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Preface 

The three-way interaction between mathemat- 
ics, computers and mathematics education is be- 
coming stronger each year. How schools and univer- 
sities should respond is still an open question. This 
document has been prepared to contribute to the 
debate. The following quotation from the Overview 
chapter states succinctly why this debate is so im- 
portant: 

We are facing a situation in which children 
are taught to do mathematics in ways that 
are very largely outmoded, with at least 80% 
of curriculum time wasted on trying, more or 
less successfully, to develop fluency in skills 
of now limit,ed value. 

The International Commission on Mathemati- 
cal Instruction (ICMI) undertook a study, “The In- 
fluence of Computers and Informatics on Mathe- 
matics and Its Teaching”, which included a con- 
ference in Strasbourg, France in 1985, in which 
UNESCO co-operated. The outcome of the Study 
was a book published by Cambridge University 
Press, bearing the conference title. With the 
quick pace of change of computers, mathemat- 
ics and its teaching, the book’s contents have be- 
come outdated. The development of this new 
document is explained in the Editors’ Foreword. 

The reader will notice that the authors of this 
document are all from Europe and North Amer- 

ica. One might conclude that school uses of com- 
puters are only known in those two regions. This 
is certainly not true. But more abundant finan- 
cial resources have permitted a greater penetration 
of computers in schools and universities in Europe 
and North America than elsewhere. For the situ- 
ation in ‘the rest of the world’, see the reference, 
“An International Perspective”, by Jacobsen in the 
Annotated References. 

Unesco wishes to express its appreciation to the 
editors, Professors Anthony Ralston and Bernard 
Cornu, to the authors for their contributions, to 
Professor Ralston for preparing the final manuscript 
and to Cambridge University Press for giving its 
permission for UNESCO to include in this docu- 
ment some updated contributions from the original 
publication. 

The views expressed in this report are those of 
the editors or the individual authors and not neces- 
sarily those of UNESCO. 

We welcome comments on the contents of this 
document, which should be sent to: Mathemat- 
ics Education Programme Specialist (Science and 
Environmental Education Section) or Mathemat- 
ics and Computing Programme Specialist (Basic 
Sciences Division), UNESCO, Place de Fontenoy, 
75700 Paris, France. 

UNESCO, Paris 



Editors’ Foreword to Second Edition 

In 1985 the International Commission on Math- 
ematical Instruction (ICMI) chose The Influence of 
Computers and Informatics on Mathematics and Its 
Teaching as the topic of the first of a series of stud- 
ies on topics of current interest within mathematics 
education. ICMI could not have chosen a more apt 
and important topic. In the seven years since the 
publication of the first edition of this book, the im- 
portance of calculators and computers has grown 
rapidly and is now the single most important factor 
in creating change in all aspects of mathematics ed- 
ucation. Thus, ICMI with the cooperation of UN- 
ESCO asked us to edit an updated version of the 
original book which would retain the strengths of 
that volume but would also bring the topics in it up 
to date and, as well, incorporate topics which were 
not adequately discussed in the first edition but are 
now of major importance (e.g. symbolic mathemat- 
ical systems, algorithms and algorithmics). 

The conference at Strasbourg in 1985 whose pro- 
ceedings were incorporated in the first edition was 
organized by a Program Committee consisting of R. 
F. Churchhouse (Cardiff), B. Cornu (Grenoble), A. 
P. Ershov (Novosibirsk), A. G. Howson (Southamp- 
ton), J.-P. Kahane (Orsay), J. H. van Lint (Eind- 
hoven), F. Pluvinage (Strasbourg), A. Ralston (Buf- 
falo) and M. Yamaguti (Kyoto). The proceedings 
were edited by A. G. Howson and J.-P. Kahane and 
were published by Cambridge University Press. 

. . . 
111 

For this edition the report of the Strasbourg 
meeting itself has been brought up to date by the 
leaders of the three workshops held at that meeting 
and five of the articles in the first edition have been 
updated for this edition. In addition, the editors 
have solicited four new articles written just for this 
edition. The result, we hope, is a volume which will 
be as well received as was the first edition and which 
will be useful to mathematics educators throughout 
the world. 

