift, 1984 

Vlek & Harmsen, 
1985 

EARTH’S CRUST 50 000    50 000 
GRANITE 13 700    27 000 
BASALT 77 600    86 000 
SHALE 47 200    47 000 
SANDSTONE  9 800    9 800 
LIMESTONE 3 800    3 800 
SOILS FROM 
GRANITE 10 000     

SOILS FROM SHALE 35 000     
SOILS FROM 
SANDSTONE 20 000     

ENTISOL  59 900    
SPODOSOL  55 700    
ALFISOL  15 500    
MOLLISOL  23 700    

SOILS (GENERAL) 
5 000 – 50 

000 
[35 000] 

7 000 – 550 
000 

[38 000] 

12 000 –  
100 000 

27 500 – 30 
500 

 

10 000 – 100 
000 

[38 000] 
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The ability of iron to change oxidation state and to form complexes with organic molecules influences its 

activity and movement in soil and plants (Whitehead, 2000). Under reducing conditions Fe3+ is reduced to 

Fe2+, which is more soluble and is thus more mobile. Microbial respiration and organic matter composition 

induces chemically reducing conditions, thereby increasing iron solubility. A great deal of soil iron is in the 

form of hydrous ferric oxides and hydroxides. Haematite [Fe2O3] and goethite [FeOOH] are less soluble than 

lepidocrocite [FeOOH] and amorphous iron [Fe(OH)3] (Whitehead, 2000). In neutral and alkaline well-drained 

soils iron bio-availability is usually very low, as most iron occurs as immobile hydrous ferric oxides. According 

to Lindsey (1979, quoted by Mortvedt, 2000), solubility of Fe decreases a thousand fold for each unit 

increase in pH within the range 4 to 9. Free lime, in particular, suppresses iron availability. Fe3+ exist almost 

entirely in complexed form in the soil solution, as it is complexed more easily than Fe2+ and binds strongly to 

organic groups that contain oxygen, such as carboxyl and phenolic groups (Whitehead, 2000).  

 

Iron can be lost beyond the root zone in acidic conditions, when hydrous ferric oxides become soluble, or 

through unusually high production of soluble organic chelates. Bicarbonate ions can mobilise phosphorus in 

poorly aerated soils, and thus can suppress iron availability to plants (Whitehead, 2000). High concentrations 

of copper and manganese both act antagonistically towards the uptake of iron (US, 2002). Iron 

concentrations are generally lower in sandy soils than in loams and clays, and lower in soils from acid than 

from basic rocks (Vlek and Harmsen, 1985; Whitehead, 2000). Acid sandy soils and highly calcareous soils 

often have a low total content of Fe (Whitehead, 2000). Losses through volatilisation, leaching, surface runoff 

and crop removal or grazing are negligible (Whitehead, 2000). 

 

Iron is a component of porphyrins in leaves and of ferredoxins (Reuter and Robinson, 1997). It is an 

essential constituent of cytochromes and Fe-S proteins, where it enables transfer of electrons to and from a 

variety of molecules, including several involved in the process of photosynthesis and nitrogen fixation. Iron 

activates a number of enzymes and is involved in the synthesis of ribonucleic acid (Whitehead, 2000). It is a 

constituent of leghaemoglobin in legumes – which is essential for nitrogen fixation – and in enzymes of the 

nitrogenase complex. Concentrations of iron are generally higher in legumes than in grasses (Whitehead, 

2000). 

 
Table 9.2: Estimated iron balances (g ha-1 year-1) from an extensively managed clover-grassland, grazed by cattle 

(Whitehead, 2000). 

 ESTIMATED FE (G HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 3 500 

ASPECT OF RECYCLING  

Uptake into herbage 150 

Consumption of herbage by animals 75 

Dead herbage to soil 225 

Dead roots to soil 150 

Excreta to soil of grazed area 1 175 
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OUTPUTS  

Milk / live-weight gain 0.13 

Leaching / runoff 0 

Loss through excreta off sward 0 

GAIN TO SOIL 3 500 

 

9.3 MANGANESE [Mn] 

Manganese occurs in more than 100 minerals (Howe et al., 2004), inter alia pyrolusite [MnO2], haussmannite 

[Mn3O4], manganite [MnOOH], braunite (Mn2O3)3·MnSiO3], rhodochrosite [MnCO3], psilomelane 

[Ba(Mn2+)(Mn4+)8O16(OH)4] and rhodonite [(Mn,Fe,Mg,Ca)SiO3] (Vlek and Harmsen, 1985; Mortvedt, 2000; 

mindat website, 2008; webmineral website, 2008). It is often associated with iron as a minor constituent of 

ferromagnesian minerals, such as biotite mica and amphiboles (Howe et al., 2004).  

 
Table 9.3: Typical manganese concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead, 
2000 

Foth,  
1999 

Helmke,  
2000 

Vlek & Harmsen,  
1985 

Han & Singer, 
2007 

EARTH’S CRUST  950  1 000 900 – 1 000 
GRANITE 195 400  400  
BASALT 1 280 1 500  1 500 1 000 – 2 000 
SHALE 850 850  800  
SANDSTONE 10 – 100 10 – 100  10 – 100  
LIMESTONE 1 100 1 100  1 100  
SOILS FROM 
GRANITE 450     

SOILS FROM 
SHALE 920     

SOILS FROM 
SANDSTONE 440     

ENTISOL   890   
SPODOSOL   716   
ALFISOL   535   
MOLLISOL   595   

SOILS (GENERAL) 50 – 3 000 
[1 600] 10 – 3 000 20 – 6 000 

[600] 
20 – 3 000  

[600] 
200 – 3 000 

[850 – 1 000] 

ARID SOILS     Trace –  
10 000 

 

Due to the high mobility of Mn there is no correlation between soil Mn (total and exchangeable) and total Mn 

in bedrock (Mortvedt, 2000). Soil Mn is found in residual primary minerals, in clay minerals such as smectite, 

adsorbed onto various mineral surfaces, precipitated as oxides and hydroxides such as MnO2, or sometime 

substituting for Fe3+ in secondary minerals such as goethite. Manganese has three possible oxidation states 

in soils, viz. Mn2+, which is stable in solution, Mn3+ and Mn4+ (Whitehead, 2000). Mn3+ and Mn4+ form 

insoluble oxides and hydroxides. Mn2+ is easily adsorbed by organic matter, iron oxides and silicates, 

especially under neutral and alkaline conditions (Whitehead, 2000). Under acidic conditions, a high 

proportion of manganese is in exchangeable and soluble forms. Under alkaline and well-drained conditions, 

Mn2+ becomes less soluble. It precipitates as oxides and hydroxides in the form of MnO2 nodules or, in 

association with iron, forms amorphous coatings on soil particles (Whitehead, 2000). Manganese solubility is 

increased through microbial respiration and organic matter decomposition, which induces chemically 
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reducing conditions for forming the mobile manganous ion, Mn2+ (Whitehead, 2000). Most of the complexed 

manganese in soils is bound to inorganic rather than organic ligands (Laurie and Manthey, 1994, as quoted 

by Whitehead, 2000).  

 

The correlation between total manganese content of soil and its bioavailability is very poor. Low 

bioavailability is caused by neutral to high pH, aeration and oxidation, low soil temperature and sandy texture 

of the soil (Mortvedt, 2000). According to Lindsey (1979, quoted by Mortvedt, 2000), the activity and 

bioavailability of Mn decrease a hundredfold for each unit increase in pH within the range 4 to 9. Manganese 

concentrations are generally lower in sandy soils than in loams and clays, and lower in soils from acid than 

from basic rocks. (Vlek and Harmsen, 1985; Whitehead, 2000). It is retained in soil mainly by precipitation 

and complexation. No losses occur through volatilisation, while leaching is negligible unless conditions are 

highly acidic or unusually high concentrations of soluble organic chelates are produced (Whitehead, 2000). 

Manganese toxicity only occurs on very acid or waterlogged soils (Mortvedt, 2000). 

 

The ability of manganese to change oxidation state and to form complexes with organic molecules rules its 

activity and movement in soil and plants (Whitehead, 2000). Manganese is involved in several redox 

processes (and thus the transfer of electrons) in photosynthesis and activation of enzymes. It is found in 

manganese superoxide dismutase, which is involved in the detoxification of free-radical oxidants (Reuter and 

Robinson, 1997). It plays a role in respiration and the synthesis of amino acids, phenolic acids and lignin 

through participation in phosphorylation, decarboxylation, reduction and hydrolysis reactions (Whitehead, 

2000). Manganese is involved with carbohydrate metabolism and the citric acid cycle and it is a component 

of chloroplasts (US, 2002).  

 
Table 9.4: Estimated manganese balances (g ha-1 year-1) from an extensively managed clover-grassland, grazed by 

cattle (Whitehead, 2000). 

 ESTIMATED MN (G HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 100 

ASPECT OF RECYCLING  

Uptake into herbage 60 

Consumption of herbage by animals 30 

Dead herbage to soil 90 

Dead roots to soil 60 

Excreta to soil of grazed area 30 

OUTPUTS  

Milk / live-weight gain 0.013 

Leaching / runoff 0 

Loss through excreta off sward 0 

GAIN TO SOIL 100 
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9.4 ZINC [Zn] 

Zinc is the 23rd most abundant element in Earth’s crust (Han and Singer, 2007). It occurs in igneous rocks as 

a minor constituent of pyroxenes, amphiboles, biotite and iron oxides. It also occurs in the form of sulfides 

(e.g. sphalerite [ZnS]), oxides (e.g. franklinite [Fe,Mn,Zn)(Fe,Mn)2O4]), carbonates (e.g. smithsonite 

[ZnCO3]), phosphates (e.g. hopeite [Zn3(PO4)2·4H2O]) and silicates (e.g. hemimorphite [Zn(OH)2Si2O7.H2O]) 

(Vlek and Harmsen, 1985; Mortvedt, 2000; mindat website, 2008; webmineral website, 2008).  

 
Table 9.5: Typical zinc concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils. 

SOURCE Whitehead,  
2000 

US,  
2002 

Helmke,  
2000 

Vlek & Harmsen, 
1985 

Han & Singer,  
2007 

EARTH’S CRUST  70  80 50 – 70 
GRANITE 45 40  40  
BASALT 86 100  100 70 – 130 
SHALE 95 95  95  
SANDSTONE 16 16  16  
LIMESTONE 20 20  20 16 – 20  
METAMORPHIC 
ROCKS     80 

SEDIMENTARY 
ROCKS     80 

SOILS FROM 
GRANITE 36     

SOILS FROM 
SHALE 47     

SOILS FROM 
SANDSTONE 57     

ENTISOL   146   
SPODOSOL   124   
ALFISOL   52   
MOLLISOL   94   

SOILS (GENERAL) 20 – 300 
[150] 10 - 300 10 – 300 

[50] 
10 – 300  

[50] 
10 – 300 

[50 – 100] 
ARID SOILS     Trace – 900  
  

Zn2+ may substitute for Fe2+ and Mg2+ in clay minerals. It occurs in soil only in one valence state, Zn2+, and 

does not undergo reduction in nature (Mortvedt, 2000). It is the most mobile of the heavy metals and sorbed 

less strongly than Cu. Zinc is readily adsorbed by hydrous oxides, carbonates, clays and soil organic matter. 

The more hydroxyl groups on the surface of a clay or an oxide, the higher the adsorption of zinc. The zinc 

adsorbed by clay and organic matter under acid conditions is readily exchangeable. Under progressively 

more alkaline conditions the availability drops radically, as the result of strong complexing by organic matter 

and adsorption by iron- and manganese oxides (Whitehead, 2000). Above a pH of 7.7, Zn(OH)2 is the 

common form of zinc in the soil solution (Mortvedt, 2000). Half the zinc present in the soil solution is 

complexed by organic or inorganic ligands, while the remainder exists as the free hydrated cation.  

 

The correlation between total zinc content of soil and its availability to plants is very poor. Low bioavailability 

is caused by high pH, strong adsorption (especially in calcaric soils), immobilising by soil microbes, high 

phosphate concentration, sandy soil texture and reducing (waterlogged) conditions (Mortvedt, 2000). Zinc 

concentrations are generally lower in sandy soils than in loams and clays, and lower in soils from acid than 

from basic rocks (Vlek and Harmsen, 1985; Whitehead, 2000). No losses occur through volatilisation and 

leaching is negligible unless conditions are highly acidic or unusually high concentrations of soluble organic 
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chelates are produced (Whitehead, 2000). According to Lindsey (1979, quoted by Mortvedt, 2000), the 

activity and bioavailability of Zn decreases a hundredfold for each unit increase in pH within the range 4 to 9. 

Zinc toxicity only occurs when soil had been polluted by mining or gross over-application of zinc-containing 

fertilizers (US, 2002). 

 

Zinc exists in plants in only one oxidation state, namely Zn2+. It helps to stabilize the structures of RNA and 

DNA and to regulate enzymes that control their synthesis and degradation (Whitehead, 2000). It ensures the 

stability and structural orientation of membrane proteins and cytoplasmic ribosomes. Zinc is a component 

and/or activator of various enzymes, such as dehydrogenase, proteinase, CuZn superoxide dismutase, 

carbonic anhydrase, RNA polymerase, alkaline phosphatase, phospholipase and carboxypeptidase, by 

linking the enzyme to the corresponding substrate or by modifying the conformation of the enzyme or 

substrate (Whitehead, 2000). It is also thought to be necessary for the production of growth regulators, such 

as the auxin indole-3-acetic acid (Reuter and Robinson, 1997; Whitehead, 2000; US, 2002).  

 
Table 9.6: Estimated zinc balances (g ha-1 year-1) from an extensively managed clover-grassland, grazed by cattle 

(Whitehead, 2000). 

 ESTIMATED ZN (G HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 700 

ASPECT OF RECYCLING  

Uptake into herbage 45 

Consumption of herbage by animals 23 

Dead herbage to soil 66 

Dead roots to soil 44 

Excreta to soil of grazed area 21 

OUTPUTS  

Milk / live-weight gain 0.12 

Leaching / runoff 0 

Loss through excreta off sward 0 

GAIN TO SOIL 700 

 

9.5 COPPER [Cu] 

Copper, the 26th most abundant element in the Earth’s crust (Han and Singer, 2007), occurs in igneous rocks 

as sulphides (such as chalcopyrite [CuFeS2], bornite [Cu5FeS4], covellite [CuS] and chalcosite [Cu2S]), 

oxides (such as cuprite [Cu2O] and tenorite [CuO]), and carbonates (such as malachite [Cu2(OH)2CO3] and 

azurite [Cu3(OH)2(CO3)2]) (Vlek and Harmsen, 1985; Mortvedt, 2000; mindat website, 2008; webmineral 

website, 2008). Shale that contains large amounts of organic matter is usually rich in copper.  
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Table 9.7: Typical copper concentrations (in mg kg-1) found in the earth’s crust, some common rocks and soils.  

SOURCE Whitehead,  
2000 

US,  
2002 

Helmke,  
2000 

Han & Singer 
2007 

Vlek & Harmsen,  
1985 

EARTH’S CRUST  55  100 70 
GRANITE 13 10  10 - 20 10 
BASALT 110 100  100 - 200 100 
SHALE 45 10 – 80   45 
SANDSTONE 1 - 10 45  3 – 15 30 
LIMESTONE 4   3 – 15 20 
METAMORPHIC 
ROCKS    30 – 40  

SEDIMENTARY 
ROCKS    30 – 40  

SOILS FROM 
GRANITE 7     

SOILS FROM SHALE 6     
SOILS FROM 
SANDSTONE 8.5     

SANDS    3 - 15  
ENTISOL   61   
SPODOSOL   6.6   
ALFISOL   16   
MOLLISOL   21.0   

SOILS (GENERAL) 2 – 50 
[30]  2 – 100 

[30] 
Trace – 250  

[15 – 40] 
2 – 100  

[30] 
 

Copper is released through weathering as the cuprous ion [Cu+] or cupric ion [Cu2+]. Cu+ is unstable, unless 

in the form of anionic complexes. Below pH 7.3, Cu2+ is the dominant ion species in the soil solution, while 

CuOH- is most common above that pH (Mortvedt, 2000). Cu2+ tends to be adsorbed and occluded by iron 

and manganese hydrous oxides, especially under alkaline conditions. Cu2+ forms very stable complexes with 

organic matter, particularly with carboxyl and phenolic groups, as well as groups that contain nitrogen, such 

as amino groups and porphyrins (Mortvedt, 2000; Whitehead, 2000). The complexing bonds of copper with 

organic matter are strongest of all the divalent micronutrient cations. Almost all copper in the soil solution is 

in the divalent form and is complexed. Only in waterlogged soils does copper occur in the monovalent form, 

where it tends to form insoluble CuS.  

 

The correlation between total copper content of soil and its availability to plants is very poor. Low availability 

is caused by high pH, high organic matter content, sandy texture and antagonisms with phosphorus, iron, 

molybdenum, zinc and aluminium (Mortvedt, 2000). Copper concentrations are generally lower in sandy soils 

than in loams and clays, and lower in soils from acid than from basic rocks (Vlek and Harmsen, 1985; 

Whitehead, 2000). No losses occur through volatilisation and leaching is negligible unless conditions are 

highly acidic or unusually high concentrations of soluble organic chelates are produced (Whitehead, 2000). 

According to Lindsey (1979, quoted by Mortvedt, 2000), the activity and bioavailability of Cu decrease a 

hundredfold for each unit increase in pH within the range 4 to 9. According to Lal (2006), free Cu2+ in soil 

solution decreases with increasing pH, with a minimum above pH 10. 

 

The functions of copper in plants are linked to its ability to change oxidation state. It is an essential 

constituent of several enzymes that catalyse oxidation reactions involving molecular oxygen, such as 

cytochrome oxidase, amine oxidase, ascorbic acid oxidase, laccase and phenol oxidase (Reuter and 

Robinson, 1997). It is involved in lignin synthesis through polyphenol oxidase (Lal, 2006). It is found in CuZn 
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superoxide dismutase (involved in detoxification of superoxide radicals) and plays a role in pollen formation 

and fertilization (Reuter and Robinson, 1997). Copper is a constituent of the protein plastocyanin, which is 

involved in transfer of electrons during photosynthesis (Lal, 2006). It serves as a catalyst in the process of 

respiration. Legumes need copper for nodulation and nitrogen fixation (Whitehead, 2000).  

 
Table 9.8: Estimated copper balances (g ha-1 year-1) from an extensively managed clover-grassland, grazed by cattle 

(Whitehead, 2000). 

 ESTIMATED CU (G HA-1 YEAR-1) 

INPUTS  

Deposition from atmosphere 210 

ASPECT OF RECYCLING  

Uptake into herbage 15 

Consumption of herbage by animals 8 

Dead herbage to soil 21 

Dead roots to soil 14 

Excreta to soil of grazed area 8 

OUTPUTS  

Milk / live-weight gain 0.04 

Leaching / runoff 0 

Loss through excreta off sward 0 

GAIN TO SOIL 210 

 
Figure 9.1 shows the various forms and pathways of Fe, Mn, Zn and Cu in grassland, which would also be applicable to 

the present study area. 

 

 
Figure 9.1. The main forms of Fe, Mn, Cu, Zn and Co involved in nutrient  

cycling in grassland (from Whitehead, 2000)   
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9.6.1 STATISTICAL ANALYSIS: IRON, MANGANESE, ZINC AND COPPER CONTENT 

 
 Table 9.9: Descriptive statistics – plant-available iron (n = 369), manganese (n = 368), zinc (n = 368) and copper (n = 

367) content. 

  Fe Mn Zn Cu 
 mg kg-1 mg kg-1 mg kg-1 mg kg-1 
Mean 18.50 88.74 0.61 1.70 
Median 15.10 60.35 0.30 1.30 
Standard Deviation 12.43 81.36 0.79 1.69 
Coefficient of Variation 0.67 0.92 1.30 0.99 
Minimum 1.00 1.60 0.00 0.00 
Maximum 88.90 389.00 3.90 8.70 
Range 87.90 387.40 3.90 8.70 
Lower Quartile 10.40 27.00 0.10 0.50 
Upper Quartile 22.20 126.40 0.85 2.20 
Quartile Range 11.80 99.4 0.75 1.70 
Percentile 10 7.20 13.60 0.00 0.00 
Percentile 90 32.80 207.50 1.80 4.00 
Skewness 2.09 1.42 1.87 1.61 
Kurtosis 6.28 1.70 3.46 2.79 

 

Normality was rejected for Fe, Mn, Zn and Cu content by the statistical tests employed, namely the Shapiro-

Wilk W test, Kolmogorov-Smirnov / Lilliefors test, and three D’Agostino tests based on skewness, on 

kurtosis, and on a combination of skewness and kurtosis (AnalystSoft, 2007).  

 
Table 9.10: Distribution in terms of deciles – plant-available iron (n = 369), manganese (n = 368), zinc (n = 368) and 

copper (n = 367) content. 

Fe Mn Zn Cu   Decile mg kg-1 mg kg-1 mg kg-1 mg kg-1 
minimum  1.0 1.6 0.0 0.0 
  1 7.1 13.6 0.0 0.0 
  2 9.3 22.5 0.0 0.3 
  3 11.1 32.0 0.1 0.6 
  4 13.2 45.4 0.2 1.0 
median 5 15.1 60.0 0.3 1.3 
  6 17.6 84.0 0.4 1.6 
  7 19.8 108.0 0.7 2.0 
  8 25.2 142.3 1.0 2.7 
  9 32.0 201.5 1.7 4.0 
maximum 10 88.9 389.0 3.9 8.7 

 

The plant-available iron content of 369 samples from the study area ranges from 1.0 to 88.9 mg kg-1. The 

mean (18.5 mg kg-1) is higher than the median (15.1 mg  kg-1), with a skewness of 2.09 and kurtosis of 6.28. 

The standard deviation is 12.43. Half the samples have iron concentrations of between 10.4 (1st quartile) and 

22.2 mg kg-1 (3rd quartile), for a quartile range of 11.8. In 80 % of samples, the Fe content is between 7.2 (1st 

decile) and 32.8 mg kg-1 (9th decile). The frequency distribution is shown in Table 9.10 and Figures 9.2 – 9.3. 
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Figure 9.2. Decile distribution of plant-available Fe 

content (mg kg-1) 

Figure 9.3. Histogram of plant-available Fe content 

(mg kg-1) 

 

A statistically significant correlation, at p < 0.01, was found between iron content and manganese content   

(r2 = 0.35), as shown in Figure 9.4. Significant, but weak, correlations were found with sand content (r2 = 

0.24), exchangeable potassium content (r2 = 0.17), zinc content (r2 = 0.17), exchangeable magnesium 

content (r2 = 0.16), silt content (r2 = 0.15), plant-available phosphorus content (r2 = 0.14), extractable 

magnesium content (r2 = 0.143), extractable potassium content (r2 = 0.14), clay content (r2 = 0.12), medium 

sand content (r2 = 0.11) and copper content (r2 = 0.10).  

 

 
Figure 9.4. Plant-available Fe content vs plant-available 

Mn content (ppm = mg kg-1) 

 

 

The plant-available manganese content of 368 samples from the study area ranges from 1.6 to 389.0 mg 

kg-1. The mean (88.74 mg kg-1) is considerably higher than the median (60.35 mg kg-1), with a skewness of 

1.42 and kurtosis of 1.70. The standard deviation is 81.36. Half the samples have manganese 

concentrations of between 27.0 (1st quartile) and 126.4 mg kg-1 (3rd quartile), for a quartile range of 99.4. In 

80 % of samples, the Mn content is between 13.6 (1st decile) and 207.5 mg kg-1 (9th decile). The frequency 

distribution is shown in Table 9.10 and Figures 9.5 – 9.6. 
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Figure 9.5. Decile distribution of plant-available Mn 

content (mg kg-1) 

Figure 9.6. Histogram of plant-available Mn content 

(mg kg-1) 

 

The concentrations of Mn found in the study area are consistent with the findings of Ellis (1988) in 

comparable areas in southern Africa: median 84 mg kg-1 and range 324 mg kg-1 for A horizons, median 57 

mg kg-1 and range 459 mg kg-1 for B horizons in the eastern Boesmanland; median 100 mg kg-1 and range 

600 mg kg-1 for A horizons, median 61 mg kg-1 and range 280 mg kg-1 for B horizons in western 

Boesmanland. 

 

A statistically significant correlation, at p < 0.01, was found between manganese content and iron content (r2 

= 0.35), as shown in Figure 9.4. Significant, but weak, correlations were found with exchangeable 

magnesium content (r2 = 0.24), copper content (r2 = 0.23), zinc content (r2 = 0.21), sand content (r2 = 0.20), 

extractable magnesium content (r2 = 0.18), clay content (r2 = 0.166), exchangeable potassium content (r2 = 

0.14), medium sand content (r2 = 0.12) and extractable potassium content (r2 = 0.10).  

 

The plant-available zinc content of 368 samples from the study area ranges from 0 to 3.90 mg kg-1. The 

mean (0.61 mg kg-1) is considerably higher than the median (0.30 mg kg-1), with a skewness of 1.87 and 

kurtosis of 3.46. The standard deviation is 0.79. Half the samples have zinc concentrations of between 0.10 

(1st quartile) and 0.82 mg kg-1 (3rd quartile), for a quartile range of 0.75. In 80 % of samples, the Zn content is 

between 0 (1st decile) and 1.80 mg kg-1 (9th decile). The frequency distribution is shown in Table 9.10 and 

Figures 9.7 – 9.8. 

 

  
Figure 9.7. Decile distribution of plant-available Zn 

content (mg kg-1) 

Figure 9.8. Histogram of plant-available Zn content 

(mg kg-1) 

 

The concentrations of Zn found in the study area are consistent with the findings of Ellis (1988) in 
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comparable areas in southern Africa: median 0.9 mg kg-1 and range 3.4 mg kg-1 for A horizons, median 0.5 

mg kg-1 and range 2.2 mg kg-1 for B horizons in the eastern Boesmanland; median 0.4 mg kg-1 and range 6.2 

mg kg-1 for A horizons, median 0.2 mg kg-1 and range 0.6 mg kg-1 for B horizons in western Boesmanland. 

Han and Singer (2007) mentions Zn concentrations of 15.7 – 62.3 mg kg-1 in Nakuru District, Kenya. 

 

Statistically significant, but weak, correlations, at p < 0.01, were found between zinc content and copper 

content (r2 = 0.22), manganese content (r2 = 0.21),  plant-available phosphorus content (r2 = 0.17), and iron 

content (r2 = 0.17). 

  

The plant-available copper content of 367 samples from the study area ranges from 0 to 8.70 mg kg-1. The 

mean (1.70 mg kg-1) is considerably higher than the median (1.30 mg kg-1), with a skewness of 1.61 and 

kurtosis of 2.79. The standard deviation is 1.69. Half the samples have copper concentrations of between 

0.50 (1st quartile) and 2.20 mg kg-1 (3rd quartile), for a quartile range of 1.70. In 80 % of samples, the Cu 

content is between 0 (1st decile) and 4.00 mg kg-1 (9th decile). The frequency distribution is shown in Table 

9.10 and Figures 9.9 – 9.10. 