Of course, the nature of computer and calcula- 
tor technology is that it changes so rapidly - as do 
its implications for mathematics education - that 
a third edition will no doubt be needed in several 
years. But the current volume gives a fair picture 
of the impact of computers and calculators on math- 
ematics education in 1992. It should, therefore, pro- 
vide a valuable resource for mathematics educators 
who wish to learn about this impact or who wish to 
incorporate the technology into their mathematics 
teaching or their teaching of prospective mathemat- 
ics teachers. 

The editors wish to thank UNESCO for its sup- 
port for this project, particularly Angelo Marzollo 
and Edward Jacobsen. 

This book was produced using TeX at the State 
University of New York at Buffalo. 

Bernard Cornu 
Anthony Ralston 

June 1992 
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AN OVERVIEW 

Hugh Burkhardt 
University of Nottingham, U.K. 

Rosemary Fraser 
University of Nottingham, U.K. 

The challenge 

Where are we going? Where do we want to go? 
Why? How do we know? How may we find out 
more? How do we get it to happen? 

As far as the influence of computers and infor- 
matics on mathematics and the mathematics cur- 
riculum is concerned, these are the central questions 
that this volume, like its predecessor, will address. 

We shall also be concerned with progress in the 
seven years since the original Strasbourg meeting. 
Which aspects have moved quickly and substantially 
towards reasonably firm conclusions? On which ar- 
eas is the situation now little different from then? 
What needs to be done about it? 

A mismatch of timescales is one of the central 
challenges of this field which does not normally oc- 
cur in the processes of change, either within mathe- 
matics itself or in the development of new curricula. 
The pace of change in the technology is much faster 
than has ever been achieved for school curricula; 
typical timescales for significant changes to occur 
are roughly as follows: 

computer technology a few years 
mathematics research 10 - 20 years 
school curricula 5 - 20 years 

Thus we should be aware that when we design new 
curricula to use the power of new technology, we 
shall continually be behind the times. This moving 
target problem is well recognised but needs to be 
addressed at a strategic level in planning change. If 
the new curriculum elements are to be robust and 
widely useful, the curriculum designer cannot as- 
sume a specific level of technological provision and 
sophistication in schools - both will vary widely 
from time to time and from place to place. 

This is important. If each student has a ‘micro’, 
curriculum possibilities open up which are not there 
with one micro per class; even these possibilities de- 
pend on the sophistication of the micro - one line 
of display, a few lines, many lines, graphics, access 
to data - each step is significant. Equally, it is al- 
ready clear that even quite low levels of computer 
provision and sophistication still have enormous ed: 
ucational potential. Is ‘technical restraint’ a virtue, 
or does it impede progress? 

The overall picture 

It may be useful to begin with an overview of 
the present situation in three separate domains of 
activity: 

Doing Mathematics - this is the domain of math- 
ematical activity; in every sphere, from everyday 
uses to research, it has been revolutionised by 
technology. 
Understanding of the Learning and Teaching of 
Mathematics - this domain is concerned with 
the processes of learning and teaching con- 
cepts, skills and strategies in mathematics and 
its applications; it is clear that technology has 
profound implications here, both through the 
changes in doing mathematics and as a potential 
aid to learning and teaching, but these phenom- 
ena are not yet well-understood. 
Mathematics Curricula and Teacher Training - 
both the first two domains have implications for 
curricula, including both materials and teacher 
support; the development of new curricula that 
reflect the changed learning objectives and use 
technology effectively in their realisation is a ma- 
jor task. 
The pattern of change so far is summarised in 

Table 1 on the next page. 
We shall now discuss each of the three domains 

in more detail. 

Changes in ‘doing mathematics’ 

In Domain A we now have a situation in which 
the changes in the way mathematics is done, at ev- 
ery level from the shopkeeper to the research mathe- 
matician and engineer, are moving purposefully for- 
ward with the advances in the technology, and with 
the methods for its utilisation that informatics helps 
to develop. Obviously there is some time lag but, 
at least in comparison with the exploitation within 
mathematical education, there is no serious imped- 
iment to change. The reasons are fairly clear 

l those involved have a clear incentive to use the 
new methods, which give them more power with 
less pain 

l and at relatively modest cost that is more than 
made up for in increased effectiveness. 
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A Doing 
Mathematics 

Where to 
go? Why? 

lots of ideas 
+ well tried 
experience 

How do 
we know? 

many examples 
work well 

How do we 
find out 
more? 

it will happen 
because par- 
ticipants have 
incentives 

How do we 
get it to 
happen? 

it will happen 
because par- 
ticipants have 
incentives 

B Learning 
and Teaching 

lots of ideas + 
a little exper- 
ience growing 
in patches 

many effect- 
ive examples 

systematic 
small-scale 
studies in 
realistic cir- 
cumstances 

+ 
performance 
measures 

more support 
for system- 
atic r & d 

C System 
Change 

very little 
sign; even cal- 
culators not 
integrated 

observation 

enrichment 
packages 

+ 
whole ex- 
perimental 
curricula 

study dynam- 
ics of change 

+ 
model ex- 
periments 
in realis- 
tic circum- 
stances 

Table 1 

This progress is set out in some detail in the 
present volume, not only in the introductory chap- 
ters, but in the contributions of Steen and Stern, 
and to a considerable extent in the other articles. 
We shall therefore review it briefly and in general 
terms - the other chapters bring these generalities 
to life. 

The changes in mathematics pervade the sub- 
ject. The methods of first recourse in many areas 

are now numerical and, particularly, graphical, al- 
lowing an experimental approach with much less ef- 
fort than in the past. Within mathematics most 
areas have been affected: discrete mathematics and 
combinatorics, number theory, algebraic and differ- 
ential equations, finite groups, fractals and chaos, as 
well as all aspects of data analysis - these have all 
been profoundly changed; the papers in this volume 
describe some examples. The role of algorithmics 
is now central (see the chapter by Maurer). But 
equally clear is the effect on other aspects of pure 
mathematics - even the definitions of elegance and 
the status of proof. 

Realistic applications to practical situations 
have suddenly become more accessible as the 
drudgery associated with realistic numbers and 
more realistic models is cut away. No longer is the 
focus on extracting the maximum from the few ana- 
lytic models that are tractable by traditional meth- 
ods. 

Indeed, the role of such models in the future is 
an important issue for both mathematics and the 
curriculum. It seems likely they will continue to be 
centrally important, not as methods of solving prob- 
lems, but as vivid illustrations of important effects. 
A closed algebraic expression displays, for those who 
can read it, the dependence on all the variables in 
the model - something which, if there are many vari- 
ables, can be very difficult to communicate graph- 
ically or numerically. (For example, the expression 
for the response of a damped harmonic oscillator to 
a sinusoidal driving force depends on five variables 
- understanding the phenomenon of resonance from 
numerical solutions alone is not easy). 

Several of the chapters that follow are focussed 
on the mathematical issues. Churchhouse’s review 
ranges over the various fields and aspects of mathe- 
matical activity, looking at the effects of technology 
on the way mathematics is being done. Stern is 
mainly concerned with the impact of computer sci- 
ence rather than technology on the way mathemat- 
ics is done while Steen introduces the perspective 
of the computer as a ‘new mathematical species’. 
Ma,urer addresses what is, perhaps, the central area 
of change - the dominant place of algorithmic think- 
ing and its implications. 

Finally, a word of warning on the student as 
mathematician. Largely because of the imitative 
nature of the current curriculum, it is easy to get 
a quite false picture of students’ capabilities. A ma- 
ture mathematician has command of a range of con- 
cepts and techniques (or knows where and how to 
get such command) and uses them autonomously to 
express and manipulate ideas and relationships to 
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get answers and understanding. There is clear evi- 
dence that, on such criteria, students’ autonomous 
performance is several years at least behind their 
performance on imitative exercises. The calculator 
is a useful resource because teenage students can 
already use arithmetic for a range of purposes; in 
contrast it has been shown, for example, that even 
very bright 17 year-old students may not use algebra 
at all as an autonomous mode of expression, though 
they have had 5 years of success in manipulating 
it (Treilibs et al, 1981); so, for example, the bene- 
fits of a machine that will manipulate in a language 
they do not speak fluently are elusive, and maybe 
illusory. 