 

  
Figure 9.9. Decile distribution of plant-available Cu 

content (mg kg-1) 

 

Figure 9.10. Histogram of plant-available Cu content 

(mg kg-1) 

The concentrations of Cu found in the study area are consistent with the findings of Ellis (1988) in 

comparable areas in southern Africa: median 1.1 mg kg-1 and range 13.3 mg kg-1 for A horizons, median 1.0 

mg kg-1 and range 18.4 mg kg-1 for B horizons in the eastern Boesmanland; median 0.6 mg kg-1 and range 

2.7 mg kg-1 for A horizons, median 0.6 mg kg-1 and range 1.7 mg kg-1 for B horizons in western 

Boesmanland. Han and Singer (2007) reported Cu concentrations of 2.2 – 4.2 mg kg-1 in Kenyan soils of the 

Nakuru District.  

 

Significant, but weak, correlations, at p < 0.01, were found between copper content and manganese content 

(r2 = 0.23), zinc content (r2 = 0.22), sand content (r2 = 0.18), exchangeable magnesium content (r2 = 0.15), 

pH (r2 = 0.12), fluoride content (r2 = 0.12), iron content (r2 = 0.11), sum of exchangeable bases (r2 = 0.11), 

clay content (r2 = 0.10), sum of extractable bases (r2 = 0.10), extractable magnesium content (r2 = 0.10), and 

silt content (r2 = 0.10).  

 

Mn and Cu concentrations are slightly higher in sub- than topsoil (Table 9.11; Figures 9.12 and 9.14), while 

the opposite is true for Zn (Table 9.11; Figure 9.13). There is no discernible difference between Fe 
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concentrations in subsoil and topsoil (Table 9.11; Figure 9.11). Ellis (1988) found slightly higher 

concentrations of zinc and manganese in topsoil, relative to subsoil, in the eastern and western 

Boesmanland. 

 

  
Figure 9.11. Fe content (ppm = mg kg-1), per topsoil 

and subsoil 

Figure 9.12. Mn content, per topsoil and subsoil 

 

  
Figure 9.13. Zn content, per topsoil and subsoil Figure 9.14. Cu content , per topsoil and subsoil 

 

Table 9.11: Plant-available iron, manganese, zinc and copper content, per topsoil and subsoil 

Fe  
mg kg-1 

Mn  
mg kg-1 

Zn  
mg kg-1 

Cu  
mg kg-1  Topsoil 

(n = 152) 
Subsoil 
(n = 183) 

Topsoil 
(n = 152) 

Subsoil 
(n = 183) 

Topsoil 
(n = 152) 

Subsoil 
(n = 183) 

Topsoil 
(n = 152) 

Subsoil 
(n = 181) 

Mean 18.13 18.34 71.91 95.96 0.70 0.49 1.48 1.82 
Median 15.65 14.70 53.85 65.00 0.40 0.10 1.15 1.30 
Std.Dev. 10.48 14.18 60.43 89.37 0.73 0.78 1.43 1.87 
Minimum 1.00 2.70 2.90 1.60 0.00 0.00 0.00 0.00 
Maximum 66.60 88.90 331.50 389.00 3.65 3.85 6.50 8.65 
Range 65.60 86.20 328.60 387.40 3.65 3.85 6.50 8.65 
Lower Quartile 11.10 9.40 27.00 24.20 0.20 0.00 0.40 0.50 
Upper Quartile 21.95 21.50 99.75 155.00 0.94 0.65 2.15 2.20 
Quartile Range 10.85 12.10 72.75 130.80 0.74 0.65 1.75 1.70 
Percentile 10 8.10 6.40 13.70 10.50 0.10 0.00 0.00 0.00 
Percentile 90 31.30 33.10 150.00 230.00 1.70 1.50 3.30 4.50 

 

When disregarding clay loam and sandy clay soils, of which there are too few samples to be representative, 

it emerges that sand and loamy sand have noticeably lower concentrations of plant-available Fe than sandy 

loam, sandy clay loam, loam and clay loam soils (Figure 9.15). This result agrees with the statement by 
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Whitehead (2000), that “iron concentrations are generally lower in sandy soils than in loams and clays”. The 

same pattern is followed by Zn, though the Zn concentrations in loamy sand, sandy loam and sandy clay 

loam are comparable (Figure 9.17). In the case of Mn and Cu, concentrations increase in the order sand  

loamy sand  sandy loam  loam  sandy clay loam soils (Figures 9.16 and 9.18).  

 

  
Figure 9.15. Fe content (ppm = mg kg-1), per textural 

class 

Figure 9.16. Mn content, per textural class

 

  
Figure 9.17. Zn content, per textural class Figure 9.18. Cu content, per textural class 

 

Fe, Mn, Zn and Cu concentrations increase in the order aeolian  weathered in situ  colluvial  alluvial 

origin of parent material (Figures 9.19 – 9.22). The low concentrations in aeolian material are especially 

noticeable in the cases of Fe and Cu. 

 

  
Figure 9.19. Fe content (ppm = mg kg-1), per origin of 

parent material 

Figure 9.20. Mn content, per origin of parent material 
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Figure 9.21. Zn content, per origin of parent material Figure 9.22. Cu content, per origin of parent material 

 

Fe, Mn, Zn and Cu concentrations are significantly lower in the Kalahari sands than the soils formed on the 

schist of the Khomas Hochland – a direct consequence of the mineral composition of the respective parent 

materials (Figures 9.23 – 9.26), and in agreement literature, for example Vlek and Harmsen (1985) and 

Whitehead (2000).  

 

   
Figure 9.23. Fe content (ppm = mg kg-1), per type of 

parent material 

Figure 9.24. Mn content, per type of parent material 

 

  
Figure 9.25. Zn content, per type of parent material  Figure 9.26. Cu content, per type of parent material 

 

Fe concentrations increase in the order Arenosols  Calcisols  Regosols  Leptosols  Cambisols  

Luvisols (Figure 9.27). Arenosols have the lowest Mn concentrations and Cambisols the highest. Mn 
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concentrations in Leptosols, Regosols, Calcisols and Luvisols are intermediate between these two groups, 

while Luvisols show a large spread in the ±0.95 confidence interval (Figure 9.28). Arenosols and Regosols 

have the lowest Zn concentrations, and Cambisols and Calcisols noticeably higher concentrations. Zn 

concentrations in Leptosols are intermediate between these two groups, while Luvisols show a large spread 

in the ±0.95 confidence interval (Figure 9.29). Cu concentrations increase in the order Arenosols  

Leptosols  Regosols  Luvisols  Calcisols  Cambisols, but with large overlaps in the ±0.95 confidence 

intervals, especially in the case of Luvisols (Figure 9.30).  

 

  
Figure 9.27. Fe content (ppm = mg kg-1), per WRB 

reference soil group 

Figure 9.28. Mn content, per WRB reference soil group 

 

  
Figure 9.29. Zn content, per WRB reference soil group Figure 9.30. Cu content, per WRB reference soil group 

 

Table 9.12: Iron, manganese, zinc and copper content, per WRB reference soil group. 
Fe 

 mg kg-1 
Arenosols 
(n = 130) 

Calcisols 
(n = 17)  

Leptosols 
(n = 15)  

Cambisols 
(n = 59) 

Regosols 
(n = 81) 

Luvisols 
(n = 3) 

Mean 12.34 14.05 23.62 28.52 19.61 57.97 
Median 10.20 15.00 20.60 26.80 18.10 60.80 
Std.Dev. 8.80 6.95 16.16 15.57 9.24 10.35 
Minimum 2.7 3.0 7.9 1.0 3.5 46.5 
Maximum 67.2 24.7 75.6 88.9 51.9 66.6 
Range 64.5 21.7 67.7 87.9 48.4 20.1 
Lower Quartile 7.4 9.5 14.2 19.2 13.3 46.5 
Upper Quartile 14.7 18.9 29.3 33.1 23.7 66.6 
Quartile Range 7.3 9.4 15.1 14.0 10.4 20.1 
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Percentile 10 5.9 4.6 10.8 12.8 10.5 46.5 
Percentile 90 19.2 24.3 30.7 49.1 30.7 66.6 
Mn 

mg kg-1 
Arenosols 
(n = 130) 

Calcisols 
(n = 17)  

Leptosols 
(n = 15)  

Cambisols 
(n = 59) 

Regosols 
(n = 81) 

Luvisols 
(n = 3) 

Mean 50.40 103.82 87.11 161.64 85.75 104.67 
Median 27.35 85.00 71.40 143.90 67.80 110.60 
Std.Dev. 54.50 87.07 72.55 90.68 68.66 47.58 
Minimum 1.6 9.6 17.0 14.0 2.9 54.4 
Maximum 230.0 300.0 260.0 389.0 331.5 149.0 
Range 228.4 290.4 243.0 375.0 328.6 94.6 
Lower Quartile 15.6 34.5 32.4 92.5 33.5 54.4 
Upper Quartile 63.9 142.3 105.8 213.0 125.8 149.0 
Quartile Range 48.3 107.8 73.4 120.5 92.3 94.6 
Percentile 10 7.7 13.7 23.4 50.7 19.6 54.4 
Percentile 90 135.0 258.0 211.9 300.0 178.5 149.0 
Zn 

mg kg-1 
Arenosols 
(n = 130) 

Calcisols 
(n = 17)  

Leptosols 
(n = 15)  

Cambisols 
(n = 59) 

Regosols 
(n = 81) 

Luvisols 
(n = 3) 

Mean 0.34 0.96 0.53 1.05 0.41 0.97 
Median 0.10 0.70 0.40 0.60 0.20 0.40 
Std.Dev. 0.62 0.86 0.58 1.06 0.48 1.16 
Minimum 0.0 0.0 0.0 0.0 0.0 0.2 
Maximum 3.7 3.0 2.0 3.9 3.0 2.3 
Range 3.7 3.0 2.0 3.9 3.0 2.1 
Lower Quartile 0.0 0.3 0.2 0.2 0.1 0.2 
Upper Quartile 0.3 1.5 0.4 1.8 0.6 2.3 
Quartile Range 0.3 1.2 0.2 1.6 0.5 2.1 
Percentile 10 0.0 0.0 0.1 0.0 0.0 0.2 
Percentile 90 0.9 2.0 1.8 2.7 0.8 2.3 
Cu 

mg kg-1 
Arenosols 
(n = 130) 

Calcisols 
(n = 17)  

Leptosols 
(n = 15)  

Cambisols 
(n = 57) 

Regosols 
(n = 81) 

Luvisols 
(n = 3) 

Mean 0.91 2.56 1.09 2.91 1.57 2.20 
Median 0.80 2.10 0.60 2.40 1.30 2.00 
Std.Dev. 0.90 1.54 1.01 2.33 1.48 0.44 
Minimum 0.0 0.3 0.0 0.0 0.0 1.9 
Maximum 6.5 5.9 2.9 8.7 7.9 2.7 
Range 6.5 5.6 2.9 8.7 7.9 0.8 
Lower Quartile 0.1 1.5 0.3 1.2 0.5 1.9 
Upper Quartile 1.4 3.3 2.1 4.2 2.1 2.7 
Quartile Range 1.3 1.8 1.8 3.0 1.6 0.8 
Percentile 10 0.0 1.0 0.0 0.4 0.1 1.9 
Percentile 90 1.9 5.6 2.6 6.6 3.4 2.7 

 

Fe, Mn, Zn and Cu concentrations tend to increase with the degree of dissection of the landscape (Figures 

9.31 – 9.34). One possible explanation is greater rates of erosion and subsequent weathering in more 

dissected terrain. Secondly, the highly dissected terrain of the study area occurs mainly on schist, quartzite 

and calcrete – all of them richer in minerals than the windblown, quartz-rich Kalahari sands, which covers the 

less dissected areas towards the east. 
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Figure 9.31. Fe content (ppm = mg kg-1), per degree of 

dissection of the landscape 

Figure 9.32. Mn content, per degree of dissection of the 

landscape 

 

  
Figure 9.33. Zn content, per degree of dissection of the 

landscape 

 Figure 9.34. Cu content, per degree of dissection of the 

landscape 

 

Fe concentration slightly increases from pH 5.0 to 6.5, where after it gradually decreases to a minimum 

around pH 9.0 (Figures 9.35 – 9.36). This agrees with the ‘traditional’ micronutrient availability diagrams.  

 

  
Figure 9.35. Fe content  (ppm = mg kg-1) vs pH Figure 9.36. Fe content, per pH interval 

 

Mn concentration increases gradually from pH 5.0 to 8.0, where after it decreases (Figures 9.37 – 9.38). This 

differs from the ‘traditional’ micronutrient availability diagrams found in general soil literature.  
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Figure 9.37. Mn content  (ppm = mg kg-1) vs pH Figure 9.38. Mn content, per pH interval 

 

Zn concentration increases with pH up to pH 8, where after it drops (Figures 9.39 – 9.40). This differs from 

the ‘traditional’ micronutrient availability diagrams found in general soil literature. 

 

  
Figure 9.39. Zn content  (ppm = mg kg-1) vs pH Figure 9.40. Zn content, per pH interval 

 

Cu concentrations increase gradually with pH (Figures 9.41 – 9.42). This differs from the ‘traditional’ 

micronutrient availability diagrams in general soil literature.  

 

  
Figure 9.41. Cu content (ppm = mg kg-1) vs pH Figure 9.42. Cu content, per pH interval 

 

In flat, almost flat and slightly undulating landscapes, plant-available Fe, Mn, Zn and Cu concentrations are 

highest in low landscape positions, lowest in high landscape positions and intermediate (relatively high) in 

flat and intermediate landscape positions (Figures 9.43 – 9.46). It is probably caused by loss of finer soil 
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particles from higher positions and accumulation of the same on flat and in low areas. 

 

  
Figure 9.43. Fe content (ppm = mg kg-1), per 

landscape position in flat to slightly undulating 

landscapes 

Figure 9.44. Mn content, per landscape position in flat 

to slightly undulating landscapes 

 

  
Figure 9.45. Zn content, per landscape position in flat 

to slightly undulating landscapes 

Figure 9.46. Cu content, per landscape position in flat 

to slightly undulating landscapes 

 

In undulating to mountainous landscapes, there are no discernable differences in Fe, Mn, Zn and Cu 

concentrations from crests and mid-slopes, and no data are available from bottom positions (Figure 9.47 – 9. 

50).  

 

  
Figure 9.47. Fe content (ppm = mg kg-1), per 

landscape position in undulating to mountainous 

landscapes 

Figure 9.48. Mn content, per landscape position in 

undulating to mountainous landscapes 
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Figure 9.49. Zn content, per landscape position in 

undulating to mountainous landscapes 

Figure 9.50. Cu content, per landscape position in 

undulating to mountainous landscapes 

 

The plant-available Fe, Mn, Zn and Cu levels, of topsoil and subsoil respectively, are shown in Figures 9.51 

– 9.58.  

 

  
Figure 9.51. Fe content (mg kg-1) of topsoil Figure 9.52. Fe content (mg kg-1) of subsoil 

 

  
Figure 9.53. Mn content (mg kg-1) of topsoil Figure 9.54. Mn content (mg kg-1) of subsoil 
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Figure 9.55. Zn content (mg kg-1) of topsoil Figure 9.56. Zn content (mg kg-1) of subsoil 

 

  
Figure 9.57. Cu content (mg kg-1) of topsoil Figure 9.58. Cu content (mg kg-1) of subsoil 

 

 

    
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CHAPTER TEN 

CHARACTERISATION – SOIL ORGANIC MATTER, pH, PARTICLE SIZE, CRUSTING AND SEALING 

 

10.1 SOIL ORGANIC MATTER [SOM] 

Soil organic matter is a key characteristic of soil fertility. It is composed of plant and animal debris, living and 

dead microbial cells, which are or have been involved in the degradation of debris, intermediate products 

and humic substances (Foth, 1999). Humic substances are usually categorised into three fractions: fulvic 

acids, humic acids and humin. Fulvic acids are light yellow to yellow-brown in colour, and soluble in water 

under all pH conditions (Stevenson, 1994). Humic acids are dark brown to black, and are soluble in water 

under neutral and alkaline conditions, but insoluble under highly acidic conditions (pH < 2). They are 

complex aromatic macromolecules with amino acid-, amino sugar-, peptide- and aliphatic compounds linked 

to the aromatic groups. They may contain free and bound phenolic OH-groups, quinone structures, nitrogen 

and oxygen as bridge units, and a variety of COOH groups (Stevenson, 1994). Humin is the black fraction of 

humic substances that is water-insoluble under all pH conditions (Stevenson, 1994).  

 

 
Figure 10.1. Characteristics of humic substances 

(adapted from Stevenson, 1994) 
   

 

The humic substances in grassland soils are composed of roughly 70 % humic acids and 30 % fulvic acids, 

while the ratio is inverted in forests soils (Stevenson, 1994). The comparative properties of humic substances 

are summarised in Figure 10.1. Labile soil organic matter, such as cellulose and hemicellulose, comprises 

around 10 – 20 % of soil organic matter and serves as the reservoir of readily available nutrients, especially 

nitrogen (Foth, 1999).  

 

Soil micobes produce organic acids – such as citric, tartaric, malic and α-ketogluconic acid (Stevenson, 

1991) – and other complexing (chelating) agents. Almost all of the nitrogen and much of the phosphorus and 

sulphur needed by plants are released by microbial enzymes from soil organic matter into plant-available 

forms, namely as NH4
+, H2PO4

- and SO4
2-. The ratio of C:N:P:S in humus is approximately 100:10:1:1 (Foth, 

1999). Though soil organic matter does not directly supply much Ca, Mg, K and Na, it assists in the effective 

release and mobilisation of divalent and trivalent cations from insoluble inorganic matter by complexing 

(Whitehead, 2000). These cations are re-precipitated or sorbed in a different position, usually at greater 
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depth, when the complex breaks down. The interaction between soil organic matter and micronutrients is 

complicated, e.g. through formation of complexes of varying mobility between micronutrients and carboxyl-, 

phenolic- and other organic groups, occupation of exchange sites by micronutrients, and interactions with 

hydrous Fe, Al and Mn oxides (Whitehead, 2000). Humus, with its large specific surface area, contributes 

(together with clay) to the colloidal fraction of soil (Foth, 1999), to the extent of 20 – 70 % of the cation 

exchange capacity (Stevenson, 1994). Soil organic matter plays an important role in regulating soil pH. The 

negatively charged sites formed by dissociation of phenolic- and carboxyl groups, at pH higher than 7, 

contribute to the cation exchange capacity of the soil by allowing adsorption of cations, including H+, from the 

soil solution (Whitehead, 2000).  

 

Soil organic matter contributes significantly to soil structure formation, water adsorption and nutrient 

adsorpsion, and as a consequence, to favourable soil conditions for high levels of biological activity (Foth, 

1999). It also reduces erodibility. 

 

10.1.1 STATISTICAL ANALYSIS: SOIL ORGANIC MATTER CONTENT [SOM] 

 

Normality was the rejected for soil organic matter content by most of the statistical tests employed, namely 

the Shapiro-Wilk W test and three D’Agostino tests based on skewness, on kurtosis, and on a combination of 

skewness and kurtosis, but no evidence against normality was found by the Kolmogorov-Smirnov / Lilliefors 

test (AnalystSoft, 2007).  

 
Table 10.1: Descriptive statistics – soil organic carbon and soil organic matter content (n = 505). (SOM = 1.74 x SOC) 

  Soil Organic Carbon 
% 

Soil Organic Matter 
% 

Mean 0.39 0.67 
Median 0.33 0.58 
Standard Deviation 0.23 0.40 
Coefficient of Variation 0.59 0.59 
Minimum 0.03 0.05 
Maximum 1.15 2.00 
Range 1.12 1.95 
Lower Quartile 0.22 0.39 
Upper Quartile 0.51 0.89 
Quartile Range 0.29 0.50 
Percentile 10 0.14 0.25 
Percentile 90 0.69 1.20 
Skewness 1.15 1.15 
Kurtosis 1.14 1.14 

 

The soil organic matter content of 505 samples from the study area ranges from 0.05 to 2.00 %. The mean 

(0.67 %) is higher than the median (0.58 %), with a skewness of 1.15 and kurtosis of 1.14. The standard 

deviation is 0.40. Half the samples have SOM content of between 0.38 (1st quartile) and 0.89 % (3rd quartile), 

for a quartile range of 0.50. In 80 % of samples, the SOM content is between 0.25 (1st decile) and 1.20 % (9th 

decile). The frequency distribution is shown in Table 10.2 and Figures 10.2 – 10.3. 
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Figure 10.2. Decile distribution of soil organic matter 

content (%) 

Figure 10.3. Histogram of soil organic matter content (%)

 

Table 10.2: Distribution in terms of deciles – soil organic matter content (n = 505). 

SOM   Decile % 
minimum  0.05 
  1 0.25 
  2 0.34 
  3 0.42 
  4 0.49 
median 5 0.58 
  6 0.68 
  7 0.80 
  8 0.96 
  9 1.20 
maximum 10 2.00 

 

The soil organic carbon (and thus soil organic matter) of the study area is far lower than values reported for 

other southern African locations (Table 10.3).  

 

It does, however, agree with concentrations recorded elsewhere in Namibia (Petersen, 2008; Coetzee, 

Beernaert and Calitz, 1999; Kempf, 1999c; Coetzee, 2001b; Kutuahupira, Mouton and Coetzee, 2001a, 

2001b; Kutuahupira, Mouton and Beukes, 2003; ICC, MAWRD and AECI, 2000). Ellis (1988) also recorded 

low concentrations of organic carbon in western Boesmanland: median 0.1 %, range 0.5 %; and eastern 

Boesmanland, South Africa: median 0.2 %, range 0.6 %. The extremely low organic matter content can be 

linked directly to the low rainfall and subsequent low plant biomass production of the study area, as 

compared to other southern African locations, as well as high rates of mineralisation due to relatively high 

temperatures.  

 
Table 10.3: Organic carbon content of some southern Africa soils at different depths. 

Organic Carbon (mean ± SD) 
% 

 
 

Depth (cm) 0 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 45 
a Present study 0.55 ± 0.20 0.43 ± 0.21 0.46 ± 0.21 0.42 ± 0.18 
b1 Angola 6.2 ± 4.2 4.4 ± 4.0 3.1 ± 2.4  
b2 Botswana 2.9 ± 1.1 2.8 ± 0.9 2.2 ± 1.0  
b3 Mozambique 7.0 ± 4.1 5.9 ± 4.2 4.1 ± 3.2  
b4 Namibia 2.6 ± 0.7 2.5 ± 0.7 1.7 ± 0.6  
b5 South Africa 3.3 ± 4.6 3.1 ± 4.7 2.9 ± 4.8  
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Organic Carbon (mean ± SD) 
% 

 
 

Depth (cm) 0 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 45 
b6 Zimbabwe 3.6 ± 0.4 2.2 ± 0.5 3.2 ± 0.8  
c Eastern Cape, South 
Africa 

1.12 ± 
0.19 

0.89 ± 
0.08 0.17 ± 0.14 0.56 ± 0.11 0.46 ± 0.09 

d Eastern Free State, 
South Africa 0.78 0.64 0.68 0.67 0.64 0.59 

e1 Okamboro, Namibia 0.4 0.35 0.3 
e2 Nareis, Namibia 0.8 0.7 0.6 
e3 Duruchaus, Namibia 0.8 0. 7 0.6 
a present study (n = 63; 87; 42; 54) 
b Hartemink and Hunting (2008) (nb1 = 60; nb2 = 6; nb3 = 30; nb4 = 3; nb5 = 30; nb6 = 12) 
c Materechera, Mandiringana and Mbokodi (1998) (n = 10) 
d Kotze and Du Preez (2008) (n = 1) 
e Petersen (2008) (ne1 = 25, 23, 20; ne2 = 25, 22, 9; ne3 = 25, 16, 7) 

 

Statistically significant, but weak, correlations were found with plant-available phosphorus (r2 = 0.15), 

electrical conductivity of the saturated paste extract (r2 = 0.12), horizon depth (r2 = 0.11) and sulfate of the 

saturated paste extract (r2 = 0.10).  

 

Topsoil SOM concentrations are noticeably higher than those of the subsoil (Figures 10.4 – 10.5). This is 

caused by enrichment of the topsoil by decaying plant material and addition of animal excreta, and agrees 

with the findings of other researchers in southern Africa (Table 10.3).  

 

   
Figure 10.4. SOM content, per topsoil and subsoil Figure 10.5. SOM content, per soil horizon 

 

Arenosols have the lowest SOM concentrations, followed by Cambi- and Regosols. Fluvisols are richest in 

SOM (Table 10.4; Figure 10.6). The enrichment of Fluvisols probably happens through transport of 

particulate material containing organic matter by surface runoff. 
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Figure 10.6. SOM content, per WRB reference soil group Figure 10.7. SOM content, per origin of parent material 

 
Table 10.4: SOM content, per WRB reference soil group. 

SOM 
% 

Arenosols 
(n = 127) 

Calcisols 
(n = 10) 

Leptosols 
(n = 11)  

Fluvisols 
(n = 9) 

Cambisols 
(n = 58) 

Regosols 
(n = 71) 

Mean 0.51 1.16 1.02 1.16 0.64 0.81 
Median 0.40 1.02 1.05 1.20 0.57 0.72 
Std. Dev. 0.35 0.66 0.45 0.30 0.36 0.42 
Minimum 0.17 0.25 0.44 0.61 0.05 0.23 
Maximum 2.00 1.96 1.80 1.60 2.00 2.00 
Range 1.83 1.71 1.36 0.99 1.95 1.77 
Lower Quartile 0.30 0.68 0.58 1.01 0.41 0.51 
Upper Quartile 0.58 1.81 1.28 1.30 0.79 0.99 
Quartile Range 0.28 1.13 0.70 0.29 0.38 0.48 
Percentile 10 0.20 0.28 0.48 0.61 0.25 0.42 
Percentile 90 0.96 1.93 1.68 1.60 1.17 1.60 

 

Soils of aeolian origin have the lowest SOM content, followed by those formed through in situ weathering, 

while soils from alluvial and colluvial origin have higher, comparable SOM concentrations (Figure 10.7). This 

agrees with the results above, as the soils of aeolian origin are the sandy soils of the deep Kalahari sand 

plains, while Fluvisols are of alluvial origin. 

 

The soil organic matter levels, of topsoil and subsoil respectively, are shown in Figures 10.8 – 10.9.  

 

  
Figure 10.8. SOM content (%) of topsoil Figure 10.9. SOM content (%) of subsoil 
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10.2 PH 

The pH of a solution is the negative logarithm to the base ten of the hydrogen ion activity in the solution:  

pH = –log10aH (Van der Watt and Van Rooyen, 1995; Bloom, 2000). In soil the pH indicates the degree of 

acidity or alkalinity, as measured on the pH scale from 1 to 14.  

 

There are several sources of soil acidity:  

 Weak carbonic acid [H2CO3] is formed when water reacts with the carbon dioxide produced by soil 

organisms and roots during the process of respiration (Foth, 1990; Bloom, 2000; Whitehead, 2000). On 

dissociation, the carbonic acid contributes hydrogen ions [H+] to the soil solution. 

 Carbonic acid is also formed by rainwater dissolving atmospheric carbon dioxide (Foth, 1990; 

Whitehead, 2000).  

 When organic matter is mineralised, organic acids such as fulvic and humic acid are formed and the 

liberated nitrogen and sulphur are oxidised to nitric and sulphuric acid (Foth, 1990; Stevenson, 1994; 

Bloom, 2000; Whitehead, 2000). Accumulation of organic matter is higher in grassland systems with 

grazing animals where grazed vegetation is returned in the form of dung and urine, than in cropping 

systems where much of the organic material is removed during harvest (Whitehead, 2000). 

Consequently, mineralization of organic matter contributes more to soil acidity in grassland systems 

than in cropping systems. 

 Nitrification, especially of ammonium from urea in animal urine in grassland systems, contributes to soil 

acidity (Whitehead, 2000). 

 Basic cations are replaced by H+ from various sources and these displaced cations are subsequently 

lost through leaching. Once leaching has removed the basic cations in the soil solution, those adsorbed 

on the exchange complex are also progressively lost, together with anions such as nitrate. The H+ ions 

associated with the anions remains behind and are in turn adsorbed onto the exchange complex, where 

they induce instability and the release of Al3+. The latter is subsequently hydrolysed, with production of 

more H+.  

Al3+(from lattice) + H2O  Al(OH)2+ + H+ 

Al(OH)2+ + H2O  Al(OH)3 + 2H+ 

A positive feedback develops, with acidity promoting more acidity through aluminium hydrolysis. Al(OH)2+ 

is so strongly adsorbed on the soil complex that it in effect becomes non-exchangeable and reduces the 

CEC of the soil (Foth, 1990). 

 

There are a number of sources of soil alkalinity: 

 Many primary minerals contribute to alkalinity on weathering, by consuming H+ and producing OH- 

during hydrolysis. In general,  

M-silicate mineral  +  H2O    H-silicate mineral  +  M+  +  OH- 

where M represents metal ions such as calcium, magnesium, potassium or sodium (Foth, 1990). 

 The hydrolysis of calcium carbonate contributes OH- to soils, controlling soil pH in calcareous soils. An 

equilibrium is reached with atmospheric carbon dioxide, with a soil pH of 8.3 as the maximum that can 

be attained through this reaction (Foth, 1990). 

CaCO3  +  H2O   Ca2+  + HCO3
-  +  OH- 

 The hydrolysis of sodium carbonate can result in a pH of 10 or more, as sodium carbonate is more 
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soluble than calcium carbonate (Foth, 1990). 

Na2CO3  +  H2O   2Na+  + HCO3
-  +  OH- 

 

pH of most soils is maintained between 4.0 and 8.5 by various buffering reactions such as cation exchange, 

dissociation of H+ and OH- and the equilibrium between CaCO3 and CO2 (Foth, 1990; Bloom, 2000). Free 

calcium carbonate is a very effective buffer, as it dissolves in the presence of acids, neutralising them and 

releasing CO2. In basic non-calcareous soils, buffering is affected by dissociation of H+ and OH- from clay 

minerals, organic matter and the hydrous oxides of iron and aluminium. In acid soils (pH<5), Al3+ ions 

dissolve from clay minerals, occupy the cation exchange sites and occur in the soil solution where they are 

toxic to plants. Liming precipitates the aluminium as Al(OH)3, with Ca occupying the vacated exchange sites. 

Manganese can have a similar toxic effect on plants at low pH (Foth, 1990).  

 

In arid regions, soils tend to be neutral to alkaline. Where rates of evaporation exceed that of precipitation, 

capillary rise causes basic cations to accumulate near the soil surface. As long as a soil remains calcareous, 

carbonate hydrolysis dominates the system, maintaining pH between 7.5 and 8.3. Under these 

circumstances, mineral weathering is severely curtailed. In humid regions, soils tend to become acidic over 

time as basic cations are leached out and H+ is released by hydroxy-aluminium hydrolyses and 

exchangeable aluminium hydrolysis. Intensively weathered soils have low CEC, high aluminium saturation of 

the exchange complex and very low base saturation (Foth, 1990). 

 

The availability of most nutrients is pH dependent, as expressed in the well-known diagrams (Figure 10.10):  

   
Figure 10.10. pH and nutrient availability diagrams (Forth, 1990) 

 

Iron, manganese and aluminium is readily availability to plants at high levels of acidity, while potassium, 

sulphur, molybdenum, nitrogen, iodine, calcium, magnesium, phosphorus, boron copper, zinc, cobalt and 

selenium availability is limited by acidity. Biological activity and root growth are suppressed by high acidity. At 

the other end of the spectrum, high pH depresses uptake of iron, manganese, aluminium, copper, zinc, 

cobalt, nitrogen and iodine. 

 

10.2.1 STATISTICAL ANALYSIS: PH IN 2:5 SOIL:WATER SUSPENSION 

 

Normality was accepted for pH (H2O) by the Kolmogorov-Smirnov / Lilliefors test, but rejected by the 



 10  8 

Shapiro-Wilk W test and three D’Agostino tests based on skewness, on kurtosis, and on a combination of 

skewness and kurtosis (AnalystSoft, 2007). The distribution is almost, but not quite, normal (Figure 10.12).  

 
 Table 10.5: Descriptive statistics – pH (H2O) (n = 578). 

  pH (H2O) 
Mean 6.74 
Median 6.63 
Standard Deviation 0.94 
Coefficient of Variation 0.14 
Minimum 4.79 
Maximum 9.24 
Range 4.45 
Lower Quartile 6.02 
Upper Quartile 7.32 
Quartile Range 1.30 
Percentile 10 5.54 
Percentile 90 8.18 
Skewness 0.37 
Kurtosis -0.41 

 

The pH (H2O) of 578 samples from the study area ranges from 4.79 to 9.24. The mean (6.74) is somewhat 

higher than the median (6.63), with a skewness of 0.37 and kurtosis of -0.41. The standard deviation is 0.94. 

Half the samples have pH of between 6.02 (1st quartile) and 7.32 (3rd quartile), for a quartile range of 1.30. In 

80 % of samples, the pH is between 5.54 (1st decile) and 8.18 (9th decile). The frequency distribution is 

shown in Table 10.6 and Figures 10.11 – 10.12. 

 

  
Figure 10.11. Decile distribution of pH (H2O) Figure 10.12. Histogram of pH (H2O) 

 
Table 10.6: Distribution in terms of deciles – pH (H2O) (n = 578). 

  Decile pH (H2O) 
minimum  4.79 
  1 5.53 
  2 5.92 
  3 6.18 
  4 6.38 
median 5 6.63 
  6 6.87 
  7 7.17 
  8 7.47 
  9 8.00 
maximum 10 9.24 

 

If the descriptive terminology of Van der Watt and Van Rooyen (1995) is used, 85 % of all soil samples have 
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a pH from moderately acid (> 5.5) to moderately alkaline (< 8.5), as elaborated in Table 10.7 and in Figure 

10.13. Only seven samples (1.2 % of samples) presented very strong acidity (pH < 5.0) and another 42 (7.3 

%) strong acidity (pH < 5.5), while three (0.5 %) presented very strong alkalinity (pH > 9.0) and 36 (6.2 %) 

strong alkalinity (pH > 8.5). 

 
Table 10.7: pH (H2O) distribution according to the classes of Van der Watt and Van Rooyen (1995) (n = 578). 

Description pH range No of samples % of samples 
Extremely acid < 4.5 0 0.0 
Very strongly acid 4.5 – 5.0 7 1.2 
Strongly acid 5.1 – 5.5 42 7.3 
Moderately acid 5.6 – 6.0 87 15.1 
Mildly acid 6.1 – 6.5 127 22.0 
Neutral 6.6 – 7.3 165 28.5 
Mildly alkaline 7.4 – 7.8 69 11.9 
Moderately alkaline 7.9 – 8.4 42 7.3 
Strongly alkaline 8.5 – 9.0 36 6.2 
Very strongly alkaline > 9.0 3 0.5 
 

 
Figure 10.13. Histogram of pH (H2O), according to the 

classes of Van der Watt and Van Rooyen (1995) 

  

 

The pH (H2O) values found in the study area agree with those recorded elsewhere in Namibia (Coetzee, 

Beernaert and Calitz, 1999; Kempf, 1999; Coetzee, 2001b; Kutuahupira, Mouton and Coetzee, 2001a, 

2001b; Kutuahupira, Mouton and Beukes, 2003; ICC, MAWRD and AECI, 2000). Petersen (2008) recorded 

pH (H2O) values of 7.0 – 8.9 at Duruchaus, 7.5 – 9.5 at Narais and 5.6 – 8.7 at Okamboro (locations on the 

edge of the study area). Ellis (1988) recorded topsoil pH (H2O) values of median 8.3 and range 2.9 in 

western Boesmanland, and median 8.6 and range 1.4 eastern Boesmanland. 

 

Statistically significant correlations, at p < 0.05, were found between pH (H2O) and fluoride content (r2 = 0.57), 

the sum of exchangeable bases (S-value) (r2 = 0.49), exchangeable calcium content (r2 = 0.40), cation 

exchange capacity (r2 = 0.44), and the sum of extractable bases (r2 = 0.34), as shown in Figures 10.14 – 

10.18.  
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Figure 10.14. pH (H2O) vs F content Figure 10.15. pH (H2O) vs sum of exchangeable bases 

 

  
Figure 10.16. pH (H2O) vs exchangeable Ca content Figure 10.17. pH (H2O) vs CEC

 

 
Figure 10.18. pH (H2O) vs sum of extractable bases    

 

There is a very small increase of pH with depth (Table 10.8; Figures 10.19 – 10.20). This is most likely 

caused by leaching of the topsoil and accumulation of bases lower down in the profile. Ellis (1988) reported a 

slight decrease in pH (H2O) with depth, from 8.3 to 8.2 in western Boesmanland, and 8.6 to 8.3 in eastern 

Boesmanland, South Africa. 

 

  
Figure 10.19. pH (H2O), per topsoil and subsoil Figure 10.20. pH (H2O), at various depths (cm) 
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Table 10.8: pH (H2O), at various depths. 
pH (H2O)  

Depth (cm) 0 – 10 
(n = 69) 

11 – 20 
(n = 117) 

21 – 30 
(n = 56) 

31 – 50 
(n = 95) 

51 – 80 
(n = 87) 

81 – 100 
(n = 25) 

> 100 
(n = 83) 

Mean 6.59 6.47 6.47 6.81 6.84 7.05 7.05 
Median 6.37 6.40 6.33 6.78 6.87 6.97 7.13 
Std. Dev. 1.04 0.78 0.91 0.85 0.92 0.88 1.07 
CV 0.16 0.12 0.14 0.12 0.13 0.12 0.15 
Minimum 4.79 4.90 4.83 5.07 4.89 5.55 4.91 
Maximum 9.04 8.69 9.24 8.98 8.74 8.94 9.16 
Range 4.25 3.79 4.41 3.91 3.85 3.39 4.25 
Lower Quartile 5.94 5.92 5.96 6.18 6.29 6.43 6.09 
Upper Quartile 7.22 6.85 6.83 7.41 7.45 7.56 7.82 
Quartile Range 1.28 0.93 0.87 1.23 1.16 1.13 1.73 
Percentile 10 5.35 5.53 5.34 5.82 5.47 5.89 5.59 
Percentile 90 8.31 7.42 7.80 8.09 7.99 8.25 8.60 

 

When disregarding clay loam and sandy clay soils (too few samples to be representative), it emerges that 

sandy soils have the lowest pH, and loamy soils the greatest spread in the ±0.95 confidence limits (Table 

10.9; Figure 10.21). 

 

  
Figure 10.21. pH (H2O), per textural class Figure 10.22. pH (H2O), per WRB reference soil group 
 
Table 10.9. pH (H2O), per textural class. 

pH (H2O) 
 Textural Class Sand 

(n = 100) 
Loamy Sand 

(n = 195) 
Sandy Loam 

(n = 185) 
Loam 
(n = 8) 

Sandy Clay Loam 
(n = 38) 

Mean 6.23 6.75 6.93 6.91 6.81 
Median 6.19 6.62 6.87 6.89 6.87 
Std Dev. 0.73 0.92 0.99 1.03 0.89 
CV 0.12 0.14 0.14 0.15 0.13 
Minimum 4.90 4.83 4.79 5.46 4.84 
Maximum 8.68 9.04 9.24 8.94 8.79 
Range 3.78 4.21 4.45 3.48 3.95 
Lower Quartile 5.69 6.11 6.21 6.25 6.19 
Upper Quartile 6.70 7.31 7.56 7.30 7.32 
Quartile Range 1.01 1.20 1.35 1.06 1.13 
Percentile 10 5.35 5.60 5.73 5.46 5.55 
Percentile 90 7.26 8.22 8.38 8.94 7.62 

  

Calcisols from the study area have the highest mean and median pH of all soil types, followed by Fluvisols, 
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with Luvisols having the lowest mean and median (Table 10.10; Figure 10.22). Areno-, Rego- and Leptosols 

also have noticeably lower pH than Fluvi- and Calcisols. 

 
Table 10.10: pH (H2O), per WRB reference soil group 

 pH 
Arenosol 
(n = 140) 

Calcisol 
(n = 20) 

Leptosol 
(n = 24) 

Fluvisol 
(n = 12) 

Cambisol 
(n = 72) 

Regosol 
(n = 101) 

Luvisol 
(n = 3) 

Mean 6.50 8.25 6.18 7.76 6.98 6.55 5.87 
Median 6.42 8.47 6.18 7.56 6.82 6.50 5.97 
Std.Dev. 0.91 0.63 0.79 0.64 0.96 0.76 0.37 
CV 0.14 0.08 0.13 0.08 0.14 0.12 0.06 
Minimum 4.90 6.71 4.84 7.07 5.40 4.79 5.46 
Maximum 8.70 9.16 7.99 9.04 8.99 9.24 6.18 
Range 3.80 2.45 3.15 1.97 3.59 4.45 0.72 
Lower Quartile 5.75 7.85 5.57 7.29 6.31 6.08 5.46 
Upper Quartile 7.18 8.66 6.58 8.20 7.62 6.95 6.18 
Quartile Range 1.43 0.81 1.02 0.91 1.32 0.87 0.72 
Percentile 10 5.43 7.37 5.23 7.11 5.79 5.66 5.46 
Percentile 90 7.67 8.85 7.31 8.57 8.46 7.51 6.18 

 

The pH of Arenosols from the study area compares favourably with those recorded by Hartemink and 

Hunting (2008) elsewhere in southern Africa, as shown in Table 10.11. 

 
Table 10.11. pH of Arenosols in southern Africa (mean ± 1 SD).  

pH (2:5 soil:water) 
 n 0 – 10 cm 10 – 20 cm 20 – 30 cm 
Present study 7; 34; 6 6.4 ± 0.6 6.2 ± 0.7 7.0 ± 1.3 
Angola a 60 5.8 ± 0.7 5.7 ± 0.8 5.7 ± 0.8 
Botswana a 6 6.6 ± 1.5 6.6 ± 1.5 6.6 ± 1.6 
Mozambique a 30 6.0 ± 0.6 5.9 ± 0.5 6.0 ± 0.5 
Namibia a 3 7.9 ± 0.4 7.9 ± 0.3 7.5 ± 0.6 
South Africa a 39 7.1 ± 1.1 7.1 ± 1.2 6.8 ± 1.8 

a Hartemink and Hunting (2008) 

 

Parent material of alluvial origin has the highest pH (Figure 10.23), confirming the finding above, namely that 

Fluvisols have relatively high pH. Soils formed in the Kalahari sands have lower pH than those formed on 

schist (Figure 10.24). 

 

  
Figure 10.23. pH (H2O), per origin of parent material Figure 10.24. pH (H2O), per type of parent material 
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pH increases with the degree of dissection (Figure 10.25) of the terrain. The highly dissected terrain of the 

study area occurs mainly on schist, quartzite and calcrete, whereas the less dissected areas, towards the 

east, are mainly covered with Kalahari sands. 

 

 
Figure 10.25. pH (H2O), per degree of dissection of the 

landscape 
   

 

The pH (H2O), of topsoil and subsoil are shown in Figures 10.26 – 10.27.  

 

  
Figure 10.26. pH (H2O) of topsoil Figure 10.27. pH (H2O) of subsoil 

 

10.3 PARTICLE SIZE 

Particle size distribution is a fundamental soil property that influences most physical properties (Skopp, 

2000). The fine earth fraction, all particles less than 2 mm in diameter, is subdivided as follows: 

 
Table 10.12: Soil separates (South African standard, Van der Watt and Van Rooyen, 1995). 

 Ø in mm Ø in µm 

Very coarse sand 2.0 – 1.0  2 000 – 1 000  

Coarse sand 1.0 – 0.5  1 000 – 500 

Medium sand 0.5 – 0.25  500 – 250 

Fine sand 0.25 – 0.1  250 – 100  

Very fine sand 0.1 – 0.05  100 – 50 
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Coarse silt 0.05 – 0.02  50 – 20  

Fine silt 0.02 – 0.002  20 – 2  

Clay  < 0.002  < 2 

 

Soil textural classes summarise particle size properties in a single phrase, based on relative abundance of 

sand, silt and clay, through the use of a textural triangle, as shown in Figure 10.28 (Van der Watt and Van 

Rooyen, 1995). A textural class, e.g. clay, describes a specific distribution of sand, silt and clay sized 

particles, whereas a soil separate contains only the particles in a specific size range, e.g. < 2 µm in the case 

of clay (Skopp, 2000). 

 
Figure 10.28. Textural triangle (South African standard, 

Van der Watt and Van Rooyen, 1995) 

   

 

The relative proportions of sand, silt and clay fractions, as measured by particle size analysis and described 

by the classes of soil texture, are closely linked with plant available water holding capacity, hydraulic 

conductivity, infiltration, workability, aeration, soil fertility, chemical activity, erodibility, surface crusting and 

sealing, capillary rise, Atterberg limits, compaction, swell and shrink characteristics, compressibility and 

shear strength (Le Roux, et al., 1999; Rowell, 2000a). Table 10.13 summarises some general relationships 

between soil properties and texture.  

 
Table 10.13: Some general relationships between soil properties and texture (Brady and Weil, 2008). 

Property / Behaviour Sand content Silt content Clay content 
Surface area to volume ratio Low Medium High 
Water-holding capacity Low Medium to high High 
Ability to store plant nutrients Poor Medium to high High 
Nutrient supplying capacity Low Medium to high High 
Aeration Good Medium Poor 
Internal drainage High Slow to medium Very slow 
Organic matter levels Low Medium to high High to medium 
Compactability Low Medium High 
Susceptibility to wind erosion Moderate High Low 

Susceptibility to water erosion Low High Low if aggregated, 
high if not 

Sealing of ponds and dams Poor Poor Good 
Pollutant leaching Poor Medium Good 
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Sand and silt fractions are dominated by residual primary minerals such as quartz, feldspars and micas 

(Foth, 1990; Schaetzl and Anderson, 2005). The silt fraction may also contain some secondary minerals. The 

clay fraction consists almost exclusively of secondary minerals (Schaetzl and Anderson, 2005; Paul and 

Huang, 1980). 

 

10.3.1 STATISTICAL ANALYSIS: SAND, SILT AND CLAY CONTENT 

 
Normality was accepted for sand and silt content by some of the statistical tests for normality (D’Agostino 

Skewness, Kurtosis and Omnibus tests), but rejected by the other (Shapiro-Wilk W test, Kolmogorov-

Smirnov / Lilliefors test), as summarised in Table 10.14 (AnalystSoft, 2007). 

 
Table 10.14: Summary of five normality tests – sand, silt and clay content. 

Sand Silt  Clay 
  % % % 
Kolmogorov-Smirnov / Lilliefors Reject Normality Reject Normality Reject Normality 
Shapiro-Wilk W Reject Normality Reject Normality Reject Normality 
D'Agostino Skewness Reject Normality Reject Normality Reject Normality 
D'Agostino Kurtosis Accept Normality Accept Normality Reject Normality 
D'Agostino Omnibus Reject Normality Reject Normality Reject Normality 
 
Table 10.15: Descriptive statistics – sand (n = 594), silt (n = 594) and clay (n = 594) content. 

Sand Silt  Clay 
  % % % 
Mean 77.1 12.9 10.0 
Median 79.8 11.3 8.0 
Standard Deviation 11.5 7.9 6.8 
Coefficient of Variation 0.1 0.6 0.7 
Minimum 38.5 0.8 0.7 
Maximum 94.1 39.9 47.7 
Range 55.6 39.1 47.0 
Lower Quartile 69.9 6.5 5.2 
Upper Quartile 85.9 17.1 12.9 
Quartile Range 16.0 10.6 7.7 
Percentile 10 60.3 4.6 3.5 
Percentile 90 89.7 25.2 19.1 
Skewness -0.8 1.0 1.6 
Kurtosis 0.1 0.5 3.6 
 

The sand content of 594 samples from the study area ranges from 38.5 to 94.1 %. The mean (77.1 %) is 

slightly lower than the median (79.8 %), with a skewness of  -0.8 and kurtosis of 0.1. The standard deviation 

is 11.5. Half the samples have sand content of between 69.9 (1st quartile) and 85.9 % (3rd quartile), for a 

quartile range of 16.0. In 80 % of samples, the sand content is between 60.3 (1st decile) and 89.7 % (9th 

decile). The frequency distribution is shown in Table 10.16; Figures 10.29 – 10.30.  
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Figure 10.29. Decile distribution of sand percentage Figure 10.30. Histogram of sand percentage 

 
Table 10.16: Distribution in terms of deciles – sand (n = 594), silt (n = 594), clay (n = 594) content. 

Sand  Silt Clay   Decile % % % 
minimum  38.5 0.8 0.7 
  1 60.2 4.6 3.5 
  2 66.6 5.9 4.6 
  3 72.5 7.0 5.6 
  4 76.7 9.2 6.5 
median 5 79.8 11.3 8.0 
  6 82.0 13.3 9.8 
  7 85.0 15.9 11.8 
  8 87.3 18.5 14.7 
  9 89.7 25.2 19.1 
maximum 10 94.1 39.9 47.7 

 

Sand concentrations of 61.5 to 79.0 % were reported on Claratal (Medinski, 2007), 63.0 to 79.5 % on 

Duruchaus (Petersen, 2008), and 63.5 to 79.5 % on Okamboro (Petersen, 2008) – all of these located on the 

edge of the study area. 

 

The silt content of 594 samples from the study area ranges from 0.8 to 39.9 %. The mean (12.9 %) is slightly 

higher than the median (11.3 %), with a skewness of 1.0 and kurtosis of 0.5. The standard deviation is 7.9. 

Half the samples have silt content of between 6.5 (1st quartile) and 17.1 % (3rd quartile), for a quartile range 

of 10.6. In 80 % of samples, the silt content is between 4.6 (1st decile) and 25.2 % (9th decile). The frequency 

distribution is shown in Table 10.16 (above) and Figures 10.31 – 10.32.  

 

  
Figure 10.31. Decile distribution of silt percentage Figure 10.32. Histogram of silt percentage 

 

Silt concentrations of 19.9 to 37.2 % were reported on Claratal (Medinski, 2007), 16.5 to 31.5 % on 

Duruchaus (Petersen, 2008), and 17.2 to 22.2 % on Okamboro (Petersen, 2008) – all of these located on the 
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edge of the study area. 

 

The clay content of 594 samples from the study area ranges from 0.7 to 47.7 %. The mean (10.0 %) is 

slightly higher than the median (8.0 %), with a skewness of 1.6 and kurtosis of 3.6. The standard deviation is 

6.8. Half the samples have clay content of between 5.2 (1st quartile) and 12.9 % (3rd quartile), for a quartile 

range of 7.7. In 80 % of samples, the clay content is between 3.5 (1st decile) and 19.1 % (9th decile). The 

frequency distribution is shown in Table 10.16 and Figures 10.33 – 10.34.  

 

  
Figure 10.33. Decile distribution of clay percentage Figure 10.34. Histogram of clay percentage 

 

Clay concentrations of 1.0 to 2.1 % were reported on Claratal (Medinski, 2007), 4.0 to 6.5 % on Duruchaus 

(Petersen, 2008), and 3.2 to 15.7 % on Okamboro (Petersen, 2008) – all of these located on the edge of the 

study area. 

 

Statistically significant negative correlations, at p < 0.05, were found between sand content and respectively 

silt content (r2 = 0.67), clay content (r2 = 0.54) and exchangeable magnesium content (r2 = 0.41), as shown in 

Figures 10.35 – 10.37. Significant, but weak, correlations were also found between sand content and the 

cation exchange capacity (r2 = 0.29), sum of exchangeable bases (S-value) (r2 = 0.28), iron content (r2 = 

0.24), exchangeable potassium content (r2 = 0.23), manganese content (r2 = 0.20), copper content (r2 = 

0.18), sum of the extractable bases (r2 = 0.16), coarse sand content (r2 = 0.16), exchangeable calcium 

content (r2 = 0.15), extractable magnesium content (r2 = 0.13), very fine sand content (r2 = 0.13), extractable 

calcium content (r2 = 0.11) and sulfate content (r2 = 0.11). 

 

A statistically significant correlation, at p < 0.05, was found between silt content and sand content (r2 = 0.67), 

as shown in Figure 10.35. Significant, but weak, correlations were found between silt content and the very 

fine sand fraction (r2 = 0.29), coarse sand fraction (r2 = 0.27), fine sand fraction (r2 = 0.17), iron content (r2 = 

0.15), cation exchange capacity (r2 = 0.13), sum of exchangeable bases (S-value) (r2 = 0.10), exchangeable 

magnesium content (r2 = 0.10) and copper content (r2 = 0.10).  

 

Statistically significant correlations, at p < 0.05, were found between clay content and respectively the sand 

fraction (r2 = 0.54) ( Figure 10.36) and exchangeable magnesium content (r2 = 0.37) (Figure 10.38). 

Significant, but weak, correlations were found with extractable magnesium content (r2 = 0.23), cation 

exchange capacity (r2 = 0.22), sum of exchangeable bases (S-value) (r2 = 0.20), sum of extractable bases (r2 

= 0.20), exchangeable potassium content (r2 = 0.18), manganese content (r2 = 0.16), extractable potassium 
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content (r2 = 0.13), extractable calcium content (r2 = 0.13), iron (r2 = 0.12), fluoride content (r2 = 0.11) and 

copper content (r2 = 0.10).  

 

  
Figure 10.35. Sand content vs silt content Figure 10.36. Sand content vs clay content 

 

  
Figure 10.37. Sand content vs exchangeable Mg Figure 10.38. Clay content vs exchangeable Mg content 

 

Topsoil contains significantly more sand, less silt and less clay than subsoil (Table 10.17 and Figures 10.39 

– 10.41), as a result of eluviation of the finer material.  

 

  
Figure 10.39. Sand content, per topsoil and subsoil Figure 10.40. Silt content, per topsoil and subsoil 
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Figure 10.41. Clay content, per topsoil and subsoil 
 
Table 10.17. Percentage sand, silt and clay of topsoil and subsoil. 