The overall effect of these changes is well- 
summarised by Mascarello and Winkelmann, in a 
way that clarifies the challenge to designers of cur- 
riculum: 

“In total, there can be observed a specific 
shift in the spectrum of abilities, from pre- 
cise algorithmic abilities to more complex in- 
terpretations, so to speak from calculation 
to meaning, which in a certain sense is a re- 
versal of the historical evolution. In this pro- 
cess the mathematics to be mastered tends to 
become intellectually more challenging, but 
technically simpler.” 

Changes in mathematics education 

As to the other Domains, B and C, nearly all the 
chapters that follow make suggestions for new cur- 
riculum elements based on these new methods of do- 
ing mathematics; readers will find many of these ar- 
guments stimulating, and even persuasive. Changes 
are surely needed and these suggestions seem better 
grounded than most. 

Nonetheless, it must be recognised that such sug- 
gestions are fundamentally speculative at the level of 
large-scale implementation - by which we mean that 
converting them into a well-developed and tested 
curriculum for the typical teacher and the typical 
student is still a major challenge. This is the task 
of Domains B and C. We can have no reliable idea 
how far any suggestions we put forward will prove 
feasible in any, let alone every, educational system. 
Even if they are implemented reasonably faithfully, 
the full curriculum reality of what occurs will con- 
tain many surprising side effects; more likely, the 
translation from an idea to a small scale pilot exper- 
iment with exceptional teachers and facilities, and 
then to large scale reality will involve critical disi 
tortions of the aims of the exercise which may even, 
in the end, call into quest.ion its curriculum value. 

Thus rigour and vigilance are needed in this devel- 
opment process. 

In case there are any who believe that we exag- 
gerate the dangers, let me draw attention to a few 
famous examples of intended innovations in mathe- 
matical education which turned into something en- 
tirely different: 

The splendid Bourbaki enterprise was 
launched (believe it or not (Weil, 1979)) to 
establish a firmer foundation for mathemat- 
ical education; few now see that as among 
the positive contributions it has made, while 
many are concerned at the effects of overem- 
phasis on formalism that has arisen from this 
approach in school mathematical education. 

Smalltalk was originally devised by the Xe- 
rox Learning Research Group largely to pro- 
duce a medium, the Dynabook, that would 
be ‘as natural to a child as pencil and pa- 
per’ (Goldberg, 1978); what has emerged is 
perhaps the most sophisticated graphics ori- 
entated data management system so far - 
an important achievement, but a very dif- 
ferent thing. (The Learning Research Group 
was renamed the Software Concepts Group.) 
Smalltalk has not, at any rate, done any 
harm to the school curriculum, and among 
its offspring, the Macintosh microcomputer, 
may yet contribute notably in a quite differ- 
ent way. 

Our final example must be the reform move- 
ment in mathematical education of 39 years 
ago - ‘new math ‘, ‘modern mathematics’ and 
so on. Comparison of the initial aims agreed 
at conferences, the pilot schemes in a few ex- 
ceptional schools, and the classroom reality 
of today shows the contrasts vividly. For ex- 
ample, in England the applications of math- 
ematics occupied a central place in the origi- 
nal design; in most of the major courses that 
emerged applications were mentioned only 
to illustrate techniques with no serious at- 
tention to the practical situations involved. 
Equally, new mathematical concepts were in- 
troduced but often with none of the payoff 
that motivated their inclusion - because the 
serious examples originally envisaged proved 
too difficult for most students, and were re- 
placed with trivial ones. The second wave of 
reform over the last decade has been rather 
more successful in remedying some of these 
defects, but has left others untouched. 

These are cautionary exa.mples to bear in mind 

._ -- v-e- .+““Aeaw ..--.-- ._ .-- -. - .__--_ _~-_-... ...-~- 
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when looking at new possibilities; it is not easy to re- 
alise the potential vitality of a field of mathematics 
in large-scale curriculum implementation. (One can 
easily imagine a vivid ‘commercial’ for the impor- 
tance and excitement of a ‘new’ field like calculus; 
compare it with the reality of a typical introductory 
American college text.) That does not mean that 
vivid, effective implementation cannot be achieved 
- but success requires high-quality ‘engineering’ - 
and some poetry as well as the facts. (We have ar- 
gued that, if the English language curriculum were 
like most mathematics curricula, the readings would 
be drawn entirely from the telephone directory.) 