Sand  
% 

Silt  
% 

Clay 
%  Topsoil 

(n = 221) 
Subsoil 
(n = 326) 

Topsoil 
(n = 221) 

Subsoil 
(n = 326) 

Topsoil 
(n = 221) 

Subsoil 
(n = 326) 

Mean 81.5 74.1 11.5 14.0 7.1 11.9 
Median 82.1 75.7 10.8 12.1 5.9 10.3 
Std.Dev. 8.2 12.2 6.27 8.9 4.7 7.0 
Minimum 51.7 38.5 0.8 0.8 0.7 1.1 
Maximum 94.1 94.0 32.9 39.9 27.4 40.2 
Range 42.4 55.5 32.1 39.1 26.7 39.1 
Lower Quartile 77.1 64.2 6.9 6.6 4.0 6.5 
Upper Quartile 88.0 84.5 15.0 19.1 8.4 15.7 
Quartile Range 10.9 20.3 8.1 12.5 4.4 9.2 
Percentile 10 70.3 56.3 4.7 4.6 3.0 4.6 
Percentile 90 91.2 88.9 19.7 28.1 12.9 21.3 

 

Arenosols have the highest sand content, as expected from the way this WRB reference soil group is 

defined, followed by Rego-, Lepto-, Fluvi- Cambi- and Calcisols. Luvisols have the least sand and also the 

greatest spread in ±0.95 confidence intervals, due to the small number of samples (Table 10.18; Figure 

10.42). Arenosols have the lowest silt content, followed by Rego-, Lepto-, Cambi- and Calcisols. Luvisols 

have the highest silt content and also the greatest spread in ±0.95 confidence intervals, followed by Fluvisols 

(Table 10.18; Figure 10.43). Areno- and Fluvisols are low in clay, with Luvi-, Calci- and Cambisols relatively 

rich in clay. Rego- and Leptosols have intermediate clay content (Table 10.18; Figure 10.44).  

 

  
Figure 10.42. Sand content, per WRB reference soil 
group 

Figure 10.43. Silt content, per WRB reference soil group
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Figure 10.44. Clay content, per WRB reference soil 
group 

Figure 10.45. Median sand, silt and clay contribution to 
each WRB reference soil group 

 
Table 10.18: Sand, silt and clay fractions of the WRB reference soil groups. 

Sand 
Arenosol 
(n = 140) 

Calcisol 
(n = 20) 

Leptosol 
(n = 24) 

Fluvisol 
(n = 12) 

Cambisol 
(n = 72) 

Regosol 
(n = 101) 

Luvisol 
(n = 3) 

Mean 86.47 70.83 79.47 75.59 72.96 80.76 55.97 
Median 88.10 71.20 81.35 80.85 74.20 81.50 54.50 
Std.Dev. 5.66 12.00 7.97 12.43 8.17 6.82 5.06 
Minimum 61.90 38.50 60.70 51.70 50.60 63.50 51.80 
Maximum 94.10 88.10 90.60 87.20 85.40 93.30 61.60 
Range 32.20 49.60 29.90 35.50 34.80 29.80 9.80 
Lower Quartile 83.90 64.60 74.80 67.00 67.70 75.50 51.80 
Upper Quartile 90.30 79.70 86.15 85.65 79.50 85.60 61.60 
Quartile Range 6.40 15.10 11.35 18.65 11.80 10.10 9.80 
Percentile 10 77.55 56.80 69.00 55.50 61.90 71.40 51.80 
Percentile 90 92.45 84.75 88.20 86.50 82.50 89.00 61.60 

Silt 
Arenosol 
(n = 140) 

Calcisol 
(n = 20) 

Leptosol 
(n = 24) 

Fluvisol 
(n = 12) 

Cambisol 
(n = 72) 

Regosol 
(n = 101) 

Luvisol 
(n = 3) 

Mean 6.85 13.86 10.89 17.58 13.39 9.92 27.40 
Median 5.90 14.10 10.80 15.45 12.95 9.50 26.10 
Std.Dev. 3.96 6.13 5.13 7.76 5.05 4.64 4.98 
Minimum 0.80 5.40 1.20 10.20 0.80 0.90 23.20 
Maximum 22.90 28.00 22.00 31.60 28.10 26.30 32.90 
Range 22.10 22.60 20.80 21.40 27.30 25.40 9.70 
Lower Quartile 4.50 9.05 7.80 10.75 10.85 6.70 23.20 
Upper Quartile 8.05 17.60 14.80 23.15 16.55 12.20 32.90 
Quartile Range 3.55 8.55 7.00 12.40 5.70 5.50 9.70 
Percentile 10 3.35 5.80 3.40 10.20 7.00 4.60 23.20 
Percentile 90 12.05 21.40 17.60 30.30 19.30 15.40 32.90 

Clay 
Arenosol 
(n = 140) 

Calcisol 
(n = 20) 

Leptosol 
(n = 24) 

Fluvisol 
(n = 12) 

Cambisol 
(n = 72) 

Regosol 
(n = 101) 

Luvisol 
(n = 3) 

Mean 6.65 15.34 9.61 6.84 13.64 9.50 16.57 
Median 5.60 13.30 6.35 4.60 11.90 7.60 15.20 
Std.Dev. 3.66 9.17 7.21 5.05 8.07 6.21 2.37 
Minimum 1.10 4.90 3.30 2.40 1.80 0.70 15.20 
Maximum 22.80 40.20 28.60 18.00 38.00 31.50 19.30 
Range 21.70 35.30 25.30 15.60 36.20 30.80 4.10 
Lower Quartile 4.30 9.35 4.30 2.85 7.85 5.10 15.20 
Upper Quartile 8.50 18.75 12.85 10.00 18.05 11.80 19.30 
Quartile Range 4.20 9.40 8.55 7.15 10.20 6.70 4.10 
Percentile 10 3.30 6.30 3.60 2.60 5.90 3.50 15.20 
Percentile 90 10.25 29.95 17.20 12.90 26.10 18.20 19.30 
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The silt and clay contents increase with an increase in the degree of dissection of the landscape (Figures 

10.47 – 10.48), while the opposite is true for sand (Figure 10.46). Highly dissected areas are prone to higher 

rates of erosion, exposing fresh parent material to weathering agents. The highly dissected areas of the 

present study area are located towards the west, in the Khomas Hochland, and mainly occur on schist. The 

areas of low dissection are towards the east and are mainly covered in quartz-rich Kalahari sand. 

 

  
Figure 10.46. Sand content, per degree of dissection of 
the landscape 

Figure 10.47. Silt content, per degree of dissection of 
the landscape 

 

  
Figure 10.48. Clay content, per degree of dissection of 
the landscape 

  

 
 
Flat and almost flat areas have the highest sand content (Figure 10.49) and lowest silt content (Figure 10.50) 

of the different topographic classes. Undulating, rolling, hilly and mountainous areas are relatively low in 

sand content and high in silt content. The clay content, per topographical class is more ambiguous (Figure 

10.51). 

 

  
Figure 10.49. Sand content, per topographic class Figure 10.50. Silt content, per topographic class 
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Figure 10.51. Clay content, per topographic class 

 

Parent material of aeolian origin has the highest sand content, lowest silt content and lowest clay content. 

(Figures 10.52 – 10.54).  

 

  
Figure 10.52. Sand content, per origin of parent material Figure 10.53. Silt content, per origin of parent material 

 

  
Figure 10.54. Clay content, per origin of parent material 

 

The quartz-rich Kalahari sand contain high percentages of sand-sized particles and low concentrations of silt 

and clay, whereas soils formed from schist are rich in silt and poor in sand (Figures 10.55 – 10.56). Soils 

from quartzite show a great spread in sand, silt and clay concentrations. 
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Figure 10.55. Sand content, per type of parent material Figure 10.56. Silt content, per, per type of parent material

 

  
Figure 10.57. Clay content, per type of parent material 

 

The sand, silt and clay levels of topsoil and subsoil are shown in Figures 10.58 – 10.63.  

 

  
Figure 10.58. Sand content (%) of topsoil Figure 10.59. Sand content (%) of subsoil 
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Figure 10.60. Silt content (%) of topsoil Figure 10.61. Silt content (%) of subsoil 

 

  
Figure 10.62. Clay content (%) of topsoil Figure 10.63. Clay content (%) of subsoil 

 

10.3.2 STATISTICAL ANALYSIS: SAND FRACTIONS 

 
Normality was accepted for fine sand and very fine sand content by some of the statistical tests for normality 

(D’Agostino Skewness, Kurtosis and Omnibus tests), but rejected by the other (Shapiro-Wilk W test, 

Kolmogorov-Smirnov / Lilliefors test), as summarised in Table 19 (AnalystSoft, 2007). 

 
Table 10.19: Summary of five normality tests – coarse sand, medium sand, fine sand, very fine sand content. 

Normality test Coarse Sand  
% 

Medium Sand  
% 

Fine Sand 
% 

Very Fine Sand 
% 

Kolmogorov-Smirnov / 
Lilliefors  

No evidence 
against normality 

No evidence 
against normality 

Suggestive evidence 
against normality 

No evidence 
against normality 

Shapiro-Wilk W Reject Normality Reject Normality Reject Normality Reject Normality 
D'Agostino Skewness Reject Normality Reject Normality Accept Normality Accept Normality 
D'Agostino Kurtosis Reject Normality Reject Normality Accept Normality Reject Normality 
D'Agostino Omnibus Reject Normality Reject Normality Accept Normality Reject Normality 
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Table 10.20: Descriptive statistics – sand fractions (n = 345). 

  Coarse Sand  
% 

Medium Sand  
% 

Fine Sand 
% 

Very Fine Sand  
% 

Mean 17.2 28.8 47.3 6.7 
Median 14.4 28.6 48.5 7.6 
Std.Dev. 11.7 6.8 10.3 5.2 
CV 0.68 0.23 0.22 0.78 
Minimum 1.4 8.0 9.0 0.0 
Maximum 53.9 70.3 75.1 19.7 
Range 52.5 62.3 66.1 19.7 
Lower Quartile 7.6 24.4 38.7 0.0 
Upper Quartile 26.3 33.3 54.5 10.6 
Quartile Range 18.7 8.9 15.8 10.6 
Percentile 10 3.5 20.5 34.0 0.0 
Percentile 90 34.5 37.3 60.1 12.9 
Skewness 0.6 0.6 -0.2 0.0 
Kurtosis -0.5 3.5 -0.1 -1.1 

 
Table 10.21: Decile distribution – sand fractions (n = 345). 

Coarse Sand   Medium Sand Fine Sand Very Fine Sand   Decile % % % % 
minimum  1.4 8.0 9.0 0.0 
  1 3.5 20.5 34.0 0.0 
  2 6.3 23.2 36.5 0.0 
  3 8.8 25.3 40.8 0.0 
  4 11.5 27.0 45.2 6.6 
median 5 14.4 28.6 48.5 7.6 
  6 17.5 30.4 51.0 8.7 
  7 23.4 32.1 53.5 9.9 
  8 29.3 34.1 55.9 11.2 
  9 34.5 37.3 60.1 12.9 
maximum 10 53.9 70.3 75.1 19.7 

 

The coarse sand content of 345 samples from the study area ranges from 1.4 to 53.9 % (Table 10.21; 

Figures 10.64 – 10.65). The mean (17.2 %) is slightly higher than the median (14.4 %), with a skewness of 

0.6 and kurtosis of -0.5. The standard deviation is 11.7. Half the samples have coarse sand content of 

between 7.6 (1st quartile) and 26.3 % (3rd quartile), for a quartile range of 18.7 %. In 80 % of samples, the 

coarse sand content is between 3.5 (1st decile) and 34.5 % (9th decile).  

 

  
Figure 10.64. Decile distribution of coarse sand 

content (%) 

Figure 10.65. Histogram of coarse sand content (%) 

  

The medium sand content of 345 samples from the study area ranges from 8.0 to 70.3 % (Table 10.21 and 
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Figures 10.66 – 10.67). The mean (28.8 %) is virtually the same as the median (28.6 %), with a skewness of 

0.6 and kurtosis of 3.5. The standard deviation is 6.8. Half the samples have medium sand content of 

between 24.4 (1st quartile) and 33.3 % (3rd quartile), for a quartile range of 8.9 %. In 80 % of samples, the 

medium sand content is between 20.5 (1st decile) and 37.3 % (9th decile).  

 

  
Figure 10.66. Decile distribution of medium sand 

content (%) 

Figure 10.67. Histogram of medium sand content (%) 

 

The fine sand content of 345 samples from the study area ranges from 9.0 to 75.1 % (Table 10.21; Figures 

10.68 – 10.69). The mean (47.3 %) is slightly lower than the median (48.5 %), with a skewness of -0.2 and 

kurtosis of -0.1. The standard deviation is 10.3. Half the samples have fine sand content of between 38.7 (1st 

quartile) and 54.5 % (3rd quartile), for a quartile range of 15.8 %. In 80 % of samples, the fine sand content is 

between 34.0 (1st decile) and 60.1 % (9th decile).  

 

  
Figure 10.68. Decile distribution of fine sand content (%) Figure 10.69. Histogram of fine sand content (%) 

 

The very fine sand content of 345 samples from the study area ranges from 0 to 19.7 % (Table 10.21; 

Figures 10.70 – 10.71). The mean (6.7 %) is slightly lower than the median (7.6 %), with a skewness of 0.0 

and kurtosis of -1.1. The standard deviation is 5.2. Half the samples have very fine sand content of between 

0.0 (1st quartile) and 10.6 % (3rd quartile), for a quartile range of 10.6 %. In 80 % of samples, the very fine 

sand content is between 0.0 (1st decile) and 12.9 % (9th decile).  
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Figure 10.70. Decile distribution of very fine sand 

content (%) 

Figure 10.71. Histogram of very fine sand content (%) 

 

From Figure 10.72 it can be deduced that the fine sand fraction is most abundant in the majority of soils from 

the study area, and the very fine sand fraction is relatively scarce. This supports the proposed aeolian origin 

of much of the study area soils. 

 

 
Figure 10.72. Relative contributions of various sand fractions 

 

Topsoil contains somewhat less coarse sand and more very fine sand than subsoil (Table 10.22 and Figures 

10.73 – 10.76), most probably caused by eluviation of the finer material. The overlaps in the ±0.95 

confidence intervals are too large to make predictions in the cases of medium and fine sand content. 

 

  
Figure 10.73. Coarse sand content, per topsoil and 
subsoil 

Figure 10.74. Medium sand content, per topsoil and 
subsoil 
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Figure 10.75. Fine sand content, per topsoil and subsoil Figure 10.76. Very fine sand content, per topsoil and subsoil 
 
Table 10.22: Percentage coarse-, medium-, fine- and very fine sand, per topsoil and subsoil. 

Coarse Sand  
% 

Medium Sand  
% 

Fine Sand  
% 

Very Fine Sand  
%  Topsoil 

n = 128 
Subsoil 
n = 205 

Topsoil 
n = 128 

Subsoil 
n = 205 

Topsoil 
n = 128 

Subsoil 
n = 205 

Topsoil 
n = 128 

Subsoil 
n = 205 

Mean 16.0 18.5 28.9 28.9 47.8 46.7 7.3 6.0 
Median 12.65 16.1 28.7 28.6 49.5 46.5 7.8 7.3 
Std.Dev. 11.36 11.87 7.5 6.18 10.94 9.93 4.96 5.2 
Minimum 1.7 1.4 10.7 12.1 9.00 25.00 0.00 0.00 
Maximum 49.3 53.9 70.3 44.6 75.1 69.7 19.7 18.2 
Range 47.6 52.5 59.6 32.5 66.1 44.7 19.7 18.2 
Lower Quartile 7.4 8.2 24.3 24.4 38.9 38.2 4.85 0.00 
Upper Quartile 24.1 28.4 33.3 33.3 55.1 54.00 10.6 10.1 
Quartile Range 16.7 20.2 9.00 8.9 16.2 15.8 5.75 10.1 
Percentile 10 3.1 3.7 19.3 21.2 33.9 33.8 0.00 0.00 
Percentile 90 34.6 34.9 37.9 37.2 60.2 59.6 13.1 12.6 

 

Fluvisols have a relatively high percentage of coarse and medium sand compared to the other soil groups, 

low fine sand percentage and no measurable very fine sand fraction (Table 10.23; Figures 10.77 – 10.81). 

Areno-, Cambi-, Rego and Luvisols are rich in fine and very fine sand fractions and poor in coarse sand 

fractions. Calcisols have a relatively high percentage of very fine sand and low percentage of coarse sand, 

but a wide range of values for medium and fine sand content. The ±0.95 confidence intervals of all Leptosol 

sand fractions are quite wide.  

  

  
Figure 10.77. Coarse sand content, per WRB 
reference soil group 

Figure 10.78. Medium sand content, per WRB 
reference soil group
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Figure 10.79. Fine sand content, per WRB reference 
soil group 

Figure 10.80. Very fine sand content, per WRB 
reference soil group

 

 
Figure 10.81. Median coarse, medium, fine and very 

fine sand contributions to each WRB reference soil 

group   

 

 

Table 10.23: Sand fractions of the WRB reference soil groups. 

Coarse Sand Arenosol 
(n = 95) 

Calcisol 
(n = 12) 

Leptosol 
(n = 16) 

Fluvisol 
(n = 6) 

Cambisol 
(n = 32) 

Regosol 
(n = 78) 

Luvisol 
(n = 3) 

Mean 10.72 13.11 21.71 30.22 15.54 10.48 13.87 
Median 8.70 12.65 19.10 31.15 11.45 9.70 13.80 
Std.Dev. 7.94 5.64 13.03 6.85 11.03 6.13 0.60 
Minimum 1.4 6.3 4.3 20.7 3.1 2.2 13.3 
Maximum 37.4 27.2 49.3 39.0 53.9 28.5 14.5 
Range 36.0 20.9 45.0 18.3 50.8 26.3 1.2 
Lower Quartile 3.3 9.5 12.4 24.3 9.4 5.5 13.3 
Upper Quartile 15.5 15.3 30.8 35.0 18.8 14.0 14.5 
Quartile Range 12.2 5.8 18.5 10.7 9.4 8.5 1.2 
Percentile 10 2.0 7.5 4.3 20.7 5.5 3.6 13.3 
Percentile 90 22.6 17.7 38.2 39.0 34.3 18.9 14.5 

Medium Sand Arenosol 
(n = 95) 

Calcisol 
(n = 12) 

Leptosol 
(n = 16) 

Fluvisol 
(n = 6) 

Cambisol 
(n = 32) 

Regosol 
(n = 78) 

Luvisol 
(n = 3) 

Mean 30.14 30.76 23.55 33.32 26.20 26.30 18.97 
Median 30.90 28.50 22.70 33.10 25.40 25.85 18.50 
Std.Dev. 6.02 12.93 7.65 4.31 5.90 6.03 0.90 
Minimum 16.8 21.0 10.7 27.6 16.4 14.1 18.4 
Maximum 42.4 70.3 35.1 38.1 39.2 43.7 20.0 
Range 25.6 49.3 24.4 10.5 22.8 29.6 1.6 
Lower Quartile 26.1 24.3 18.7 30.1 21.9 22.3 18.4 
Upper Quartile 34.8 29.6 31.5 37.9 29.4 29.7 20.0 
Quartile Range 8.7 5.3 12.8 7.8 7.5 7.4 1.6 
Percentile 10 20.8 23.3 12.1 27.6 19.3 19.0 18.4 
Percentile 90 37.6 33.9 33.7 38.1 33.3 34.0 20.0 
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Fine Sand Arenosol 
(n = 95) 

Calcisol 
(n = 12) 

Leptosol 
(n = 16) 

Fluvisol 
(n = 6) 

Cambisol 
(n = 32) 

Regosol 
(n = 78) 

Luvisol 
(n = 3) 

Mean 50.69 45.33 47.61 36.47 48.98 53.47 55.20 
Median 51.10 49.00 50.20 35.45 50.25 54.80 55.40 
Std.Dev. 7.54 13.10 13.52 5.65 8.15 8.88 0.82 
Minimum 33.4 9.0 17.0 28.7 25.0 30.9 54.3 
Maximum 75.1 58.6 68.5 44.4 59.2 67.9 55.9 
Range 41.7 49.6 51.5 15.7 34.2 37.0 1.6 
Lower Quartile 46.8 42.5 38.5 33.4 45.8 49.8 54.3 
Upper Quartile 54.4 53.1 58.7 41.4 55.1 60.2 55.9 
Quartile Range 7.6 10.7 20.2 8.0 9.3 10.4 1.6 
Percentile 10 40.8 36.1 34.2 28.7 37.6 38.8 54.3 
Percentile 90 59.6 55.6 63.3 44.4 58.3 63.8 55.9 

Very Fine Sand Arenosol 
(n = 95) 

Calcisol 
(n = 12) 

Leptosol 
(n = 16) 

Fluvisol 
(n = 0) 

Cambisol 
(n = 32) 

Regosol 
(n = 78) 

Luvisol 
(n = 3) 

Mean 8.46 10.78 7.11 - 9.28 9.76 12.00 
Median 8.00 10.65 7.45 - 9.85 9.55 11.90 
Std.Dev. 3.21 3.06 6.45 - 4.53 3.02 0.85 
Minimum 0.0 6.3 0.0 - 0.0 0.0 11.2 
Maximum 15.2 16.8 18.2 - 18.4 19.7 12.9 
Range 15.2 10.5 18.2 - 18.4 19.7 1.7 
Lower Quartile 6.7 8.9 0.0 - 7.6 7.7 11.2 
Upper Quartile 10.6 12.9 11.9 - 11.5 12.0 12.9 
Quartile Range 3.9 4.0 11.9 - 3.9 4.3 1.7 
Percentile 10 5.4 7.0 0.0 - 0.0 6.7 11.2 
Percentile 90 13.0 14.2 16.5 - 13.4 12.9 12.9 

 

Aeolian material is poor in coarse sand, rich in medium and fine sand (Figures 10.82 – 10.85). Alluvial parent 

material is rich in coarse sand and poor in fine sand. Colluvium and material weathered in situ are both rich 

in the fine sand fraction. The very fine sand fraction is best represented in alluvium and material weathered 

in situ.  

 

  
Figure 10.82. Coarse sand content, per origin of parent 
material 

Figure 10.83. Medium sand content, per origin of 
parent material
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Figure 10.84. Fine sand content, per origin of parent 

material 

Figure 10.85. Very fine sand content, per origin of 

parent material 

 

Soils formed from schist contain more coarse sand, fine sand and very fine sand, and less medium sand 

than those formed from Kalahari sand (Figures 10.86 – 10.89). Soils formed from quartzite show large 

spreads in ±0.95 confidence intervals for all sand fractions. 

 

  
Figure 10.86. Coarse sand content, per type of parent 
material 

Figure 10.87. Medium sand content, per type of parent 
material

 
 

  
Figure 10.88. Fine sand content, per type of parent 
material 

Figure 10.89. Very fine sand content, per type of parent 
material

 

The coarse sand content increases, while fine and very fine sand content decreases with degree of 

dissection of the landscape (Figures 10.90, 10.92, 10.93). The case of medium sand content is ambiguous 

(Figure 10.91). 
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Figure 10.90. Coarse sand content, per degree of 
dissection of the landscape 

Figure 10.91. Medium sand content, per degree of 
dissection of the landscape 

 

  
Figure 10.92. Fine sand content, per degree of 
dissection of the landscape 

Figure 10.93. Very fine sand content, per degree of 
dissection of the landscape 

 

Coarse sand content is lowest when the landscape is flat or almost flat, while the opposite is true for fine and 

very fine sand content (Figures 10.94 – 10.97). 

 

  
Figure 10.94. Coarse sand content, per topographic 
class 

Figure 10.95. Medium sand content, per topographic 
class
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Figure 10.96. Fine sand content, per topographic class Figure 10.97. Very fine sand content, per topographic class 
 

The coarse-, medium-, fine- and very fine sand fractions of topsoil and subsoil are shown in Figures 10.98 – 

10.105.  

 

  
Figure 10.98. Coarse sand content (%) of topsoil  Figure 10.99. Coarse sand content (%) of subsoil 

 

  
Figure 10.100. Medium sand content (%) of topsoil  Figure 10.101. Medium sand content (%) of subsoil 
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Figure 10.102. Fine sand content (%) of topsoil  Figure 10.103. Fine sand content (%) of subsoil 

 

  
Figure 10.104. Very fine sand content (%) of topsoil  Figure 10.105. Very fine sand content (%) of subsoil 

 

10.4 CRUSTING AND SEALING 

Instances of sealing, crusting and hardening occur in the study area. Cracking is only found in pans, while 

self-mulching is not evident. Sealing occurs in poorly aggregated topsoils with high silt content, as a result of 

dry-wet cycles. On drying these seals develop into crusts. Soil crusts have higher density, higher shear 

strength, finer pores and lower saturated hydraulic conductivity than the underlying soil. They reduce 

infiltration, increase runoff and interfere with seedling development. Casenave and Valentin (1989), as 

quoted by FAO (1998b), described the principal soil parameters that determine vulnerability to crusting as 

being textural differentiation, type of clay minerals, chemical composition, quantity and type of organic matter 

and, to a lesser extent, hydrophobia and aptitude to cracking. According to them the highest aggregate 

instability is reached when silt content exceeds 25 %, with less than 35 % sand content. No such highly 

instable soils were encountered in the study area. 

 

Smectites are more sensitive to dispersion than kaolinites. Iron and aluminium give high stability. Gypsum 

gives more stability than lime. Magnesium contributes strongly to instability if it exceeds 50 % base 

saturation, while an exchangeable sodium percentage (ESP) of 15 – 20 % strongly promotes dispersion 

(Casenave and Valentin, 1989). Twenty-eight topsoil samples with exchangeable magnesium percentage 

above 50 % and exchangeable potassium percentage above 15 % were encountered, but the relationship 

with surface sealing and crusting and erosion, as observed in the field, was ambiguous. 
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FAO (1998b) suggested two further subdivisions to distinguish between surface sealing properties – 

orientation and packing of dispersed soil particles which have disintegrated from soil aggregates due to 

impact of rain drops; formed at the soil surface – and depositional crust properties – crusts constructed when 

soil particles from externally derived materials, suspended in water, are deposited on the soil surface as 

water infiltrates or evaporates. FAO (1998b) also recognized topsoils with compacted properties, i.e. a bulk 

density of ≥ 1.7 g cm-3. In the study area, three such naturally occurring compacted soils were found among 

those with highly soluble components: carbonates, sulfates and salts. Structural crusts, caused by livestock 

trampling, are included under these soils. 

 

Water harvesting, where rainfall is actively concentrated by encouraging sealing on poor soils on slight 

slopes, to channel water towards better soils, is not actively practiced in the study area. It is an unintentional 

by-product of urban development, where roofs, concrete and bitumen surfaces concentrate rainwater 

towards reservoirs for later consumption.  

 

 

    
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CHAPTER ELEVEN 

SUMMARY AND CONCLUSIONS 

 

11.1 SOIL-FORMING FACTORS IN THE STUDY AREA 

Soil characteristics are the end result of a number of interdependent soil forming factors, namely climate, 

vegetation, organic matter, topography and physiography, mineralogical soil constituents, surface processes, 

biological activity and human activity (FAO, 1998b). The imprint of the respective soil-forming factors 

originally recognised by Jenny in 1941 (as reprinted in 1994) can be recognised in the study area.  

 

11.1.1 CLIMATE 

Climate both directly controls soil formation and indirectly influences it through vegetation production, 

shaping the landscape and determining the biological and human activity of the area. In the semi-arid study 

area climate-related surface processes act on topsoil in the form of heating, wind- and water erosion. Splash 

erosion, the process of physical breakdown of soil aggregates by raindrop impact, as well as sheet-, rill- and 

gully erosion are worsened in the absence of vegetation, which is often the case during the latter part of the 

dry season. At the same time, dry bare soil with low surface aggregation is susceptible to wind erosion. 

Whirlwinds, developed through differential heating, are visible agents of wind erosion in the study area. Soil 

temperatures are very high, often exceeding 50 oC in the dry hot season (September to December), resulting 

in extreme desiccation and lowering biological activity in the topsoil. Relatively low rainfall means that there 

is some leaching of topsoil with subsequent accumulation of bases in deeper horizons. High rates of 

evaporation causes capillary rise of groundwater with concomitant accumulation of carbonates and silicates, 

sometimes to the extent of forming indurated layers. 

 

11.1.2 PARENT MATERIAL 

Parent material determines the type of mineral soil particles found. In the study area no volcanic material and 

very little shrinking-swelling clay occur. The western third of the area is dominated by schist, with the 

attendant abundance of primary minerals rich in nutrients. The eastern half is dominated by quartz-rich 

sandy soils formed in the Kalahari sands, with the associated low levels of clay minerals, low coherence, 

poor soil structure, high infiltration rates and low cation exchange capacity.  

 

11.1.3 VEGETATION 

Vegetation improves porosity and aeration through loosening of soil by root penetration. Vegetation cover 

protects the surface against wind and raindrop impact and slows overland flow of water, thereby lowering 

erosion risk and downstream sedimentation and allowing better infiltration of rainwater. The low amount of 
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vegetation present during the latter part of the dry season renders the study area vulnerable to erosion. 

Nutrients are extracted from deeper within the soil by plants and are accumulated in the surface layers when 

the plants die and decompose. Organic matter enhances aggregation, increases structural stability, 

increases water holding capacity, contributes to nutrient holding capacity, buffers against potential 

acidification, binds toxic substances and provides the soil with nutrients captured from the atmosphere by 

vegetation (FAO, 1998b). Organic matter is central to maintenance of soil fertility through mineralisation of 

nitrogen, phosphor and sulfur, improving soil nutrient- and water holding capacity, structural ability and 

promoting soil fauna. The study area has no organic topsoils. The percentage of organic matter found in 

topsoils of the area is very low – the result of the dry and hot climate, with low biomass production rate by 

relatively sparse vegetation and a high rate of mineralisation. The organic matter is not as intimately mixed 

with mineral particles as would be the case in temperate regions with a wetter moisture regime and more 

earthworm activity. In consequence, poorer aggregation and structure development are found. Most topsoils 

in the study area display arescic properties, which are defined by FAO (1998b) as having less than 3 % 

organic matter and biological activity being restricted to a well-defined rainy season, resulting in a surface 

layer enriched in humus of no more than 10 cm thick. These soils are dry for more than three consecutive 

months during each year and frequently have hard-setting properties. 

 

11.1.4 SOIL FAUNA 

Soil fauna help with physical mixing of organic matter in the soil profile, inoculation of plant litter with 

decomposer populations, improvement of soil physical properties, physical disintegration of organic matter, 

direct metabolism of organic components and stimulation of decomposer populations (Tate, 1987). Soil 

microbes, such as fungi, yeasts and bacteria, biochemically free plant nutrients and manufacture humus 

compounds from plant litter. The study area shows abundant features of mesofaunal activity, particularly by 

termites and to a lesser extent by earthworms and ants. Termites enrich the subsoil in the proximity of 

termitaria in clay, organic materials and subsequently in nutrients. They create mounds above and chambers 

below the surface. They effect rapid physical disintegration of vegetation residues and convert cellulose, 

hemi-cellulose and lignin into products that other meso- and microfauna can digest more easily. Other 

burrowing animals, particularly ground squirrels, suricates, mongooses, aardvarks and porcupines contribute 

to mixing of soil layers, aeration and introduction of plant litter and animal excreta into deeper horizons. 

 

11.1.5 HUMAN ACTIVITY AND MANAGEMENT 

Extensive livestock farming dominates human activity in the study area. Ranching has a less radical 

influence on topsoil than cultivation, but can still degrade land through overgrazing and trampling by 

livestock. The former will denude vegetation, increase wind erosion, runoff and sealing, decrease infiltration, 

and lead to sheet-, rill- and eventual gully erosion. Trampling can have the same end result by destroying soil 

structure. In the study area, incipient bush encroachment is changing the vegetation dynamics. Undesirable 

bush is replacing grass and forbs, with a lowering in both production potential and biodiversity. The causes of 

bush encroachment are complex, but poor management (grazing) practices are major contributors. 
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11.1.6 TOPOGRAPHY AND PHYSIOGRAPHY 

The western third of the study area is dominated by the high, deeply incised Khomas Hochland and its 

transition towards the lower, relatively flat Kalahari. Leptosols and bare rocky outcrops are abundant in the 

Khomas Hochland, while the Kalahari is generally covered by deep soils, only occasionally interrupted by 

shallow calcretes in the lower landscape positions. 

 

Topography and physiography largely determine soil depth (Figure 5.21) and stability of the topsoil, with thin 

topsoil overlying hard rock found in upper slope positions in steep topographical settings. Higher rates of 

leaching occur in upper and mid-slopes, with accumulation of soluble constituents such as calcium carbonate 

lower in the landscape, where they may form indurated layers that constrain topsoil thickness. 

 

Drainage features, such as water saturation, are largely determined by physiography. The study area does 

not feature topsoils with reductive properties (FAO, 1998b) associated with permanently saturated with 

groundwater, but it has some soils with redoxic properties associated with periodic saturation. 

 

11.1.7 TIME 

Soil aging is marked by a decrease in the silt/clay ratio (Figures 11.1 – 11.2), a progressive increase in clay 

content (Figures 11.37 – 11.38), and a slight reduction in the CEC of clay (Ellis, 1988; Constantini, Angelone 

and Damiani, 2002). From Figures 11.1 and 11.2 it can be concluded that most pedological development 

seems to have taken place in the central part of the study area. Towards the west the pronounced 

topography probably caused rapid removed of soil by water erosion and mass movement, while the high 

quartz content of the Kalahari sands towards the east probably inhibited weathering of silt to clay particles, 

as quartz is quite resistant to weathering. 

 

No highly weathered soils (silt/clay < 0.02) were found in the study area, and it can be concluded that the 

soils currently at the surface are pedogenically young. Remnants of old, buried soils were found sporadically, 

such as deeply weathered Ferralsols in the highlands east of Windhoek which were covered and preserved 

by colluvium. Kempf (2008) postulated that Quaternary pedogenesis, soil dynamics and morphological 

development of central Namibia are characterised by peneplanation and deep weathered (suggested by 

existence of fossil ferralitic and fersialitic paleosoils), probably until the Miocene and discrete erosive periods 

with temporary re-deposition. During the Quaternary physical weathering intensified and topography became 

more pronounced. 
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Figure 11.1 Silt : clay ratio of topsoil, indicating relative stage of 

weathering and eluviation 

Figure 11.2. Silt : clay ratio of subsoil, indicating relative stage of weathering 

and illuviation 

 

 

NOTE: In these maps, and those that follow, blank areas indicate either the absence of sufficient analytical data to extrapolate to the 

respective terrain units, or contradictory data from different profiles within a terrain unit. 
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11.2 SUMMARY OF ANALYTICAL RESULTS 

11.2.1 NITROGEN 

In 80 % of samples, the nitrate content of the saturated paste extract is between 0 and 54.6 mg l-1, while the 

nitrite content is between 0 and 24.7 mg l-1. Weak positive correlations were found between nitrate and the 

electrical conductivity and sulphate of the saturated paste extract, as well as electrical conductivity of the 2:5 

soil:water suspension. A weak positive correlation was also found between nitrite and the electrical 

conductivity of the saturated paste extract. Nitrate and nitrite are more abundant in topsoil than subsoil, most 

likely due to the contribution of leaf litter and animal excreta to the topsoil. Sandy soils are extremely poor in 

nitrite, as they are highly prone to leaching of these very mobile ions.  

 

11.2.2 PHOSPHORUS 

In 90 % of samples, the plant-available phosphorus content is below 12 mg kg-1, which is low for a soil under 

natural grassland, but can be explained by the prevailing semi-arid climate and low biomass production. It is 

generally lower than values recorded in southern Africa, but comparable with findings elsewhere within 

Namibia. Weak positive correlations were found with electrical conductivity (2:5 soil:water suspension and 

saturated paste extract), zinc, iron, organic matter and extractable sodium. Phosphorus content decreases 

with horizon depth (Figures 11.3 – 11.4), so that the topsoil has noticeably more phosphorus than the 

subsoil, most likely as a result of topsoil enrichment by decaying plant material and animal excreta, 

augmented by the low mobility of phosphorus in soil. Sandy soils, and thus Arenosols, are poorest in 

phosphorus. Leptosols and Fluvisols are richest in phosphorus. Enrichment of Fluvisols may be ascribed to 

transport of phosphorus-containing particulate matter by surface runoff. The quartz-rich Kalahari sands are 

poorer in phosphorus than soils formed on schist, as a consequence of the mineral composition. Phosphorus 

concentrations increase with the degree of dissection, probably due to greater rates of erosion and 

subsequent weathering of phosphorus-containing parent material in more dissected terrain, and the schist, 

quartzite and calcrete found in the highly dissected terrain of the study area, whereas the less dissected 

areas towards the east are mainly covered with Kalahari sands. Flat, almost flat and undulating land has 

lower phosphorus content than rolling, hilly and mountainous land. The relationship with pH was ambiguous. 

 

11.2.3 SULFATE 

In 80 % of samples, the sulfate content of the saturated paste extract is between 5.4 and 20.9 mg l-1. Sulfate 

is strongly positively correlated with electrical conductivity of the saturated paste extract, and weakly 

positively correlated with both extractable and exchangeable potassium content, with chloride content, 

organic matter, electrical conductivity of the 2:5 soil:water suspension and coarse sand content. There is no 

sulfate enrichment of topsoil in evidence, probably due to the low organic matter content. Sandy soil tends to 

be poorest in sulfate, as a result of leaching Sulfate concentrations are somewhat lower in the Kalahari 

sands than in soils formed on the schist of the Khomas Hochland – a consequence of the mineral 

composition of the respective parent materials.  
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Figure 11.3. Spatial distribution of phosphorus content (mg kg-1) of topsoil Figure 11.4 Spatial distribution of phosphorus content (mg kg-1) of subsoil 
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11.2.4 CALCIUM 

In 80 % of samples, the extractable calcium content is between 0.61 and 5.73 cmolckg-1 (122 and 1 146 mg 

kg-1), and exchangeable calcium is between 0.21 and 6.02 cmolckg-1. Extractable calcium content is strongly 

positively correlated with exchangeable calcium content, cation exchange capacity, fluoride, pH and the 

sums of both extractable and exchangeable bases. It is weakly positively correlated with extractable and 

exchangeable magnesium content, electrical conductivity (saturated paste extract), and lay, and weakly 

negatively correlated with sand content. Exchangeable calcium content is strongly positively correlated with 

extractable calcium content, pH, cation exchange capacity and the sums of both exchangeable and 

extractable bases. It is weakly positively correlated with fluoride content, exchangeable and extractable 

magnesium content  and electrical conductivity (2:5 soil:water suspension). It is weakly negatively correlated 

with sand content. Both extractable and exchangeable calcium concentrations are higher in subsoil than in 

topsoil, most likely as a result of leaching, as well as depletion by plants and subsequent removal of plants 

by grazing. Soil water movement in the vadose zone, coupled with seasonality of rainfall and high 

evapotranspiration rates, tend to concentrate calcium in subsurface layers. Sandy, loamy sand and loamy 

soils have noticeably lower concentrations of both extractable and exchangeable calcium than sandy loams 

and sandy clay loams. Alluvial material is richest in calcium. Soils formed on the schist of the Khomas 

Hochland are richer in calcium than the Kalahari sands, as a consequence of the respective mineral 

compositions. Calcisols are, as per definition, richest in calcium, followed by Cambisols, with Arenosols 

being poorest. Exchangeable calcium concentrations are highest in the lowest landscape positions (valleys 

and lower slopes), and lowest in the higher landscape positions (mid-slopes, upper slopes and ridges), in 

parallel with accumulation of finer soil fractions lower in the landscape. It increases with degree of dissection 

of the landscape, which can probably be ascribed to greater rates of erosion and subsequent weathering of 

mineral-rich parent material in the more dissected terrain. Furthermore, the highly dissected terrain of the 

study area occurs mainly on schist, quartzite and calcrete, whereas the less dissected areas, towards the 

east, are mainly covered with Kalahari sands (Figures 11.5 – 11.8). 

 

11.2.5 MAGNESIUM 

In 80 % of samples, the extractable magnesium content is between 0.12 and 2.28 cmolckg-1 (15 and 278 mg 

kg-1), and exchangeable magnesium content is between 0.12 and 2.01 cmolckg-1, which is consistent with 

reports in literature. Extractable magnesium content is strongly positively correlated with exchangeable 

magnesium content and the sums of both extractable and exchangeable bases. It is weakly positively 

correlated with extractable and exchangeable calcium content and potassium content, electrical conductivity 

(saturated paste extract), cation exchange capacity, manganese content, iron content, copper content, 

fluoride content, pH, and clay content, and weakly negatively correlated with sand content. Exchangeable 

magnesium content is strongly positively correlated with extractable magnesium content, clay content, cation 

exchange capacity and the sums of both extractable and exchangeable bases, while it is strongly negatively 

correlated with sand content. It is weakly positively correlated with both extractable and exchangeable 

calcium content and potassium content, pH, manganese content, iron content, copper content, fluoride 

content, and silt content, while it is weakly negatively correlated with medium sand content. Both extractable 

and exchangeable magnesium concentrations are higher in subsoil than in topsoil, most likely as a result of 
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leaching, depletion by plants and subsequent removal of plants by grazing, and additions from weathering of 

primary minerals from parent materials. Sandy soils and loamy sands have considerably lower 

concentrations of both extractable and exchangeable magnesium than sandy loams and sandy clay loams, 

which is consistent with literature. The sandy, quartz-rich Arenosols of the Kalahari contain less magnesium 

than the soils formed on schist in the Khomas Hochland. Cambisols, Calcisols and Luvisols are relatively rich 

in magnesium. Magnesium concentrations are highest in the lowest landscape positions (valleys and lower 

slopes), and lowest in the higher landscape positions (mid-slopes, upper slopes and ridges), most probably 

as a result of mass movement of magnesium-containing colluvial material down inclines, as well as vertical 

and lateral displacement of magnesium by percolating water. Moderately to highly dissected terrain is richer 

in magnesium (Figures 11.9 – 11.12), for the same reasons explained above in the case of calcium. 

 

11.2.6 POTASSIUM 

In 80 % of samples, the extractable potassium content is between 0.13 and 0.54 cmolckg-1 (51 and 213 mg 

kg-1), and exchangeable potassium content is between 0.12 and 0.49 cmolckg-1. Extractable potassium 

content is strongly positively correlated with exchangeable potassium content and weakly positively 

correlated with extractable and exchangeable magnesium content, electrical conductivity (saturated paste 

extract), manganese content, iron content, clay content and sulfate content. Exchangeable potassium 

content is strongly positively correlated with extractable potassium content, and weakly positively correlated 

with both exchangeable and extractable magnesium content, electrical conductivity (2:5 soil:water 

suspension and saturated paste extract), sums of both extractable and exchangeable bases, iron content, 

manganese content, zinc content, sulfate content, and clay content. It is weakly negatively correlated with 

sand content. Topsoil and subsoil potassium concentrations do not differ significantly, in accord with most 

reports in literature. Potassium content increases from sandy soils, through loamy sand and sandy loam, to 

sandy clay loam, as increasing clay content provide more exchange sites as well as more potassium-

containing secondary minerals. The sandy, quartz-rich Arenosols of the Kalahari contain less potassium than 

the soils formed on schist in the Khomas Hochland, as a consequence of both texture and mineral 

composition of parent material. Cambisols and Calcisols are relatively rich in potassium, with Arenosols, 

Regosols and Leptosols being poor in potassium. Potassium concentrations are highest in the lowest 

landscape positions (valleys and lower slopes) and lowest in the higher landscape positions (mid-slopes, 

upper slopes and ridges), most probably as a result of mass movement of potassium-containing colluvial 

material down inclines, as well as vertical and lateral displacement of potassium by percolating water. 

Moderately to highly dissected terrain is richer in potassium (Figures 11.13 – 11.16), for the same reasons 

explained above, in the case of calcium and magnesium. 

 

11.2.7 SODIUM 

In 80 % of samples, the extractable sodium content is between 0.05 and 0.38 cmolckg-1 (11 and 87 mg kg-1), 

and exchangeable sodium content is between 0 and 0.13 cmolckg-1, which corresponds to values reported in 

literature. Extractable sodium content is strongly positively correlated with the electrical conductivity of the 

2:5 soil:water suspension, and weakly positively correlated with exchangeable potassium content and 

exchangeable sodium content. Exchangeable sodium content is only correlated with extractable sodium  
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Figure 11.5. Spatial distribution of extractable calcium content (cmolc kg-1) of 

topsoil 

Figure 11.6 Spatial distribution of extractable calcium content (cmolc kg-1) 

of subsoil 

   
Figure 11.7. Spatial distribution of exchangeable calcium content 

(cmolc kg-1) of topsoil 

Figure 11.8 Spatial distribution of exchangeable calcium content (cmolc kg-1) 

of subsoil 



 

11  10 

   
Figure 11.9. Spatial distribution of extractable magnesium content 

(cmolc kg-1) of topsoil 

Figure 11.10 Spatial distribution of extractable magnesium content 

(cmolc kg-1) of subsoil 

   
Figure 11.11. Spatial distribution of exchangeable magnesium content 

(cmolc kg-1) of topsoil 

Figure 11.12. Spatial distribution of exchangeable magnesium content 

(cmolc kg-1) of subsoil 
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Figure 11.13. Spatial distribution of extractable potassium content (cmolc kg-1) 

of topsoil 

Figure 11.14 Spatial distribution of extractable potassium content (cmolc kg-1) 

of subsoil 

   
Figure 11.15. Spatial distribution of exchangeable potassium content 

(cmolc kg-1) of topsoil 

Figure 11.16 Spatial distribution of exchangeable potassium content 

(cmolc kg-1) of subsoil 
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Figure 11.17. Spatial distribution of extractable sodium content (cmolc kg-1) 

of topsoil 

Figure 11.18 Spatial distribution of extractable sodium content (cmolc kg-1) 

of subsoil 

   
Figure 11.19. Spatial distribution of exchangeable sodium content 

(cmolc kg-1) of topsoil 

Figure 11.20 Spatial distribution of exchangeable sodium content 

(cmolc kg-1) of subsoil 
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content. Topsoil sodium content does not differ significantly from that of the subsoil, and no consistent 

pattern could be discerned for exchangeable sodium percentage with increase in depth. Extractable sodium 

content is lowest in Arenosols, and exchangeable sodium content lowest in Arenosols and Leptosols. The 

spread in values is so large for all the other soil types that no firm conclusions could be drawn. No clear 

relationships could be established between sodium concentrations and positions in the landscape. 

Extractable sodium is more abundant in moderately to highly dissected terrain, but there does not seem to 

be any pattern to exchangeable sodium content and degree of dissection of the landscape (Figures 11.17 – 

11.20). 

 

11.2.8 CATION EXCHANGE CAPACITY; SUM OF EXCHANGEABLE BASES; SUM OF EXTRACTABLE BASES 

The mean ± 1 standard deviation is 3.57 ± 3.57 cmolckg-1 for cation exchange capacity, 3.48 ± 3.61 for sum 

of exchangeable bases, and 4.53 ± 4.39 for sum of extractable bases. The CEC and the ∑ exchangeable 

bases (S-value) are virtually identical, which indicate the almost complete absence of exchangeable H+ and 

Al3+ in the soil of the study area, as expected from a semi-arid climate. Topsoil CEC, ∑ exchangeable bases 

and ∑ extractable bases are lower than those of subsoil. The illuviation of clay in subsoil contributes more to 

the CEC (and exchangeable bases) than organic matter accumulation in the topsoil, due to the hot semi-arid 

climate of the study area. Low levels of biomass production and, subsequently, leaf litter and organic matter 

in the soil, combined with high rates of mineralisation of organic matter, means that exchange sites are 

provided to a relatively larger extent by clay than organic matter, when compared to temperate climate soils. 

Although leaching is lower than in tropical and temperate climates, there is some displacement of soluble 

bases towards deeper soil layers. As expected, CEC and the sums of extractable and exchangeable bases 

are lowest in sandy soils (and thus the Arenosols of the Kalahari), while being highest in loam and sandy 

clay loam. CEC, ∑ exchangeable bases and ∑ extractable bases increase with increasing pH. They are 

higher in the phyllosilicate-rich soils formed on schist of the Khomas Hochland than in the quartz-rich 

Kalahari sands and also higher in highly dissected terrain, relative to terrain with low degrees of dissection 

(Figures 11.21 – 11.22). 

 

11.2.9 CA-, MG-, K AND NA SATURATION; BASE STATUS; BASE SATURATION 

The majority of samples, namely 77.8 %, are eutrophic, with 16.7 % being mesotrophic and only 2.8 % being 

dystrophic. Calcium is the dominant cation in most soils, although there is a significant portion of soils in 

which magnesium is most abundant. The generalised ratio of Ca : Mg : K : Na for the whole study area is 61 

: 29 : 16 : 3. Free calcium carbonate is abundant.  

 

11.2.10 ELECTRICAL CONDUCTIVITY 

None of the profiles were classified as saline. EC (2:5) is highest in Calci- and Leptosols, and lowest in Luvi-, 

Areno-, Rego- and Fluvisols. EC (saturated paste) is highest in Calci-, Cambi- and Leptosols, and lowest in 

Luvi- and Arenosols (Figures 11.23 – 11.24). 
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Figure 11.21. Spatial distribution of cation exchange capacity (cmolc kg-1) 

of topsoil 

Figure 11.22. Spatial distribution of cation exchange capacity (cmolc kg-1) 

of subsoil 

    
Figure 11.23. Spatial distribution of electrical conductivity (2:5) (mS m-1) 

of topsoil 

Figure 11.24. Spatial distribution of electrical conductivity (2:5) (mS m-1) of 

subsoil 
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11.2.11 IRON 

In 80 % of samples, the plant-available iron content is between 7.2 and 32.8 mg kg-1. Iron is strongly 

positively correlated with manganese content and weakly positively correlated with both exchangeable and 

extractable magnesium and potassium content, phosphorus content, zinc content, copper content, silt 

content, clay content, available water, field capacity and saturation. It is negatively correlated with sand 

content, medium sand content  and bulk density. There is no significant difference between iron 

concentrations in subsoil and topsoil (Figures 11.25 – 11.26). Iron is lowest in sand and loamy sand, in 

agreement with literature. Alluvial material is richest in iron, followed by colluvial material, while aeolian 

material is poorest. This goes together with the lithology and texture of the aeolian material, namely quartz-

rich Kalahari sand. Young soils in the early stages of pedogenesis, Cambisols, and those showing signs of 

clay eluviation, Luvisols, are richer in iron than the sandy Arenosols and the Calcisols. Highly dissected 

terrain is richest in iron. In flat, almost flat and undulating landscapes, most iron is found in relatively lower 

landscape positions, where finer soil particles accumulate. Iron concentration slightly increases from pH 5.0 

to 6.5, where after it gradually decreases to a minimum around pH 9.0 

 

11.2.12 MANGANESE 

In 80 % of samples, the plant-available manganese content is between 13.6 and 207.5 mg kg-1, which is 

similar to literature reports from elsewhere in southern Africa. Manganese content is strongly positively 

correlated with iron content and weakly positively correlated with both exchangeable and extractable 

magnesium and potassium content, zinc content, copper content, clay content, field capacity, wilting point 

and saturation. It is weakly negatively correlated with sand content, medium sand content, saturated 

hydraulic conductivity and bulk density. Manganese concentrations are higher in subsoil than topsoil. It is 

lowest in sandy soils and highest in sandy clay loams. Alluvial material is richest in manganese, followed by 

colluvial material, while aeolian material is poorest. The latter goes together with the lithology and texture of 

the aeolian material, namely quartz-rich Kalahari sand. Cambisols are richest in manganese and Arenosols 

are poorest. Highly dissected terrain is richest in manganese. Manganese concentration increases gradually 

from pH 5.0 to 8.0, where after it decreases. In flat, almost flat and undulating landscapes, most manganese 

is found in relatively lower landscape positions, where finer soil particles accumulate (Figures 11.27 – 11.28). 

 

11.2.13 ZINC 

In 80 % of samples, the plant-available zinc content is between 0 and 1.80 mg kg-1, which is similar to 

literature reports from other parts of southern Africa. Zinc is weakly positively correlated with copper, 

manganese, phosphorus and iron. Zinc concentrations are slightly higher in topsoil than subsoil. It is lowest 

in sandy soil. Alluvial material is richest in zinc, followed by colluvial material, while aeolian material is 

poorest. The latter goes together with the lithology and texture of the aeolian material, namely quartz-rich 

Kalahari sand. Cambisols and Calcisols are richer in zinc than Arenosols and Regosols. Highly dissected 

terrain is richest in zinc. Zinc concentration increases with pH up to pH 8, where after it drops. In flat, almost 

flat and undulating landscapes, most zinc is found in relatively lower landscape positions, where finer soil 
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particles accumulate (Figures 11.29 – 11.30). 

 

11.2.14 COPPER 

In 80 % of samples, the plant-available copper content is between 0 and 4.0 mg kg-1, which is similar to 

literature reports from other parts of southern Africa. Copper is weakly positively correlated with pH, 

exchangeable and extractable magnesium content, sum of exchangeable and extractable bases, iron 

content, zinc content, manganese content, fluoride content, silt content, clay content, field capacity, 

saturation, available water and saturated hydraulic conductivity. It is weakly negatively correlated with sand  

content and bulk density. Copper concentrations are slightly higher in subsoil than topsoil. It is lowest in 

sandy soils and highest in sandy clay loams. Alluvial material is richest in copper, followed by colluvial 

material, while aeolian material is poorest. The latter goes together with the lithology and texture of the 

aeolian material, namely quartz-rich Kalahari sand. Cambisols are relatively rich in copper, while Arenosols 

are the poorest. Highly dissected terrain is richest in copper. Copper concentrations increase gradually with 

pH. In flat, almost flat and undulating landscapes, most copper is found in relatively lower landscape 

positions, where finer soil particles accumulate (Figures 11.31 – 11.32). 

 

11.2.15 SOIL ORGANIC MATTER 

Organic matter content of the study area soils ranges between 0.05 and 2.00 %, with 80 % of samples 

ranging between 0.25 and 1.20 %. This is considerably lower than values reported in literature, even for 

other southern African countries. It can be explained by the hot, semi-arid climate. Relatively low rainfall 

causes low plant biomass production, with subsequent low levels of plant litter. In the hot dry season, when 

vegetation cover is at its lowest, soil temperature regularly exceeds 50 oC in the study area. The 

consequence is a high rate of mineralisation. This is probably also the reason why only poor correlations 

were found with plant-available phosphorus content and sulfate, and none with nitrate and nitrite content. 