On the learning and teaching of mathematics 

Progress in Domain B continues at a steady pace 
but, we would suggest, far too slowly to provide a 
sound comprehensive underpinning for the new cur- 
ricula that we need now. Some of this progress is 
described in later chapters in this volume. These 
developments and the associated research represent 
deeper insights into the way technology can affect 
and enhance learning and teaching, together with 
some elements of curriculum that can be and have 
been used successfully in classrooms. They have 
rarely been tested on a large scale and thus repre- 
sent only firm steps along the road towards the new 
curricula (Domain C). Let us begin by looking at 
some general effects in technology-related change. 

In looking at curriculum reform, the first thing 
to note is the scale of it - perhaps 80% of current 
school classroom time is devoted to seeking fluency 
in a range of pencil-and-paper technical skills, all of 
which are now best done on computers of one kind 
or another. This we call The Big Hole. 

Secondly, the swing towards teaching mathemat- 
ics that is “intellectually more challenging, but tech- 
nically simpler” takes both teachers and curriculum 
designers into areas outside the basis of their ex- 
perience - thus such curriculum design should be 
essentially a research-baaed exercise, if it is to work 
well. It relates not only to content but to learning 
and teaching style. Everywhere the curriculum is 
still based on student imitation (e.g. HMI, 1977), 
dominated by: 

teacher explanation + 
illustrative examples + 

imitative exercises. 
This can lead to rapid apparent student progress, 
but much research evidence (see Bell et al, 1983) 
shows that the skills acquired are not reliably re- 
tained by most students, nor are they transferable 
- particularly to non-routine problems in the world 

outside the classroom. Fig. 1, for example, shows 
pre-, post- and delayed-test results of individual stu- 
dents from comparable groups taught by two differ- 
ent methods. The first ‘positive only’ method (a) is 
traditional explanation and reinforcement by prac- 
tice; the second ‘conflict’ method (b) is based on 
students’ discussion and ‘debugging’ of errors gen- 
erated by them from their own misconceptions. The 
greatly improved long-term learning is stable across 
different topics (Bell and Basford 1989). 
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To achieve the flexible competence of under- 
standing that the world requires, the pattern of 
classroom activities’has to be widened to include 
some which give more autonomy, more initiative to 
the students. It is encouraging that the microcom- 
puter has shown great promise in supporting such 
activities. 

Thirdly, change is often threatening. Technology 
appears to reduce this threat, partly because it pro- 
duces an obviously new situation and thus cannot 
imply criticism of the teachers’ existing modes of op- 
eration. This more than compensates for the extra 
barrier of learning to use the equipment - provided 
it is reliable. Further, recent work on the teaching 
of non-routine problem solving of a wide variety of 
kinds shows the importance of the strategic skills of 
comprehension, modelling, interpretation and eval- 
uation -just the skills that are brought to the front 
of our attention by the computer. 

In summary, the two great springs for change in 
mathematical education in the past and the next 
decade are technology and autonomy. Fortunately, 
they can help each other, though there is much to 
be learnt as to how best it might be done. 

However, conversely, we believe that it may be 
important not to discount too easily the value of tra- 
ditional skills, remembering that the current genera- 
tion of innovators have the ‘traditional’background, 
as well as newly acquired skills with computers. Al- 
most certainly, much of what was learnt is useless 
but we need to check for losses as well as gains in 
a curriculum change. Mental facility with numbers, 
graphs and expressions has always been an asset. 
What is its status now? 

Exploratory investigation as a key element in 
the curriculum has been a major objective in En- 
glish mathematical education for at least 30 years 
- the Association of Teachers of Mathematics was 
founded largely to promote it; in the USA, we know 
that it has been a focus since Polya (1945) and offi- 
cially central at least for a decade, since the NCTM 
Yearbook on problem solving. However, despite 
strenuous efforts it has not become a regular part 
of the curriculum anywhere except in a tiny minor- 
ity (less that 1 percent) of classrooms. We have a lot 
of evidence and some understanding of how difficult 
such activities are for the typical teacher to handle 
in the classroom; appropriate support must be de- 
veloped. Everyone rightly emphasises the curricu- 
lum opportunities for exploration, for ‘experimental 
mathematics’, that the computer provides; however, 
the development of such an investigative element in 
the curriculum will succeed only if it confronts the 
difficulties such activities present for teachers. 