Weak positive correlations were found with plant-available phosphorus content, sulfate content and electrical 

conductivity, and a weak negative correlation with horizon depth. As expected, topsoil contained more soil 

organic matter than subsoil, due to topsoil enrichment by decaying plant material and animal excreta 

(Figures 11.33 – 11.34). Fluvisols, being soils that accumulate along drainage lines, are richest in SOM, 

most likely through transport and accumulation of organic particles by surface runoff from the surrounding 

slopes. Colluvial material also has relatively higher soil organic matter content than other parent materials, 

probably through the same mechanism. 

 

11.2.16 PH 

The pH distribution is close to normal, with 80 % of samples having pH (H2O) of between 5.54 and 8.18, 

namely moderately acid to moderately alkaline (Figures 11.35 – 11.36). Strong positive correlations were 

found with fluoride content, sum of extractable and of exchangeable bases, exchangeable calcium content 

and cation exchange capacity. Weak positive correlations also exist with extractable calcium content,  

exchangeable magnesium content, copper content, presence of carbonates and the ratio of CEC to clay and
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Figure 11.25. Spatial distribution of iron content (mg kg-1) of topsoil Figure 11.26. Spatial distribution of iron content (mg kg-1) of subsoil 

   
Figure 11.27. Spatial distribution of manganese content (mg kg-1) of topsoil Figure 11.28. Spatial distribution of manganese content (mg kg-1) of subsoil 
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Figure 11.29. Spatial distribution of zinc content (mg kg-1) of topsoil Figure 11.30. Spatial distribution of zinc content (mg kg-1) of subsoil 

   
Figure 11.31. Spatial distribution of copper content (mg kg-1) of topsoil Figure 11.32. Spatial distribution of copper content (mg kg-1) of subsoil 
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Figure 11.33. Spatial distribution of organic carbon content (%) of topsoil Figure 11.34. Spatial distribution of organic carbon content (%) of subsoil 

   
Figure 11.35. Spatial distribution of pH (H2O) of topsoil Figure 11.36. Spatial distribution of pH (H2O) of subsoil 



 

11  20 

to clay plus silt, respectively. pH increases very slightly with depth, probably due to leaching of topsoil and 

accumulation of bases lower in the profile. The sandy Arenosols from the Kalahari are lowest in pH, as the 

result of leaching of bases from the topsoil, and the recorded values compare favourably with those from 

literature. Calcisols, by their very nature, are high in pH. Fluvisols also display high pH, most likely due to 

accumulation of bases along drainage channels as a result of both surface runoff and subsurface percolation 

of soil water. Soils formed on schist have relatively high pH as a result of the mineral composition of schist, 

while the quartz-rich Kalahari sands are slightly acidic. pH tends to increase with degree of dissection of the 

landscape. This could be ascribed to the fact that the highly dissected terrain of the study area occurs mainly 

on schist, quartzite and calcrete, whereas the less dissected areas, towards the east, are mainly covered 

with Kalahari sands. 

 

11.2.17 PARTICLE SIZE 

In 80 % of samples the sand content is between 60.3 and 89.7 %, silt content is between 4.6 and 25.2 %, 

and clay content is between 3.5 and 19.1 % (Figures 11.37 – 11.38). This agrees very well with values 

reported by other authors for locations close to the study area. The soils of the study area, thus, tend to be 

mainly sandy, sandy loam and loamy sand (Figures 11.39 – 11.40). This goes hand in hand with low water-

holding capacity (Figure 11.46), low nutrient supply capacity, low organic matter levels, low susceptibility to 

water erosion, low levels of surface sealing, moderate susceptibility to wind erosion, good aeration and high 

rates of internal drainage. Primary minerals like quartz, feldspars and micas are highly prevalent in the study 

area. Sand content is strongly negatively correlated with silt, content clay content, exchangeable magnesium 

content, saturation, field capacity, available water and wilting point, while it is positively correlated with 

saturated hydraulic conductivity and bulk density. Silt content is strongly positively correlated with available 

water, less strongly with water saturation, field capacity and saturated hydraulic conductivity, and strongly 

negatively correlated with sand content and bulk density. Silt content is weakly positively correlated with 

coarse sand content, CEC, sum of exchangeable bases, exchangeable magnesium  content and copper 

content, and weakly negatively correlated with very fine sand content. Clay is strongly negatively correlated 

with sand content, saturated hydraulic conductivity and bulk density. It is strongly positively correlated with 

exchangeable magnesium content, saturation, field capacity, wilting point, and weakly positively correlated 

with CEC, extractable magnesium, calcium and potassium content, exchangeable potassium content, sum of 

both extractable and exchangeable bases, manganese content, iron content, copper content and fluoride 

content. Topsoil contains more sand, less silt and less clay than subsoil, caused by eluviation of the finer 

material. Arenosols are, as per definition, poor in silt and clay, and high in sand content. Luvisols are 

relatively rich in silt and clay, but poor in sand, while Fluvisols are rich in silt, but poor in clay. The silt and 

clay content increases with an increase in the degree of dissection of the landscape, while the opposite is 

true for sand. Flat and almost flat areas have the highest sand content and lowest silt content of the different 

topographic classes, while the opposite is true for undulating, rolling, hilly and mountainous areas. Silt and 

clay content increases, and sand decreases, in the order aeolian, residual (weathered in situ), colluvial and 

alluvial material. Finer material is preferentially accumulated in colluvium and alluvium, and removed by wind 

erosion from aeolian material. Quartz-rich Kalahari sand have high percentages of sand-sized particles, 

while soils formed on schist are relatively rich in clay and silt sized particles.  
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Figure 11.37. Spatial distribution of clay content (%) of topsoil Figure 11.38. Spatial distribution of clay content (%) of subsoil 

   
Figure 11.39. Spatial distribution of textural classes of topsoil Figure 11.40. Spatial distribution of textural classes of subsoil 
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In 80 % of samples, the coarse sand content ranges from 3.5 to 34.5 %, the medium sand content from 20.5 

to 37.3 %, the fine sand content from 38.7 to 54.5 % and the very fine sand content from 0 to 12.9 %. The 

fine sand fraction, thus, dominates, with very fine sand being least abundant. Topsoil contains relatively more 

coarse sand and less very fine sand than subsoil, most probably due to eluviation of the finer material. 

Fluvisols have a relatively high percentage of coarse and medium sand compared to the other soil groups, 

low fine sand percentage and no measurable very fine sand fraction. Arenosols are rich in medium, fine and 

very fine sand, but poor in coarse sand. Cambi-, Rego and Luvisols are also rich in fine and very fine sand 

fractions, and poor in coarse sand fractions. Calcisols have a relatively high percentage of very fine sand and 

low percentage of coarse sand, but a wide range of values for medium and fine sand. Soils formed from 

schist contain more coarse sand, fine sand and very fine sand, and less medium sand than those formed 

from Kalahari sand. The coarse sand content increases while fine and very fine sand content decreases with 

degree of dissection of the landscape. Coarse sand content is lowest when the landscape is flat or almost 

flat, while the opposite is true for fine and very fine sand content. 

 

11.2.18 SEALING AND CRUSTING 

Instances of sealing, crusting and hardening occur sporadically in the study area. Cracking is only found in 

pans, while self-mulching is not evident. No highly instable soils were encountered in the study area. 

 

11.3 FERTILITY 

The fertility status of a soil is to a large degree determined by the topsoil characteristics. While the more 

stable subsoil properties are emphasised in most soil taxonomic classification systems, the topsoil is usually 

more important in terms of ecology, food production, management practices and degradation control. Fertility 

is normally expressed as a function of soil organic matter, cation exchange capacity, base status and the 

amount of extractable phosphorus, potassium, calcium and magnesium (Bühmann, Beukes and Turner, 

2006). 

 

In general, the soils of the study area would be considered unsuitable to marginally suitable for rainfed crop 

production. However, the study area is climatologically unsuited for rainfed crop production, so the question 

of soil fertility for this landuse does not arise. The land flourishes under a system of extensive livestock 

production on large farms, where grazing is carefully managed. The natural vegetation has adapted 

throughout the aeons to the soils and climate. Species that are specifically adapted to low soil nutrient and 

soil water levels have established themselves, and are exploiting the niches provided by variations in the 

landscape, parent material and soils. 

 

Figure 11.41 shows, in green, where topsoil pH is between 5.5 and 7.8, organic carbon content is above 0.5 

% and plant-available phosphorus content is above 1 mg kg-1. These would indicate the relatively more fertile 

soils. Areas where this combination of criteria is not met, where soils are relatively less fertile, are indicated 

in brown. Where insufficient analytical data were available, or inconsistency between data from different
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Figure 11.41. Spatial distribution of general fertility of topsoil Figure 11.42. Spatial distribution of general fertility of subsoil 

   
Figure 11.43. Spatial distribution of micronutrient fertility of topsoil Figure 11.44. Spatial distribution of micronutrient fertility of subsoil 
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Figure 11.45. Spatial distribution of water-holding capacity (%) of topsoil Figure 11.46. Spatial distribution of water-holding capacity (%) of subsoil 
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profiles within terrain units exists, extrapolation could not be done. These areas are indicated in white.  

Figure 11.42 is a similar combination of soil characteristics indicating relative fertility of subsoil, but the 

organic carbon requirement was replaced by cation exchange capacity of more than 1 cmolc kg-1.  

 

Figures 11.43 – 11.44 were also constructed in a similar fashion. No areas met the criteria for moderate (Fe 

10 – 20 mg kg-1; Mn 50 – 150 mg kg-1; Zn 1 – 5 mg kg-1;  Cu 2 – 10 mg kg-1) and high (Fe > 20 mg kg-1; Mn > 

150 mg kg-1; Zn > 5 mg kg-1; Cu > 10 mg kg-1) levels of micronutrients, so only areas with low (Fe ≤ 10 mg 

kg-1; Mn ≤ 50 mg  kg-1; Zn ≤ 1 mg kg-1; Cu ≤ 2 mg kg-1 ) micronutrient levels are shown in brown. 

 

Figures 11.45 – 11.46 show the water-holding capacity of the various terrain units, as calculated with 

pedotransfer functions (Hydraulic Properties Calculator website, based on the equations of Saxton et al., 

1986) using particle size distribution data. In the Khomas Hochland the plant-available water is limited by soil 

depth and in the Kalahari by soil texture. The transition zone has a somewhat better water-holding capacity, 

but it is still very low when compared to arable soils of temperate, sub-humid and humid zones elsewhere in 

southern Africa. 

 

11.4 CONCLUSIONS 

A number of chemical and physical characteristics of Namibian soils in a 22 790 km2, two degree-square 

block between 17 – 19 oE and 22 – 23 oS in eastern central Namibia, had been investigated, and the fertility 

status established (Figures 11.41 – 11.44). The site and analytical information is available in digital format as 

spreadsheets and in a geographical information system, and in a variety of digital and printed maps. 

 

The soils of the study area are very poor in organic matter, and thus in nitrogen, phosphorus and sulfur. 

Towards the west, where the high degree of dissection of the landscape allows fresh schistose parent 

material to be exposed to the elements, there is a source of nutrients, especially bases. The rate of 

weathering is, however, very slow as a result of low rainfall. Towards the east, where deep Kalahari sands 

with high quartz content dominate, deep-rooted plants are the main medium of bringing nutrients to the 

surface. Most soils are neither too alkaline nor too acid.  Base status is high. 

 

Although the fertility status is low, soil health is reasonably good and the natural vegetation has adapted to 

the soils and climate. At present, these remain in a healthy balance, with the exception of a few overgrazed 

and trampled farms and communal areas. The present climate does not permit rainfed agriculture, but if that 

should change or enough groundwater be available for irrigation, care will have to be taken when managing 

the soil. Conservation tillage methods, mulching, rotations with legume cover crops, incorporation of crop 

residues, application of efficient micro-organisms and drip irrigation would be advisable. 

 

The methodology followed to delineate terrain units, with a combination of procedures involving digital 

elevation data and satellite imagery, seems to work well in the Namibian landscape. This study thus served 

as a successful proof-of-concept for the methodology, which can in future be rolled out for the remainder of 

the country. 



12  1 

TABLE OF AUTHORITIES 

  

PRIMARY AUTHORITIES 

AEZ Programme. (1999). PRELIMINARY AGRO-ECOLOGICAL ZONES. 69 pages. Addendum to Agricola 

1998/1999. Agro-ecological Zoning Programme, Directorate of Agricultural Research and Training, 

Ministry of Agriculture, Water and Rural Development, Windhoek, Namibia.  

Allison, L.E. and Moodie, C.D. (1965). CARBONATE. In: Black, C.A. (ed.), Methods of soil analysis, 

Agronomy 9: 1379–1396. American Society of Agronomy, Madison, USA. 

Baker, D.E. (1972). SOIL CHEMISTRY OF MAGNESIUM. p. 1–39. In: Jones, J.B. (Jr.), Blount, M.C. and Wilkinson, 

S.R. (eds.), Magnesium in the environment: soils, crops, animals and man. Taylor County Publ. Co., 

Reynolds, USA. 

Barber, S.A. (1994). SOIL NUTRIENT BIOAVAILABILITY – A MECHANISTIC APPROACH. 2nd edition. Wiley 

Interscience, John Wiley and Sons, Hoboken, New Jersey, USA. 

Barnes, J.I. and De Jager, J.L.V. (1996). ECONOMIC AND FINANCIAL INCENTIVES FOR WILDLIFE USE ON PRIVATE 

LAND IN NAMIBIA AND IMPLICATIONS FOR POLICY. South African Journal of Wildlife Research 26(2): 37–46. 

Bertram, S. and Broman, C.M. (1999). ASSESSMENT OF SOILS AND GEOMORPHOLOGY IN CENTRAL NAMIBIA. 

Minor Field Studies 71, 66 pages. Swedish University of Agricultural Sciences, Uppsala, Sweden. 

Bertram, S. and Kempf, J. (2002). SOILS OF THE NEUDAMM HIGHLANDS, NAMIBIA – NEW APPROACHES TO SOIL 

CLASSIFICATION IN SEMI-ARID REGIONS. Würzburger Geographische Arbeiten 97: 59–84. Würzburg, 

Germany.  

Bester, F.V. (1988). DIE BEPALING VAN DIE GRASPRODUKSIE VAN NATUURLIKE VELD. Agricola 6: 26-30. 

Bester, F.V. (1996). BUSH ENCROACHMENT: A THORNY PROBLEM. Namibia Environment 1: 175–177. 

Bester, F.V. (1997a). DEGREE OF NATURAL DIE-BACK OF BLACK THORN (ACACIA MELLIFERA) AND REGENERATION: 

SEEDLING ESTABLISHMENT. Proceedings of the National Annual Agriculture Research Reporting 

Conference, 19–21 August 1997, Windhoek, Namibia. 

Bester, F.V. (1997b). REGENERATION OF BUSH ON BUSH-ERADICATED SITES IN THE THORN TREE SAVANNA. 

Proceedings of the National Annual Agriculture Research Reporting Conference, 19–21 August 1997, 

Windhoek, Namibia. 

Bester, F.V. (1999a). MAJOR PROBLEM BUSH SPECIES AND BUSH DENSITIES IN NAMIBIA. Agricola, 10: 1–3. 

Bester, F.V. (1999b). GRAZING REGISTER BASED ON THE BIOMASS CONCEPT. Agri-Info 1999: 10–12. 

Bester, F.V. (2003). GRAZING REGISTER BASED ON THE BIOMASS CONCEPT. Spotlight on Agriculture 67, May 

2003. Ministry of Agriculture, Water and Rural Development. Windhoek, Namibia. 

Bethune. S., Griffin, M. and Joubert, D.F. (2004). NATIONAL REVIEW OF INVASIVE ALIEN SPECIES, NAMIBIA. 

Consultancy report for the Southern Africa Biodiversity Support Programme, Ministry of Environment and 

Tourism, Windhoek, Namibia. 

Blackmer, A.M. (2000). BIOAVAILABILITY OF NITROGEN. p. D3–D18. In: Sumner, M.E. (ed.), Handbook of soil 

science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Blevins, D.G. (1994). UPTAKE, TRANSLOCATION AND FUNCTION OF ESSENTIAL MINERAL ELEMENTS IN CROP 

PLANTS. p. 259–275. In: Boote, K.J. et al. (eds.), Physiology and determination of crop yield. American 

Society of Agronomy, Madison, USA. 



12  2 

Bloom, P.R. (2000). SOIL PH AND PH BUFFERING. p. B333–B352. In: Sumner, M.E. (ed.), Handbook of soil 

science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Blümel, W.D. (1991). KALKKRUSTEN - IHRE GENETISCHE BEZIEHUNGEN ZU BODENBILDUNG UND ÄOLISCHER 

SEDIMENTATION. Geomethodica 16: 169–197. Basel, Switzerland. 

Bower, C.A. and Wilcox, L.V. (1965). SOLUBLE SALTS. p. 933–951. In: Black, C.A. (ed.), Methods of soil 

analysis. Agronomy No. 9, American Society of Agronomy, Madison, USA. 

Brady, N.C. and Weil, R.R. (2008). THE NATURE AND PROPERTIES OF SOILS. 14th edition. 992 pages. Prentice 

Hall, New Jersey, USA. 

Bruce, R.C. (1999). CALCIUM. p. 247–254. In: Peverill, K.I., Sparrow, L.A. and Reuter, D.J. (eds.), Soil 

analysis: an interpretation manual. CSIRO Publishing, Collingwood, Australia. 

Bühmann, C., Beukes, D.J. and Turner, D.P. (2006). PLANT NUTRIENT STATUS OF SOILS OF THE LUSIKISIKI 

AREA, EASTERN CAPE PROVINCE. S. Afr. J. Plant Soil 23(2), 93–98.  

Buß, H.-J. (2006). LAND USE OPTIONS FOR NAMIBIAN FARMS – OPTIMAL MANAGEMENT STRATEGIES PROPOSED BY 

BIOECONOMIC MODELS. 201 pages. Wissenschaftsverlag Vauk Kiel KG. Kiel, Germany. 

Camberato, J.J. and Pan, W.L. (2000). BIOAVAILABILITY OF CALCIUM, MAGNESIUM, AND SULPHUR. p. D53–D69. 

In: Sumner, M.E. (ed.), Handbook of soil science. CRC Press, Taylor and Francis Group, Boca Raton, 

Florida, USA. 

Clarkson, D.T. and Hanson, J.B. (1980). FACTORS AFFECTING MINERAL ACQUISITION OF HIGHER PLANTS. 

Annual Review of Plant Physiology 21: 101–109. 

Coetzee, M.E. (1998). GROWING PERIOD ZONES OF NAMIBIA. Agri-Info. Ministry of Agriculture, Water and Rural 

Development, Windhoek, Namibia. 

Coetzee, M.E. (2001a). NAMSOTER – A SOTER DATABASE FOR NAMIBIA. Report. AEZ Programme, Ministry 

of Agriculture, Water and Rural Development, Windhoek, Namibia. 

Coetzee, M.E., Beernaert, F. and Calitz, A.J. (1999). SOIL SURVEY OF UITKOMST RESEARCH STATION. 

Agricola 10: 17–25.  

Costantini, E.A.C., Angelone, M. and Damiani, D. (2002). PHYSICAL, GEOCHEMICAL AND MINERALOGICAL 

INDICATORS OF AGING IN QUATERNARY SOILS OF CENTRAL ITALY. Abstracts of Symposium 49 "Paleosols as a 

memory for understanding landscape history and environmental problems" of the XVII World Congress of 

Soil Science, Bangkok, Thailand.  

Curtis, B. and Mannheimer, C. (2005). TREE ATLAS OF NAMIBIA. 674 pages. National Botanical Research 

Institute, Ministry of Agriculture, Water and Forestry, Windhoek, Namibia 

DeBolt, D.C. (1974). A HIGH SAMPLE VOLUME PROCEDURE FOR THE COLORIMETRIC DETERMINATION OF SOIL 

ORGANIC MATTER. Commun. Soil Sci. Plant Anal. 5: 131–137. 

De Klerk, J.N. (2004). BUSH ENCROACHMENT IN NAMIBIA. Report on Phase 1 of the Bush Encroachment 

Research, Monitoring and Management Project. Ministry of Environment and Tourism, Windhoek, 

Namibia. 

De Pauw, E. (1996). AGRO ECOLOGICAL ZONES OF NAMIBIA - FIRST APPROXIMATION. Technical Report 1. Project 

TCP/NAM/ 6611 (A). FAO, Rome, Italy. 

De Pauw, E. and Coetzee, M.E. (1999). PRODUCTION OF AN AGRO-ECOLOGICAL ZONES MAP OF NAMIBIA (FIRST 

APPROXIMATION). PART I: CONDENSED METHODOLOGY. Agricola 10: 27–31. 

De Pauw, E., Coetzee, M.E., Calitz, A.J., Beukes, H. and Vits, C. (1999). PRODUCTION OF AN AGRO-

ECOLOGICAL ZONES MAP OF NAMIBIA (FIRST APPROXIMATION). PART II: RESULTS. Agricola 10: 33–43. 



12  3 

Di Gregorio, A. and Jansen, L.J.M. (1997). TECHNICAL DOCUMENT ON THE AFRICOVER LAND COVER 

CLASSIFICATION SCHEME. PART I. In: FAO AFRICOVER land cover classification. FAO, Rome, Italy. 

Dobos, E., Daroussin J. and Montanarelle, L. (2005). AN SRTM-BASED PROCEDURE TO DELINEATE SOTER 

TERRAIN UNITS ON 1: 1 AND 1: 5 MILLION SCALES. 55 pages. EUR 21571 EN, Office for Official Publications of 

the European Communities, Luxembourg. 

Dougill, A. and Cox, J. (1995). LAND DEGRADATION AND GRAZING IN THE KALAHARI - NEW ANALYSIS AND 

ALTERNATIVE PERSPECTIVES. Pastoral Development Network Series 38c, Rural Policy and Environment 

Group, Overseas Development Institute, UK.  

Eijkelkamp. (1993). REVISED STANDARD SOIL COLOR CHARTS (commercial reproduction of the original Munsell 

soil color charts). Eijkelkamp Agrisearch Equipment, The Netherlands. 

Ellis, F. (1988). DIE GRONDE VAN DIE KAROO. Unpublished PhD thesis. University of Stellenbosch, 

Stellenbosch, RSA. 

Eriksen, J., Murphy, M.D. and Schnug, E. (1998). THE SOIL SULPHUR CYCLE. p. 39–74. In: Schnug, E. (ed.), 

Sulphur in agroecosystems. Springer. 

Espach, C. (2006). RANGELAND PRODUCTIVITY MODELLING: DEVELOPING AND CUSTOMIZING METHODOLOGIES FOR 

LAND COVER MAPPING IN NAMIBIA. Agricola 16: 20–27. 

Espach, C., Lubbe, L.G. and Ganzin, N. (2006). DETERMINING GRAZING CAPACITY IN NAMIBIA: APPROACHES 

AND METHODOLOGIES. Agricola 16: 28–39. 

FAO. (1989). FAO-ISRIC SOIL DATABASE. World Soil Resources Report 64. FAO, Rome, Italy. 

FAO. (1990). GUIDELINES FOR SOIL DESCRIPTION. 3rd edition (revised). 70 pages. FAO, Rome, Italy. 

FAO. (1995). GLOBAL AND NATIONAL SOILS AND TERRAIN DIGITAL DATABASES – SOTER. PROCEDURES MANUAL. 

Van Engelen, V.W.P and Wen, T.T. (eds.), World Soil Resources Report 74 (Revision 1). UNEP, ISSS, 

ISRIC, FAO, Rome, Italy. 

FAO. (1998a). WORLD REFERENCE BASE FOR SOIL RESOURCES. World Soil Resources Report 84. FAO, Rome, 

Italy. 

FAO. (1998b). TOPSOIL CHARACTERIZATION FOR SUSTAINABLE LAND MANAGEMENT. 71 pages. Draft document. 

Land and Water Development Division, Soil Resources, Management and Conservation Service, FAO, 

Rome, Italy. 

FAO. (2001). LECTURE NOTES ON THE MAJOR SOILS OF THE WORLD. World Soil Resources Report 94. FAO, 

Rome, Italy. 

FAO-UNESCO. (1974). SOIL MAP OF THE WORLD 1 : 5 000 000. VOLUME I LEGEND. FAO, Rome, Italy. 

FAO-UNESCO. (1977). SOIL MAP OF THE WORLD 1 : 5 000 000. VOLUME VI AFRICA. FAO, Rome, Italy. 

FAO-UNESCO-ISRIC. (1988) (reprinted 1990). REVISED LEGEND OF THE FAO-UNESCO SOIL MAP OF THE 

WORLD. Food and Agriculture Organisation of the United Nations (FAO), United Nations Educational, 

Scientific and Cultural Organization (UNESCO), International Soil Reference and Information Centre 

(ISRIC). World Soil Resources Report 60. FAO, Rome, Italy. 

Foth, H.D. (1990). FUNDAMENTALS OF SOIL SCIENCE. 8th edition. John Wiley and Sons, New York, USA. 

Ganssen, R. (1960). DIE BÖDEN SÜDWESTAFRIKAS. Die Erde 91(2): 115–131.  

Ganssen, R. (1963). SÜDWEST-AFRIKA. BÖDEN UND BODENKULTUR. VERSUCH EINER KLIMAPEDOLOGIE WARMER 

TROCKENGEBIETE. 160 pages. Dietrich Reimer, Berlin, Germany. 

Ganssen, R. and Moll, W. (1961). BEITRÄGE ZUR KENNTNIS DER BÖDEN WARM-ARIDER GEBIETE, DARGESTELLT 

AM BEISPIEL SÜDWESTAFRIKA. Z. Pflanzenern. Düngg. Bodenk 94/139(1): 9–25. 



12  4 

Ganzin, N., Coetzee, M., Rothauge, A. and Fotsing, J.-M. (2005). RANGELAND RESOURCES ASSESSMENT 

WITH SATELLITE IMAGERY: AN OPERATIONAL TOOL FOR NATIONAL PLANNING IN NAMIBIA. Geocarto International 

20(3): 33–42. 

Gevers, T.W. (1932a). DIE GEOLOGISCHEN VERHÄLTNISSE DER UMGEBUNG WINDHUKS UNTER BESONDERER 

BERÜCKSICHTIGUNG DER HEISSEN QUELLEN. J. S. W. A. Wiss. Ges. 6: 75–80. 

Gevers, T.W. (1932b). THE HOT SPRINGS OF WINDHOEK, SWA. Transact. Geol. Soc. S. Afr. 35: 1–28. 

Gevers, T.W. (1934). THE GEOLOGY OF THE WINDHOEK DISTRICT IN SOUTH WEST AFRICA. Transact. Geol. Soc. 

S. Afr. 37: 221–251. 

Gevers, T.W. (1942). THE MORPHOLOGY OF THE WINDHOEK DISTRICT, SOUTH WEST AFRICA. S. Afr. Geogr. J. 

24: 45–64. 

Giess, W. (1971). ‘N VOORLOPIGE PLANTEGROEIKAART VAN SUIDWES-AFRIKA. Dinteria 4. Windhoek, Namibia. 

Giess, W. (1998). A PRELIMINARY VEGETATION MAP OF NAMIBIA. 3rd revised edition. Dinteria 4. 112 pages. 

Windhoek, Namibia. 

Goudie, A.S. (1973). DURICRUSTS IN TROPICAL AND SUBTROPICAL LANDSCAPES. Clarendon Press, Oxford, UK. 