Equally, the challenge to explore must be at a 
level matched to the student - if the aim is to ‘dis- 
cover’ in an hour or so some important mathemat- 
ical achievement that took a genius half-a-lifetime 
to create, the exploration will have to be so closely 
guided as to be essentially fake; on the other hand, 
interesting, though less global, problems which stu- 
dents can tackle autonomously on their own re- 
sources, do exist at every level. For example, pro- 
gramming projects, at school and university, have 
shown some of the possibilities, and the difficulties 
for the teacher. A creative and systematic program 
of detailed empirical development will be essential if 
exploration is not to degenerate in most classrooms 
into that closely guided ‘discovery learning’, which 
is really an alternative style of explanation. The 
computer can, of course, help. computer can, of course, help. 

I \ ILLUSTRATIONS OF / 
APPLICATIONS 

tlATHEllATICAL tlATHEllATICAL 

TOPIC 

.- .- 

HATHEHATICAL HATHEHATICAL 
AND OTHER SKILLS 

I 
Figure 2 Figure 2 

The emphasis on problem solving encourages ap- 
plications of mathematics - even some with real 
data. It is important to note two different kinds 
of application, the illustrative and the situational 
(see Fig. 2, from Swan 1990). In illustrative appli- 
cations the focus is really on the particular mathe- 
matical topic; the applications are there in support - 
to help conceptual understanding through concrete 
illustration, to show how mathematics can be ap- 
plied, and to provide practice. In realistic, practi- 
cal situations from outside mathematics the posi- 
tion is quite different - in principle, any or all of the 
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mathematics you know could help you to tackle the 
problem, along with other knowledge and strategic 
skills. Both these kinds of application are needed 
- but the student must know which ‘game’ is being 
played, because the best tactics are quite different. 
For illustrative applications the aim is to show how 
much mathematics you know; for situations, it is 
to provide the most powerful understanding of the 
practical problem. 

Finally, assessment - in arriving at a curriculum, 
assessment can be very helpful in clarifying cur- 
riculum definitions, particularly by example. Whal 
range of types of tasks do we want our students to 
be able to do? It can be argued persuasively that a 
task-defined curriculum has great advantages over a 
‘scope and sequence’ approach, though the two are 
complementary - one being synthetic and the other 
analytic. 

The chapters that follow range widely over this 
field, complementing analysis with the essential 
vivid exemplification which we have had to exclude 
from this overview. Ralston’s review takes a look 
without prior assumptions (‘zero-based’) at what 
the curriculum should contain. The criteria include 
value to the student and, related, the way mathe- 
matics is done nowadays together with lessons from 
the psychology of learning. Cornu’s review covers a 
wide range of roles for the computer in enhancing 
teaching and learning - Computer-assisted Learn- 
ing is as diverse as Paper-assisted Learning. The 
remaining chapters that follow present a kaleid* 
scope of key aspects of computer use in learning and 
teaching. Tall and West explore and illustrate the 
visual aspects of learning and the contributions that 
computer graphics can make. Hodgson and Muller 
look at the other major shift enabled by the tech- 
nology - automated symbolic manipulation. Graf, 
Fraser, Klingen, Stewart and Winkelmann take a 
broader look at the various modes of use of tech- 
nology in school and the potential of each in the 
elementary school; both computers and calculators 
are discussed. Steen takes a similar approach to 
college mathematics - where the issues range from 
the place of discrete mathematics to computer lit- 
eracy for all students. Seidman and Rice, and Mas- 
care110 and Winkelmann look in a most stimulating 
and practical way at a related central problem - the 
integration of discrete and continuous mathematics 
within a college course. 

All of these show what has been achieved in Do- 
main B - in realising, on a pilot scale, something 
of the enormous potential of computers and infor- 
matics in enhancing the learning and teaching of 
mathematics. They also set targets for future de- 

velopment . 