Goudie, A.S. (1983). CALCRETE. p. 93–132. In: Goudie, A.S. and Pye, K. (eds.), Chemical sediments and 

geomorphology. Academic Press, London, UK.  

Goudie, A.S. and Thomas, D.S.G. (1985). PANS IN SOUTHERN AFRICA WITH PARTICULAR REFERENCE TO SOUTH 

AFRICA AND ZIMBABWE. Zeitschrift für Geomorphologie 29: 1–19.  

Grϋnert, N. (2000). NAMIBIA – FASCINATION OF GEOLOGY. A TRAVEL HANDBOOK. 176 pages. Klaus Hess 

Publishers, Windhoek, Namibia and Göttingen, Germany. 

Han, F.X. and Singer, A. (2007). BIOGEOCHEMISTRY OF TRACE ELEMENTS IN ARID ENVIRONMENTS. 366 pages. 

Springer.  

Hartemink, A.E. and Hunting, J. (2008). LAND COVER, EXTENT, AND PROPERTIES OF ARENOSOLS IN SOUTHERN 

AFRICA. Arid Land Research and Management 22: 134–147. 

Hegenberger, W. (1993). STRATIGRAPHY AND SEDIMENTOLOGY OF THE LATE PRECAMBRIAN WITVLEI AND NAMA 

GROUPS, EAST OF WINDHOEK. Memoir 17. Geological Survey of Namibia, Ministry of Mines and Energy, 

Windhoek, Namibia.  

Heine, K. (1982). THE MAIN STAGES OF THE LATE QUATERNARY EVOLUTION OF THE KALAHARI DUNE SYSTEMS IN 

SOUTHERN AFRICA. S. Afr. J. Sci. 48: 374–375. 

Helmke, P.A. (2000). THE CHEMICAL COMPOSITION OF SOILS. p. B3–B24. In: Sumner, M.E. (ed.), Handbook of 

soil science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Hendershot, W.H., Lalande, H. and Duquette, M. (1993). SOIL REACTION AND EXCHANGEABLE ACIDITY. p. 

141–145. In: Carter, M.R. (ed.), Soil sampling and methods of analysis. Canadian Society of Soil Science 

and Lewis Publishers.  

Hoffmann, K.H. (1983). LITHOSTRATIGRAPHY AND FACIES OF THE SWAKOP GROUP OF THE SOUTHERN DAMARA 

BELT, SWA/NAMIBIA. In: Miller, R. McG. (ed.), Evolution of the Damara Orogen of South West Africa/ 

Namibia.Geological Society of South Africa Special Publication 11: 43–63. 

Hoffmann, K.H. (1989). NEW ASPECTS OF LITHOSTRATIGRAPHIC SUBDIVISION AND CORRELATION OF LATE 

PROTEROZOIC TO EARLY CAMBRIAN ROCKS OF THE SOUTHERN DAMARA BELT AND THEIR CORRELATION WITH THE 

CENTRAL AND NORTHERN DAMARA BELT AND THE GARIEP BELT. Communs geol. Surv. Namibia 5: 59–67. 

Horsthemke, O. (2000). COMBATING INTRUDER BUSH – THE FINANCIAL DECISION. Doc 021/00. Namibia 

Agricultural Union, Windhoek, Namibia. 



12  5 

Howe, P., Heath, M. and Dobson, S. (2004). MANGANESE AND ITS COMPOUNDS: ENVIRONMENTAL ASPECTS. 63 

pages. World Health Organization, United Nations Environmental Programme, International Labour 

Organisation, International Program on Chemical Safety, Inter-Organization Programme for the Sound 

Management of Chemicals.  

ICC, MAWRD, AECI. (2000). PROJECT TO SUPPORT THE AGRO-ECOLOGICAL ZONING PROGRAMME (AEZ) IN 

NAMIBIA. Main Report 243 pages, Annexes 224 pages, 79 maps. Institut Cartogràfic de Catalunya (ICC), 

Namibian Ministry of Agriculture Water and Rural Development (MAWRD), Spanish Agency for 

International Cooperation (AECI). Windhoek, Namibia. 

IDC. (2005). STUDY ON LAND PRODUCTIVITY AND ECONOMIC FARMING UNITS FOR THE MINISTRY OF AGRICULTURE, 

WATER AND FORESTRY. International Development Consultancy (IDC), in cooperation with Deutsche 

Gesellschaft für Technische Zusammenarbeit GmbH (GTZ). Windhoek, Namibia.  

ISRIC. (1991). THE SOTER MANUAL. PROCEDURES FOR SMALL SCALE DIGITAL MAP AND DATABASE COMPILATION 

OF SOIL AND TERRAIN CONDITIONS. 92 pages. Van Engelen, V.W.P. and Pulles, J.H.M. (eds.). Working 

paper and preprint 91/3, International Soil Reference and Information Centre, Wageningen, The 

Netherlands. 

ISRIC. (1993). GLOBAL AND NATIONAL SOILS AND TERRAIN DATABASES (SOTER): PROCEDURES MANUAL. UNEP-

ISSS-ISRIC-FAO. International Soil Reference and Information Centre, Wageningen, The Netherlands. 

ISSS Working Group RB. (1998). WORLD REFERENCE BASE FOR SOIL RESOURCES: INTRODUCTION. Deckers, 

J.A., Nachtergaele, F.O. and Spaargaren, O.C. (eds). 1st edition. ISSS-ISRIC-FAO. KULeuven Academic 

Press, Acco, Leuven, Belgium. 

Jenness, J.S. (2004a). CALCULATING LANDSCAPE SURFACE AREA FROM DIGITAL ELEVATION MODELS. Wildlife 

Society Bulletin 32(3): 829–839.  

Jenny, H. (1941). CALCIUM IN THE SOIL: III. PEDOLOGICAL RELATIONS. Soil Sci. Soc. Am. Proc. 6: 27–35. 

Jenny, H. (1994). FACTORS OF SOIL FORMATION: A SYSTEM OF QUANTITATIVE PEDOLOGY. 281 pages. Courier 

Dover Publications. 

Joubert, D.F., Rothauge, A. and Smit, G.N. (2008). A CONCEPTUAL MODEL OF VEGETATION DYNAMICS IN THE 

SEMIARID HIGHLAND SAVANNA OF NAMIBIA, WITH PARTICULAR REFERENCE TO BUSH THICKENING BY ACACIA 

MELLIFERA. Journal of Arid Environments 72(12): 2201–2210. 

Kasch, K.W. (1983a). REGIONAL P-T VARIATIONS IN THE DAMARA OROGEN WITH PARTICULAR REFERENCE TO 

EARLY HIGH-PRESSURE METAMORPHISM ALONG THE SOUTHERN MARGIN. In: Miller, R. McG. (ed.), Evolution of 

the Damara Orogen of South West Africa / Namibia. Geological Society of South Africa Special 

Publication 11: 243–253. 

Kasch, K.W. (1983b). CONTINENTAL COLLISION, SUTURE PROGRADATION AND THERMAL RELAXATION: A PLATE 

TECTONIC MODEL FOR THE DAMARA OROGEN IN CENTRAL NAMIBIA. In: Miller, R. McG. (ed.), Evolution of the 

Damara Orogen of South West Africa/ Namibia. Geological Society of South Africa Special Publication 

11: 73–80. 

Kasch, K.W. (1986). DELAMINATION AND SUTURE PROGRADATION IN THE SOUTHERN DAMARA OROGEN OF 

CENTRAL SOUTH WEST AFRICA/NAMIBIA. South African Journal of Geology 89: 215–222. 

Kasch, K.W. (1988). LITHOSTRATIGRAPHY AND STRUCTURAL GEOLOGY OF THE UPPER SWAKOP RIVER AREA EAST 

OF OKAHANDJA, SWA / NAMIBIA. Communications of the Geological Survey of South West Africa/Namibia 

4: 59–66. 

 



12  6 

Keller, G. and Warrack, B. (1997). STATISTICS FOR MANAGEMENT AND ECONOMICS. 4th edition. Duxbury Press, 

Pacific Grove, USA. 

Kellner, K. (1986). ‘N PLANTEKOLOGIESE STUDIE VAN DIE DAAN VILJOEN-WILDTUIN EN GEDEELTES VAN DIE PLASE 

CLARATAL EN NEUDAMM IN DIE HOOGLANDSAVANNA, SWA. 150 pages. MSc-thesis, Potchefstroom University 

for Christian Higher Education, South Africa.  

Kempf, J. (1994). PROBLEME DER LAND-DEGRADATION IN NAMIBIA. AUSMASS, URSACHEN UND 

WIRKUNGSMUSTER. 270 pages. Würzburger Geographisch Manuskripte 31, Würzburg, Germany.  

Kempf, J. (1999a). PEDO-GEOMORPHOLOGICAL STUDIES IN NAMIBIA. In: Focus Africa. Abstracts of the Third 

Biennial International Conference of the Society of South African Geographers, Windhoek, 5–9 July 1999: 

39–40. 

Kempf, J. (1999b). GEOMORPHOLOGICAL SIGNIFICANCE OF PEDOLOGICAL DEVELOPMENT IN CENTRAL NAMIBIA. 

[Poster] INQUA XV, Durban South Africa. 

Kempf, J. (1999c). ZUR GEOMORPHOGENESE UND PEDOGENESE ZENTRAL-NAMIBIAS. PhD thesis. Würzburger 

Geographisch Manuskripte. Würzburg, Germany. 

Kempf, J. 2008. PERS. COMM. University of Würzburg, Germany. 

Killick, A.M. (2000). THE MATCHLESS BELT AND ASSOCIATED SULPHIDE MINERAL DEPOSITS, DAMARA OROGEN, 

NAMIBIA. Communs geol. Surv. Namibia 12: 73–80. 

King, L.C. (1967). SOUTH AFRICAN SCENERY. A TEXTBOOK OF GEOMORPHOLOGY. 3rd edition – revised. 308 

pages. Oliver and Boyd, Edinburgh, UK.  

King, L.C. (1978). THE GEOMORPHOLOGY OF CENTRAL AND SOUTHERN AFRICA. p. 1–17. In: Werger, M. J. A. 

(ed.).  

Klaassen, E.S. and Craven, P. (2003). CHECKLIST OF GRASSES IN NAMIBIA. 130 pages. Southern African 

Botanical Diversity Network Report No. 20. SABONET, Pretoria, RSA and Windhoek, Namibia.  

 Köppen, W. (1936). DAS GEOGRAPHISCHE SYSTEM DER KLIMATE. Handbuch der Klimatologie, Bd. 1, Teil C. 

Kotze, E. and Du Preez, C.C. (2008). INFLUENCE OF LONG-TERM WHEAT RESIDUE MANAGEMENT ON ACIDITY AND 

SOME MACRONUTRIENTS IN AN AVALON SOIL. S. Afr. J. Plant Soil 25(1): 14–21. 

Kukla, P.A. (1992). TECTONICS AND SEDIMENTATION OF A LATE PROTEROZOIC DAMARAN CONVERGENT 

CONTINENTAL MARGIN, KHOMAS HOCHLAND, CENTRAL NAMIBIA. 95 pages. Memoirs of the Geological Survey 

of Namibia No 12. 

Kutuahupira J.T. and Mouton, H.D. (2006). SOIL SURVEY UNDER THE PILOT PROJECT ‘QUANTIFICATION OF LAND 

PRODUCTION POTENTIAL’. Unpublished report of the AEZ Programme, Ministry of Agriculture, Water and 

Forestry, Windhoek, Namibia.  

Kutuahupira, J.T., Mouton, H.D. and Beukes, H.A. (2003). SOIL SURVEY OF OTJINENE, EPUKIRO, GAM AND 

OKAKARARA. Report prepared for the Ministry of Agriculture, Water and Forestry and the Desert Research 

Foundation of Namibia, Windhoek, Namibia. 

Kutuahupira, J,T., Mouton, H.G. and Coetzee, M.E. (2001a). SOIL SURVEY AT MAHENENE RESEARCH 

STATION. Agricola 12: 59–66.  

Kutuahupira, J,T., Mouton, H.G. and Coetzee, M.E. (2001b). SOIL SURVEY OF SONOP RESEARCH STATION. 

Agricola 12: 67–72.  

Lal, R. (2006). ENCYCLOPEDIA OF SOIL SCIENCE. 1600 pages. CRC Press. 

Lancaster, I.N. (1978a). THE PANS OF SOUTHERN KALAHARI, BOTSWANA. Geo. J. 144: 81–98. 

 



12  7 

Lancaster, I.N. (1978b). COMPOSITION AND FORMATION OF SOUTHERN KALAHARI PAN MARGIN DUNES. Zeitschrift 

für Gemorphologie, NF 22: 148–169. 

Lancaster, I.N. (1986). PANS IN THE SOUTHWESTERN KALAHARI: A PRELIMINARY REPORT. Palaeocology of Africa 

17: 59–67. 

Leigh, G. J. (ed.), Favre, H.A. and Metanomski, W.V. (1998). PRINCIPLES OF CHEMICAL NOMENCLATURE: A 

GUIDE TO IUPAC RECOMMENDATIONS. Blackwell Science Ltd., Oxford, UK. 

Le Roux, P.A.L., Ellis, F., Merryweather, F.R., Schoeman, J.L., Snyman, K., Van Deventer, P.W. and 
Verster, E. (1999). RIGLYNE VIR KARTERING EN INTERPRETASIE VAN DIE GRONDE VAN SUID-AFRIKA. 

Leser, H. (1971). LANDSCHAFTSÖKOLOGISCHE STUDIEN IM KALAHARISANDGEBIET UM AUOB UND NOSSOB 

(ÖSTLICHES SÜDWESTAFRIKA). 243 pp mit 96 Abbildungen. Franz Steiner Verlag, Wiesbaden, Germany. 

Leser, H. (1982). NAMIBIA. LÄNDERPROFILE – GEOGRAPHISCHE STRUKTUREN, DATEN, ENTWICKLUNGEN. 259 

pages. Ernst Klett, Stuttgart, Germany. 

Loxton, Venn and Associates. (1971). CONSOLIDATED REPORT ON RECONNAISSANCE SURVEYS OF THE SOILS 

OF NORTHERN AND CENTRAL SOUTH WEST AFRICA IN TERMS OF THEIR POTENTIAL FOR IRRIGATION. Report for 

the Department of Water Affairs, Windhoek, Namibia. 

Lubbe, L.G. (2005). TOWARDS AN UPDATED CARRYING CAPACITY MAP FOR NAMIBIA: A REVIEW OF THE 

METHODOLOGIES CURRENTLY USED TO DETERMINE CARRYING CAPACITY IN NAMIBIA. Agricola 15: 33–39.  

Lubbe, L.G. (2006). PERS. COMM. Chief Agricultural Researcher: Subdivision Pasture Science, Ministry of 

Agriculture, Water and Forestry, Windhoek, Namibia. 

Macvicar, C.N., De Villiers, J.M., Loxton, R.F., Verster, E., Lambrechts, J.J.N., Merryweather, F.R., Le 
Roux, J., Van Rooyen, T.H. and Harmse, J.H. von M. (1977). SOIL CLASSIFICATION. A BINOMIAL SYSTEM 

FOR SOUTH AFRICA. 150 pages. Department of Agricultural Development, Pretoria, RSA.  

Malavolta, E. (1985). POTASSIUM STATUS OF TROPICAL AND SUBTROPICAL REGION SOILS. p. 163–200. In: 

Munson, R.E. (ed.), Potassium in agriculture. American Society of Agronomy, Madison, WI. 

Mandelbrot, B.B. (1983). THE FRACTAL GEOMETRY OF NATURE. W. H. Freeman and Company, New York, 

USA.  

Materechera, S.A., Mandiringana, O.T. and Mbokodi, P.M. (1998). ORGANIC MATTER, PH AND NUTRIENT 

DISTRIBUTION IN SOIL LAYERS OF A SAVANNA THORNVELD SUBJECTED TO DIFFERENT BURNING FREQUENCIES AT 

ALICE IN THE EASTERN CAPE. S. Afr. J. Plant Soil 15(3): 109–115. 

MAWRD. (2000). QUALITY MANUAL. STANDARD OPERATING PROCEDURES OF THE AGRICULTURAL LABORATORY. 

Internal document, Ministry of Agriculture, Water and Rural Development, Windhoek, Namibia. 

Mayland, H.F. and Wilkinson, S.R. (1989). SOIL FACTORS AFFECTING MAGNESIUM AVAILABILITY IN PLANT-

ANIMAL SYSTEMS: A REVIEW. J Anim Sci 67: 3437–3444. 

McCarthy, T. and Rubidge, B. (2005). THE STORY OF EARTH AND LIFE. A SOUTHERN AFRICAN, PERSPECTIVE ON 

A 4.6-BILLION-YEAR JOURNEY. 333 pages. Struik Publishers, Cape Town, RSA. 

Medinski, T. (2007). SOIL CHEMICAL AND PHYSICAL PROPERTIES, INFILTRABILITY AND PLANT RICHNESS IN ARID 

SOUTH-WEST AFRICA. M.Sc. dissertation, University of Stellenbosch, Stellenbosch, RSA. 

Mendelsohn, J., Jarvis, A. Roberts, C. and Robertson, T. (2002). ATLAS OF NAMIBIA. A PORTRAIT OF THE 

LAND AND ITS PEOPLE. 200 pages. Ministry of Environment and Tourism, Namibia and David Philip 

Publishers, Cape Town, RSA. 

Mengel, K. and Kirby, E.A. (1987). PRINCIPLES OF PLANT NUTRITION. 306 pages. International Potash 

Institute. Worblaufen-Bern, Switzerland.  



12  8 

Mengel, K. and Kirkby, E.A. (eds.), Kosegarten, H. and Appel, T. (2001). PRINCIPLES OF PLANT NUTRITION. 

849 pages. Springer. 

Metson, A.J. (1974). MAGNESIUM IN NEW ZEALAND SOILS. I. SOME FACTORS GOVERNING THE AVAILABILITY OF 

SOIL MAGNESIUM: A REVIEW. NZ J. Exp. Agric. 2: 277–319. 

Miller, R. McG. (1983). THE PAN-AFRICAN DAMARA OROGEN OF SOUTH WEST AFRICA/NAMIBIA. In: Miller, R. 

McG. (Ed.), Evolution of the Damara Orogen of South West Africa/Namibia. Spec. Publ. Geol. Soc. S. Afr. 

11: 431–414. 

Miller, W.P. and Miller, D.M. (1987). A MICRO-PIPETTE METHOD FOR SOIL MECHANICAL ANALYSIS. Commun. Soil 

Sci. Plant Anal. 18: 1–15. 

Mokwunye, A.U. and Melsted, S.W. (1972). MAGNESIUM FORMS IN SELECTED TEMPERATE AND TROPICAL SOILS. 

Soil Sci. Soc. Am. J. 36: 762–764. 

Monteith J.L. (1972). SOLAR RADIATION AND PRODUCTIVITY IN THE TROPICAL ECOSYSTEMS. J. Appl. Ecol. 9: 

744–766. 

Morris, C.D., Hardy, M.B. and Bartholomew, P.E. (1999). PRINCIPLES OF MANAGING VELD – STOCKING RATE. 

p186–193. In: Tainton, N.M. (ed.), Veld management in South Africa. University of Natal Press, 

Pietermaritzburg, RSA.  

Mortvedt, J.J. (2000). BIOAVAILABILITY OF MICRONUTRIENTS. p. D71–D88. In: Sumner, M.E. (ed.), Handbook 

of soil science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Mosweu, S. (2008). SOIL RESOURCES DISTRIBUTION, WOODY PLANT PROPERTIES AND LAND USE IN A LUNETTE 

DUNE-PAN SYSTEM IN KALAHARI, BOTSWANA. Scientific Research and Essay 3(9): 242–256. 

Müller, M.A.N. (1983). GRASSE VAN SUIDWES-AFRIKA/NAMIBIË. Direktoraat Landbou en Bosbou, Departement 

Landbou en Natuurbewaring. Windhoek, Namibia. 

Mundy, G.N. (1984). EFFECTS OF POTASSIUM AND SODIUM APPLICATION TO SOIL ON GROWTH AND CATION 

ACCUMULATION OF HERBAGE. Australian Journal of Agricultural Research 35(1): 85–97. 

Murphy, J. and Riley, J.P. (1962). A MODIFIED SINGLE SOLUTION METHOD FOR THE DETERMINATION OF 

PHOSPHATE IN NATURAL WATERS. Anal. Chim. Acta 27: 31–36. 

Nash, D.J. (1995): STRUCTURAL CONTROL AND DEEP-WEATHERING IN THE EVOLUTION OF THE DRY VALLEY 

SYSTEMS OF THE KALAHARI, CENTRAL SOUTHERN AFRICA. Africa Geoscience Review 2: 9–23. 

Nash, D.J. (1997). GROUNDWATER AS A GEOMORPHOLOGICAL AGENT IN DRYLANDS. p. 319–348. In: Thomas, 

D.S.G. (ed.), Arid zone geomorphology: process, form, and change in drylands. John Wiley and Sons, 

New York, USA. 

Nash, D.J. and McLaren, S.J. (2003). KALAHARI VALLEY CALCRETES: THEIR NATURE, ORIGINS, AND 

ENVIRONMENTAL SIGNIFICANCE. Quaternary International 111: 3–22. 

Nash, D.J., Shaw, P.A. and Thomas, D.S.G., (1994a). DURICRUSTS DEVELOPMENT AND VALLEY EVOLUTION: 

PROCESS-LANDFORM LINKS IN THE KALAHARI. Earth Surface Processes and Landforms 19: 299–317. 

Nash, D.J., Shaw, P.A. and Thomas, D.S.G. (1994b). TIMESCALES, ENVIRONMENTAL CHANGE AND DRYLAND 

VALLEY DEVELOPMENT. p. 273–286. In: Millington, A.C., and Pye, K. (eds.), Environmental change in 

dryland: biogeographical and geographical, perspectives. John Wiley and Sons, New York, USA. 

Nash, D.J., Shaw, P.A. and Thomas, D.S.G. (1994c). SILICEOUS DURICRUSTS AS PALAEOCLIMATIC 

INDICATORS: EVIDENCE FROM THE KALAHARI DESERT, BOTSWANA. Palaeogeography, Palaeoclimatology, 

Palaeoecology 112: 279–295. 

 



12  9 

Nelson, D.W. and Sommers, L.E. (1982). TOTAL CARBON, ORGANIC CARBON AND ORGANIC MATTER. p. 539–

579. In: Page, A.L. et. al., Methods of soil analysis Part 2. 2nd edition. Agronomy No. 9, American Society 

of Agronomy, Madison, WI, USA. 

Netterberg, F. (1980). GEOLOGY OF SOUTHERN AFRICAN CALCRETES: TERMINOLOGY, DESCRIPTION, 

MACROFEATURES AND CLASSIFICATION. Transactions, Geological Society of South Africa 83: 255–283. 

Non-Affiliated Soil Analysis Work Committee. (1990). HANDBOOK OF STANDARD SOIL TESTING METHODS FOR 

ADVISORY PURPOSES. Soil Science Society of South Africa, Sunnyside, Pretoria, RSA. 

Olsen, S.R. and Dean, L.A. (1965). PHOSPHORUS. p. 1044–1046. In: Black, C. A. (ed.), Methods of soil 

analysis. Agronomy No. 9, American Society of Agronomy, Madison, WI, USA. 

Papadakis, J. (1970a). CLIMATES OF THE WORLD. THEIR CLASSIFICATION, SIMILITUDES, DIFFERENCES AND 

GEOGRAPHIC DISTRIBUTION. Buenos Aires, Argentina. 

Papadakis, J. (1970b). AGRICULTURAL POTENTIALITIES OF THE WORLD CLIMATES. Buenos Aires, Argentina. 

Partridge, T.C. and Maud, R.R. (1987). GEOMORPHIC EVOLUTION OF SOUTHERN AFRICA SINCE THE MESOZOIC. 

S. Afr. J. Geol. 90: 179–208. 

Partridge, T.C. and Maud, R.R. (1988). THE GEOMORPHIC EVOLUTION OF AFRICA: A COMPARATIVE REVIEW. In: 

Moon, B.P. and Dardis, G.F. (eds.), The geomorphology of southern Africa. Southern Book Publishers, 

Pretoria, RSA. 

Petersen, A. (2008). PEDODIVERSITY OF SOUTHERN AFRICAN DRYLANDS. 388 pages. PhD dissertation. 

Hamburger Bodenkundliche Arbeiten. University of Hamburg, Germany. 

Reuter, D.J. and Robinson, J.B. (eds.). (1997). PLANT ANALYSIS – AN INTERPRETATION MANUAL. CSIRO 

Publishing, Collingwood, Australia. 

Rhoades, J.D. (1982). CATION EXCHANGE CAPACITY. p. 149–157. In: Page, A.L. et al. (eds.), Methods of soil 

analysis. Agronomy No. 9. 2nd ed. American Society of Agronomy, Madison, WI, USA. 

Richards, L.A. (ed.). (1954). DIAGNOSIS AND IMPROVEMENT OF SALINE AND ALKALINE SOILS. U.S. Dep. Agric. 

Handbook No. 60. 

Rowell, M.J. (2000a). CHANGING A LABORATORY METHOD: AN EXAMPLE CONCERNING PARTICLE SIZE ANALYSIS. 

Agricola, 11: 61–65. 

Rowell, M.J. (2000b). MEASUREMENT OF SOIL ORGANIC MATTER: A COMPROMISE BETWEEN EFFICACY AND 

ENVIRONMENTAL FRIENDLINESS. Agricola, 11: 66–69.  

Saggar, S. Hedley, M.J. and Phimsarn, S. (1998). DYNAMICS OF SULFUR TRANSFORMATIONS IN GRAZED 

PASTURES. In: Maynard, D.G. (ed.), Sulfur in the environment. 371 pages. CRC Press. 

Saxton, K.E., Rawls, W.J., Romberger, J.S. and Papendick, R.I. (1986). ESTIMATING GENERALIZED SOIL-

WATER CHARACTERISTICS FROM TEXTURE. Soil Sci. Soc. Amer. J. 50(4): 1031–1036. 

Schaetzl, R.J. and Anderson, S. (2005). SOILS: GENESIS AND GEOMORPHOLOGY. 817 pages. Cambridge 

University Press, UK. 

Schneider, G. (2004). THE ROADSIDE GEOLOGY OF NAMIBIA. 294 pages. Gebrüder Borntraeger. Berlin and 

Stuttgart, Germany. 

Scholz, H. (1968a). DIE BÖDEN DER TROCHENEN SAVANNE SÜDWESTAFRIKAS. Zeidschrift für 

Pflanzenernährung und Bodenkunde 120(2): 118–130. 

Scholz, H. (1968b). DIE BÖDEN DER FEUCHTEN SAVANNE SÜDWESTAFRIKAS. Zeidschrift für Pflanzenernährung 

und Bodenkunde 120(2): 209–221. 

 



12  10 

Scholz, H. (1973). SOME TYPICAL SOILS OF SOUTH WEST AFRICA. 6 pages. Lecture Manuscript. 5th 

International Congress of the South African Society for Soil Science in Salisbury/Rhodesia, February 

1972. Windhoek, Namibia.  

Sharpley, A. (2000). PHOSPHORUS AVAILABILITY. p. D18–D38. In: Sumner, M.E. (ed.), Handbook of soil 

science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Shaw, P.A. (1988). LAKES AND PANS. ARID LANDSCAPES. In: Moon, B.P. and Dardis, G.F. (eds.), The 

geomorphology of southern Africa. Southern Book Publishers, Johannesburg, RSA. 

Shaw, P.A. (1997). GEOMORPHOLOGY OF THE WORLD'S ARID ZONES - AFRICA AND EUROPE. In: Thomas, D.S.G. 

(ed.), Arid zone geomorphology: process, form and change in drylands. 2nd edition. John Wiley and 

Sons,. New York, USA.  

Shaw, P.A. and De Vries, J.J. (1988). DURICRUST, GROUNDWATER AND VALLEY DEVELOPMENT IN THE KALAHARI 

OF SOUTH-EAST BOTSWANA. Journal of Arid Environments 14: 245–254. 

Shaw P.A. and Thomas S.G. (1997). PANS, PLAYAS AND SALT LAKES: In: Thomas, DSG (ed.), Arid zone 

geomorphology; process, form and change in drylands. John Wiley and Sons, New York, USA. 

Shoenau, J.J. and Karamanos, R.E. (1993). SOIL SAMPLING AND METHODS OF ANALYSIS. In: Carter, M.E. 

(ed.). Canadian Society of Soil Science, Lewis Publishers. 

Sims, T. (2000). SOIL FERTILITY EVALUATION. p. D113–D153. In: Sumner, M.E. (ed.), Handbook of soil 

science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Sims, J.R. and Haby, V.A. (1971. COLOURIMETRIC DETERMINATION OF SOIL ORGANIC MATTER. Soil Science 

112: 137-141.  

Skopp, J.M. (2000). PHYSICAL PROPERTIES OF PRIMARY PARTICLES. p. A3–A17. In: Sumner, M.E. (ed.), 

Handbook of soil science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Smit, P. (2002).GEO-ECOLOGICAL ANALYSIS OF NAMIBIAN LANDSCAPES INVADED BY PROSOPIS. Unpublished 

report. Windhoek, Namibia. 

Smith, R.A., (1984). THE LITHOSTRATIGRAPHY OF THE KAROO SUPERGROUP IN BOTSWANA. Bulletin of the 

Geological Survey Botswana, vol. 26, 239 pages. 

Soil Classification Working Group. (1991). SOIL CLASSIFICATION – A TAXONOMIC SYSTEM FOR SOUTH AFRICA. 

Memoirs on the Agricultural Natural Resources of South Africa No. 15. Department of Agricultural 

Development, Pretoria, RSA. 

Soil Survey Staff. (1975). SOIL TAXONOMY: A BASIC SYSTEM OF SOIL CLASSIFICATION FOR MAKING AND 

INTERPRETING SOIL SURVEYS. USDA Handbook. 436. US Government Printing Office, Washinmgton, DC, 

USA. 

Soil Survey Staff. (1998). KEYS TO SOIL TAXONOMY. 8th edition. US Government Printing Office, 

Washinmgton, DC, USA. 

Sparks, D.L. (2000). BIOAVAILABILITY OF SOIL POTASSIUM. p. D38–D53. In: Sumner, M.E. (ed.), Handbook of 

soil science. CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA. 

Stevenson, F.J. (1991). ORGANIC MATTER – MICRONUTRIENT REACTIONS IN SOIL. p. 145–186. In: Mortvedt, J.J. 

(ed.), Micronutrients in agriculture. Soil Science Society of America, Madison, WI, USA.  

Stevenson, F.J. (1994). HUMUS CHEMISTRY. 496 pages. 2nd edition. John Wiley and Sons, New York, USA.  

Strohbach, B.J. (2001). VEGETATION SURVEY OF NAMIBIA. Namibia Wissensschaftliche Gesellschaft / Namibia 

Scientific Society Journal 49: 93–124. Windhoek, Namibia.  

 



12  11 

Summerfield, M.A. (1982). DISTRIBUTION, NATURE AND PROBABLE GENESIS OF SILCRETE IN ARID AND SEMI-ARID 

SOUTHERN AFRICA. In: Yaalon, D.H. (ed.), Aridic soils and geomorphic processes. Catena, supplement 1: 

37–56. 

Tate, R.L. (1987). SOIL ORGANIC MATER. 291 pages. John Wiley and Sons, New York, USA. 

Thomas, G.W. (1982). EXCHANGEABLE CATIONS. p. 159–165. In: Page, A.L. et al. (eds.), Methods of soil 

analysis. Agronomy No. 9. 2nd ed. American Society of Agronomy, Madison, WI, USA. 

Thomas, D.S.G. (1988). THE NATURE AND DEPOSITIONAL SETTING OF ARID AND SEMI-ARID KALAHARI SEDIMENTS. 

Southern Afr. Journ. Arid Environ. 14: 17–26.  

Thomas, D.S.G. (ed.). (1997). ARID ZONE GEOMORPHOLOGY: PROCESS, FORM AND CHANGE IN DRYLANDS. 2nd 

edition. John Wiley and Sons, New York, USA. 

Thomas, D.S.G. and Goudie, A. (eds.). (2000). THE DICTIONARY OF PHYSICAL GEOGRAPHY. 3rd edision. 

Blackwell Publishers, Malden, Massachusetts, USA. 

Thomas, D.S.G., Nash, D.J., Shaw, P.A. and Van der Post, C. (1993). PRESENT DAY LUNETTE SEDIMENT 

CYCLING AT WITPAN IN THE ARID SOUTHWESTERN KALAHARI DESERT. Catena, 20: 515–527. 

Thomas, D.S.G. and Shaw, P.A. (1991). THE KALAHARI ENVIRONMENT. Cambridge University Press, 

Cambridge, UK. 

Troeh, F.R. and Thompson, L.M. (2005). SOILS AND SOIL FERTILITY. 489 pages. Blackwell Publishing.  

Trollope, W.S.W., Trollope, L.A. and Bosch, O.J.H. (1990). VELD AND PASTURE MANAGEMENT TERMINOLOGY 

IN SOUTH AFRICA. Die tydskrif van die Weidingsvereniging van Suid-Afrika 7(1): 52–60. 

Tucker, B.M. (1983). BASIC EXCHANGEABLE CATIONS. p. 401–416. In: Soils – An Australian viewpoint. CSIRO 

Division of Soils. CSIRO/Academic Press. Melbourne, Australia. 

University of Stellenbosch (US). (2002). FERTILISERS AND PLANT NUTRITION. Class notes for Soil Science 

244, B.Sc. Agric. Department of Soil Science, Faculty of Agricultural and Forestry Sciences, University of 

Stellenbosch, RSA. 

USDA-SCS Staff. (1972). SOIL SURVEY LABORATORY METHODS AND PROCEDURES FOR COLLECTING 

SOIL SAMPLES. U.S. Gov. Print. Office, Washington, DC, USA.  

Van der Watt, H.H. and Van Rooyen, T.H. (1995). A GLOSSARY OF SOIL SCIENCE. 2nd edition. Soil Science 

Society of South Africa, Pretoria, RSA. 

Van Reeuwijk, L.P. (1992). PROCEDURES FOR SOIL ANALYSIS. 3rd edition. International Soil Reference and 

Information Centre, Wageningen, The Netherlands.  

Van Reeuwijk, L.P. (2002) (ed.). PROCEDURES FOR SOIL ANALYSIS. 6th edition. Tech. Pap. 9, ISRIC, 

Wageningen, The Netherlands. 

Vlek, P.L.G. and Harmsen, K. (1985). THE CHEMISTRY OF MICRONUTRIENTS IN SOIL. In: Vlek, P.L.G., 

Micronutrients in tropical food crop production. 260 pages. Springer. 

Volk, O.H. and Leippert, H. (1971). VEGETATIONSVERHÄLTNISSE IM WINDHOEKER BERGLAND, SWA. J. SWA 

Wiss. Ges. 30: 5–44. 

Walkley, A. and Black, I.A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL 

ORGANIC MATTER AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science 37: 

29–38. 

Watts, N.L. (1980). QUATERNARY PEDOGENIC CALCRETES FROM THE KALAHARI (SOUTHERN AFRICA), MINERALOGY, 

GENESIS, AND DIAGENESIS. Sedimentology 27: 661–686. 

 



12  12 

Webb, J., Whinham, N. and Unwin, R.J. (1990). RESPONSE OF CUT GRASS TO POTASSIUM AND TO THE MINERAL 

SYLVINITE. Journal of the Science of Food and Agriculture, 53(3): 297–312. 

Whitehead, D.C. (2000). NUTRIENT ELEMENTS IN GRASSLAND: SOIL-PLANT-ANIMAL RELATIONSHIPS. CABI 

Publishing, Wallingford, UK. 

Wilkinson, M.J. (1988). ARID LANDSCAPES. In: Moon, B.P. and Dardis, G.F. The geomorphology of southern 

Africa. Southern Book Publishers, Johannesburg, RSA. 

 

SECONDARY AUTHORITIES (QUOTED BY PRIMARY AUTHORITIES) 

Beasom, S.L. (1983). A TECHNIQUE FOR ASSESSING LAND SURFACE RUGGEDNESS. Journal of Wildlife 

Management 47: 1163–1166. Quoted by Jenness (2004). 

Berry, J.K. (2002). USE SURFACE AREA FOR REALISTIC CALCULATIONS. Geoworld 15(9): 20–1. Quoted by 

Jenness, 2004. 

Bowen, H.J.M. (1966). TRACE ELEMENTS IN BIOCHEMISTRY. Academic Press, London, UK. Quoted by Helmke, 

In Sumner, 2000. 

Bradford, G.R., Arkley, R.J., Pratt, P.F. and Blair, F.L. (1967). TOTAL CONTENT OF NINE MINERAL ELEMENTS 

IN FIFTY SELECTED BENCHMARK SOIL PROFILES OF CALIFORNIA. Hilgardia 38: 541–556. Quoted by Whitehead, 

2000. 

Casenave, A. and Valentin, C. (1989). LES ETATS DE SURFACE DE LA ZONE SAHÉLIENNE. INFLUENCE SUR 

L’INFILTRATION. Editions de l’ORSTOM. 229 pages. Paris. Quoted by FAO, 1989b. 

Dampney, P.M.R. and Unwin, R.J. (1993). MORE EFFICIENT AND EFFECTIVE USE OF NPK IN TODAY’S 

CONDITIONS. In: Hopkins, A. and Younie, D. (eds.), Forward with grass into Europe. British Grassland 

Society Occasional Symposium 27: 62–72. British Grassland Society, Reading. Quoted by Whitehead, 

2000. 

Dickson, B. and Beier, P. (2006). QUANTIFYING THE INFLUENCE OF TOPOGRAPHIC POSITION ON COUGAR (PUMA 

CONCOLOR) MOVEMENT IN SOUTHERN CALIFORNIA, USA. Journal of Zoology, Zoological Society of London. 

Quoted by Jenness, 2006. 

Guisan, A., Weiss, S.B. and Weiss, A.D. (1999). GLM VERSUS CCA SPATIAL MODELING OF PLANT SPECIES 

DISTRIBUTION. Plant Ecology 143: 107–122. Kluwer Academic Publishers. Quoted by Jenness, 2006. 

Haynes, R.J. and Swift, R.S. (1984). AMOUNTS AND FORMS OF MICRONUTRIENT CATIONS IN A GROUP OF 

LOESSIAL GRASSLAND SOILS OF NEW ZEALAND. Geoderma 33: 53–62. Quoted by Whitehead, 2000. 

Hobson, R.D. (1972). SURFACE ROUGHNESS IN TOPOGRAPHY: QUANTITATIVE APPROACH. p. 221–245. In: 

Chorley, R.J. (ed.), Spatial analysis in geomorphology. Harper and Row, New York, USA. Quoted by 

Jenness, 2004. 

Hodgson, M.E. (1995). WHAT CELL SIZE DOES THE COMPUTED SLOPE / ASPECT ANGLE REPRESENT? 

Photogrammetric Engineering and Remote Sensing 61: 513–517. Quoted by Jenness, 2004. 

Jenness, J.S. (2000). THE EFFECTS OF FIRE ON MEXICAN SPOTTED OWLS IN ARIZONA AND NEW MEXICO. Thesis, 

Northern Arizona University, Flagstaff, Arizona, USA. Quoted by Jenness, 2004. 



12  13 

Jones, K.B., Heggem, D.T., Wade, T.G., Neale, A.C., Ebert, D.W., Nash, M.S., Mehaffey, M.H., Hermann, 
K.A., Selle, A.R., Augustine, S., Goodman, I.A., Pedersen, J., Bolgrien, D., Viger, J.M., Chiang, D., 
Lin, C.J., Zhong, Y., Baker, J. and Van Remortel, R.D. (2000). ASSESSING LANDSCAPE CONDITIONS 

RELATIVE TO WATER RESOURCES IN THE WESTERN UNITED STATES: A STRATEGIC APPROACH. Environmental 

Monitoring and Assessment 64: 227–245. Quoted by Jenness, 2006 

Lam, N.S.N. and De Cola, L. (1993). FRACTALS IN GEOGRAPHY. PTR Prentice-Hall, Englewood Cliffs, New 

Jersey, USA. Quoted by Jenness, 2004. 

Laurie, S.H. and Manthey, J.A. (1994). THE CHEMISTRY AND ROLE OF METAL ION CHELATION IN PLANT UPTAKE 

PROCESSES. p.165–182. In: Manthey, J.A., Crowley, D.E., Luster, D.G. (eds.), Biochemistry of metal 

micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, USA. Quoted by Whitehead, 2000. 

Lindsey, W.L. (1979). CHEMICAL EQUILIBRIA IN SOILS. Wiley Interscience, New York, NY, USA. Quoted by 

Mortvedt, 2000. 

Lorimer, N.D., Haight, R.G. and Leary, R.A. (1994). THE FRACTAL FOREST: FRACTAL GEOMETRY AND 

APPLICATIONS IN FOREST SCIENCE. United States Department of Agriculture Forest Service, North Central 

Forest Experiment Station, General Technical Report; NC-170. St. Paul, Minnesota, USA. Quoted by 

Jenness, 2004. 

Parker, F.W. and Truog, E. (1920). THE RELATION BETWEEN THE CALCIUM AND THE NITROGEN CONTENT OF 

PLANTS AND THE FUNCTION OF CALCIUM. Soil Sci. 10: 49–56. 

Paul, E.A. and Huang, P.M. (1980). CHEMICAL ASPECTS OF SOIL. p. 69-86. In: Hutzinger, O. (ed.), Handbook 

of environmental chemistry, Vol. 1 Part A. Springer Verlag, Berlin. Quoted by Whitehead, 2000. 

Polidori, L., Chorowicz, J. and Guillande, R. (1991). DESCRIPTION OF TERRAIN AS A FRACTAL SURFACE, AND 

APPLICATION TO DIGITAL ELEVATION MODEL QUALITY ASSESSMENT. Photogrammetric Engineering and Remote 

Sensing 57: 1329–1332. Quoted by Jenness, 2004. 

Scholz, H. (1968c). STUDIEN ÜBER DIE BODENBILDUNG ZWISCHEN REHOBOTH UND WALVIS Bay. Rheinischen 

Friedrich-Wilhelms-Universität, Bonn, Germany. Quoted by FAO-UNESCO, 1977. 

Stevenson, F.J. (1986). CYCLES OF SOIL: CARBON, NITROGEN, PHOSPHORUS, SULFUR, MICRONUTRIENTS. 380 

pages. John Wiley and Sons, New York, USA. Quoted by Whitehead, 2000. 

Thomas, D.S.G. (1984). LATE QUATERNARY ENVIRONMENTAL CHANGE IN CENTRAL SOUTHERN AFRICA WITH 

PARTICULAR REFERENCE TO EXTENSIONS OF THE ARID ZONE. Unpublished DPhil thesis, University of Oxford, 

UK. Quoted by Thomas, 1997. 

Weiss, A. (2001). TOPOGRAPHIC POSITION AND LANDFORMS ANALYSIS. Poster presentation, ESRI User 

Conference, San Diego, CA, USA. Quoted by Jenness, 2006 

 

WEBSITES 

IMA-Europe website: www.ima-eu.org  

Mindat website: www.mindat.org 

Webmineral website: www.webmineral.com 

Hydraulic Properties Calculator website. http://staffweb.wilkes.edu/brian.oram/soil watr.htm. Programming 

and web-realization by R Nelson, based on the work of K.E. Saxton et al, 1986.  

http://www.ima-eu.org
http://www.mindat.org
http://www.webmineral.com
http://staffweb.wilkes.edu/brian.oram/soil


12  14 

SOFTWARE 

AnalystSoft. (2007). STATFI. Statistical analysis program. www.analystsoft. com  

Behrens, T.M. (2005). TEXTURE ANALYSIS AND NEIGHBOURHOOD STATISTICS FOR GRIDS. Script for ArcView 3.2. 

University of Jena, Germany. http://arcscripts.esri.com  

Behrens,T.M. (2005). DEMAT - DEM ANALYSIS TOOL. Script for ArcView 3.2. Institute for Soil Science and 

Soil Conservation, Justus-Liebig-University, Giessen, Germany. http://arcscripts.esri.com  

Definiens Software. (2006). DEFINIENS PROFESSIONAL 5. Image analysis software. Definiens AG, 

Munich, Germany. www.definiens.com  

DeLaune, M. (2003). XTOOLS. Script for ArcView 3.2. Oregon Department of Forestry. 

http://arcscripts.esri.com  

ESRI, Inc. (1999). ARCVIEW 3.2. Including ARCVIEW IMAGE ANALYST, ARCVIEW SPATIAL ANALYST, 

ARCVIEW 3D ANALYST. Geographical information system software. Environmental Systems Research 

Institute, Inc. www.esri.com.  

ESRI, Inc. (2006). ARCGIS 9.2, including ARCMAP 9.2, ARCCATALOGUE 9.2, SPATIAL ANALYST 9.2, 

3D ANALYST 9.2, GEOSTATISTICAL ANALYST 9.2. Geographical information system software. 

Environmental Systems Research Institute, Inc. www.esri.com. 

Ganzin, N. (1999). SUSTAINABLE MANAGEMENT OF ARID RANGELANDS (SMAR) software. 

Global Mapper Software, LLC. (2005). GLOBAL MAPPER version 7.00. Elevation data processing software. 

www.globalmapper.com.  

Hare, T. (2007). GRID PIG updated version 2.6. Script for ArcView 3.2. USGS - Flagstaff, Arizona. 

http://webgis.wr.usgs.gov/gridpig.htm, http://arcscripts.esri.com  

Jenness, J. (2002). SURFACE AREAS AND RATIOS FROM ELEVATION GRID (surfgrids.avx) version 1.2. Script for 

ArcView 3.2. Jenness Enterprises. www.jennessent. com/arcview/surface_areas.htm, 

http://arcscripts.esri.com  

Jenness, J. (2004b). SURFACE TOOLS (surf_tools.avx). Script for ArcView 3.2. Jenness Enterprises. 

www.jennessent.com/arcview/surface_tools.htm, http://arcscripts. esri.com  

Jenness, J. (2006a). GRID TOOLS (Jenness Enterprises), v. 1.7. Script for ArcView 3.2. Jenness Enterprises. 

www.jennessent.com, http://arcscripts.esri.com  

Jenness, J. (2006b). TOPOGRAPHIC POSITION INDEX (TPI) v. 1.3a. Script for ArcView 3.2. Jenness 

Enterprises. www.jennessent.com, http://arcscripts.esri.com  

Leica, LLC. (2006). ERDAS IMAGINE 9.1 PROFESSIONAL. Image processing software. Leica Geosystems 

Geospatial Imaging, LLC. www.erdas.com, http://gi.leica-

eosystems.com/documents/pdf/IMAGINEProfessionalDescription.pdf  

Magadzire, T.T. (2006). BATCH GRID TOOLBOX. Script for ArcView 3.2. USGS/ FEWSNET. 

http://arcscripts.esri.com  

McVay, K.R. (1999). GRID PROJECTOR. Script for ArcView 3.2. http://arcscripts.esri.com  

Microsoft Corporation. (2003). MICROSOFT OFFICE PROFESSIONAL EDITION 2003. www.microsoft.com  

Patterson, W. (2004). IMAGE-TOOLS VERSION 2.6. Script for ArcView 3.2. Department of Fish and Game. 

http://arcscripts.esri.com  

Petras, I. (2003). BASIN1. Script for ArcView 3.2. Department of Water Affairs and Forestry, Pretoria, South 

Africa. http://arcscripts.esri.com  

http://www.analystsoft.
http://arcscripts.esri.com
http://arcscripts.esri.com
http://www.definiens.com
http://arcscripts.esri.com
http://www.esri.com.
http://www.esri.com.
http://www.globalmapper.com.
http://webgis.wr.usgs.gov/gridpig.htm,
http://arcscripts.esri.com
http://www.jennessent.
http://arcscripts.esri.com
http://www.jennessent.com/arcview/surface_tools.htm,
http://arcscripts.
http://www.jennessent.com,
http://arcscripts.esri.com
http://www.jennessent.com,
http://arcscripts.esri.com
http://www.erdas.com,
http://gi.leica-
http://arcscripts.esri.com
http://arcscripts.esri.com
http://www.microsoft.com
http://arcscripts.esri.com
http://arcscripts.esri.com


12  15 

Raber, G. (1999). IMAGE GEOREFERENCING TOOLS. Script for ArcView 3.2. http: //arcscripts.esri.com  

Saraf, A.K. (2002). GRID ANALYST EXTENSION version 1.1. Script for ArcView 3.2. Department of Earth 

Sciences, University of Roorkee, India. http://arcscripts. esri.com  

Schaub, T. (2004). FEATUREDENSITY. Script for ArcView 3.2. CommEn Space. www.commenspace.org, 

http://arcscripts.esri.com  

Schmidt, F. (2002). TOPOCROP. Script for ArcView 3.2. Precision Agriculture Project. www.preagro.de, 

http://arcscripts.esri.com  

StatSoft, Inc. (2004). STATISTICA data analysis software system version 7. www.statsoft.com.  

Weigel, J. (2002). GRID CONVERTER 2.2. Script for ArcView 3.2. http://arc scripts.esri.com  

Weigel, J. (2005). GRIDMACHINE 6.77. Script for ArcView 3.2. http://arcscripts.esri.com  

 

MAPS AND DIGITAL DATA 

Coetzee, M.E. (2001b). NAMSOTER – A SOTER DATABASE FOR NAMIBIA. Digital database. AEZ Programme, 

Ministry of Agriculture, Water and Rural Development. Windhoek, Namibia. 

Du Pisani, A.L. (2005a). INTERPOLATION OF RAINFALL DATA FROM THE QLPP PILOT AREA. Unpublished data. 

AEZ Programme, Ministry of Agriculture, Water and Forestry. Windhoek, Namibia. 

Du Pisani, A.L. (2005b). INTERPOLATION OF TEMPERATURE DATA FROM THE QLPP PILOT AREA. Unpublished 

data. AEZ Programme, Ministry of Agriculture, Water and Forestry. Windhoek, Namibia. 

DWA. (1992). UPDATED ISOHYETAL RAINFALL MAP FOR NAMIBIA. Unpublished Report No. 11/1/8/H5, Hydrology 

Division, Department of Water Affairs. Windhoek, Namibia. 

FAO. (1991). THE DIGITIZED SOIL MAP OF THE WORLD. World Soil Resources Report 67 (10 diskettes). FAO, 

Rome, Italy. 

FAO. (1996). THE DIGITIZED SOIL MAP OF THE WORLD INCLUDING DERIVED SOIL PROPERTIES. CD-ROM. FAO, 

Rome, Italy. 

FAO. (2003). SOIL AND TERRAIN DATABASE FOR SOUTHERN AFRICA (SOTERSAF). Land and Water Digital Media 

Series 25. ISRIC, FAO. Rome, Italy. 

Geo Business Solutions. (2005). MTC CELLULAR PHONE COVERAGE MAP; NAMPOWER POWER NETWORK  

MAP. Windhoek, Namibia. 

Geological Survey of Namibia. (2008). LITHOLOGY OF WINDHOEK (2216) AND GOBABIS (2218) MAP SHEETS - 

digital data. ArcView Shape format. Windhoek, Namibia. 

MAWF. (2005). NAMIBIAN AGRICULTURAL RESOURCES INFORMATION SYSTEM (NARIS). Geographical 

information system. AEZ Programme, Ministry of Agriculture, Water and Forestry. Windhoek, Namibia. 

Roads Authority. (2004). Roads of Namibia – digital data. ArcView Shape format. Windhoek, Namibia. 

Strohbach, B.J. (2008). UNPUBLISHED VEGETATION DATA. National Botanical Research Institute, Ministry of 

Agriculture, Water and Forestry. Windhoek, Namibia 

Surveyor General. (1972). 2217BA MECKLENBURG. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2217DD BERGZICHT. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

 

http://arcscripts.
http://www.commenspace.org,
http://arcscripts.esri.com
http://www.preagro.de,
http://arcscripts.esri.com
http://www.statsoft.com.
http://arcscripts.esri.com


12  16 

Surveyor General. (1972). 2218AA OZOMBAHEBERG. 1: 50 000 scale topographical map. 2nd ed. 

Government Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218AB OMAKUARA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218AC OMITARA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218AD WITVLEI. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1972). 2218BA KEHORO. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218BB HENNOPSRUST. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218BC MARGARETENTAL. 1: 50 000 scale topographical map. 2nd ed. 

Government Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218BD GOBABIS. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218DA HONITON. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218DB DORINGVELD. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218DC SCHÖNBORN. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1972). 2218DD SPATZENFELD. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1973). 2218CA OKOMBUKA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1973). 2218CB AFGUNS. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1973). 2218CC OTJIMBONDONA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1973). 2218CD NINA. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217AA. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217AB MIDGARD. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217AC. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217AD JG STRIJDOM. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217BB OKAHUA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 



12  17 

Surveyor General. (1976). 2217BC SEEIS. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217BD OTJIVERO. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217CB BISMARCKBERGE. 1: 50 000 scale topographical map. 2nd ed. 

Government Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217CC ARIS. 1: 50 000 scale topographical map. 2nd Ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217CD BRACK. 1: 50 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1976). 2217DA OTJIMUKONA. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217DB OKAPANJE. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1976). 2217DC DORDABIS. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1981). 2218 GOBABIS. 1: 250 000 scale topographical map. 2nd ed. Government Printer, 

Pretoria, RSA. 

Surveyor General. (1983). 2217CA WINDHOEK. 1: 50 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

Surveyor General. (1984). 2216 WINDHOEK. 1: 250 000 scale topographical map. 2nd ed. Government 

Printer, Pretoria, RSA. 

 


	1 Title Page
	2 Declaration
	3 Abstract
	4 Uittreksel
	5 Acknowledgements
	6 Table of Contents
	7 List of Tables
	8 List of Figures
	9 List of Acronyms
	Chapter 1 Introduction
	Chapter 2 Study Area
	Chapter 3 Geomorphology Geology Soils
	Chapter 4 Methodology
	Chapter 5 Spatial Characterisation
	Chapter 6 N P S
	Chapter 7 Bases
	Chapter 8 CEC, Base Saturation and Salinity
	Chapter 9 Fe Mn Cu Zn
	Chapter 10 SOM pH texture
	Chapter 11 Summary and Conclusions
	References