New mathematics curricula 

The lack of progress in Domain C is the major 
mismatch between intentions and outcomes over the 
last seven years. It is notable that even the use of 
simple calculators has not been fully integrated into 
the curriculum in any country in a way that realises 
their known potential for enhancing mathematical 
performance (even on traditional skills!). 

The reasons are less clear than is sometimes 
thought by those who ascribe it simply to teacher in- 
ertia and/or parental opposition. Certainly, teach- 
ers and other educators do not have the direct in- 
centives that the use of the technology provides 
for those doing mathematics. It does not so obvi- 
ously promise to increase their power as profession- 
als, or to make their lives easier or more reward- 
ing. Rather, it makes obsolete a large part of the 
standard professional work of mathematics teachers 
and threatens them with, at least, a need for new 
skills, both mathematical and pedagogical. Equally 
parents and others tend to believe that their own 
education remains valid - after all, look what it has 
done for them! 

However, when one compares the support offered 
to teachers to make these changes with that which 
they routinely receive simply to sustain the current 
curriculum, the contrast is stark. The textbooks 
and other materials are not comparable, or often 
even available. Retraining is sparse, as is coher- 
ent explanation of what is being attempted, and 
why. The temptation to blame the lack of change on 

t teachers is not only misguided but fruitless - they 
are who they are. It is up to those who seek change 
to find, and to deliver, an effective and appropriate 
mixture of pressure and support. 

We have evidence that teachers actually welcome 
change, provided they are confident that the pace 
and level of support is such that they can cope with 
it without undue effort. As with many profound 
curriculum changes, systems have so far failed to 
provide any basis for such confidence. 

In their chapter Cornu and Balacheff look at 
the problems of the new pedagogy and how it may 
be communicated to teachers in training, a key 
area in Domain C. We already have evidence (see 
Burkhardt, 1984, 1985) that the potential of the mi- 
crocomputer for helping teachers to enhance student 
learning presents a tremendous opportunity for cur- 
riculum enhancement. The effects on the dynamics 
of the classroom can be profound, but they are of- 
ten subtle; for this reason there is a great deal still 
to do before we have even a broad understanding of 
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what can happen in the various modes of computer 
use in education. 

We shall illustrate the sort of thing that may 
be expected by describing one application that has 
been developed and studied in some detail, and 
which has proved particularly rich - the use by 
the teacher of a single micro in the classroom, pro- 
grammed to be a ‘teaching assistant’. We do so for 
various reasons: It is less familiar to most people; 
it brings out some general points about the over- 
whelming importance of the people, teacher and 
pupils, and of the dynamics of their interaction; 
and it is particularly relevant to schools as we know 
them because it seeks to enhance the performance 
of a teacher working with a group of children in the 
classroom in the normal way. It also only requires 
one microcomputer per class rather than one per 
child. 

This mode of use, set out by one of us (Fraser, 
1981), has been shown to have remarkable effects in 
leading typical teachers in a quite unforced and nat- 
ural way to broaden their teaching style to include 
the ‘open’ elements that are essential for teaching 
problem solving (Fraser et al, 1983, 1988). Since 
this is a crucial aim that reformers have been trying 
to achieve for at least thirty years with little or no 
effect, this is a valuable result. It is worth explaining 
briefly why these effects come about. First, the mi- 
cro is viewed by the students as an independent ‘per- 
sonality’. It takes over for a time a substantial part 
of the teacher’s normal ‘load’ of explaining, manag- 
ing, and task setting. These are key roles played by 
every mathematics teacher. The micro takes them 
over in such a way that the teacher is led into less 
directive roles, including crucial discussion with the 
children on how they are tackling the problem, pro- 
viding guidance only of a general strategic kind - 
counselling if you like. 

These principles have been incorporated into 
a range of teaching materials that enable typical 
teachers to sustain in their classrooms, without ex- 
ceptional effort, these learning activities of a more 
open kind. This book isjfull of other examples of 
curriculum components that have been shown to 
work well in typical circumstances, or can be devel- 
oped to do so. It is also important to recognise that 
there will be disappointments - or at least frustra- 
tions - in the development process. In the last few 
years there has been further progress to report in 
the thorough, and imaginative, development of sub- 
stantial curriculum elements. They illustrate what 
can be done. The Journeys in Mathematics project 
(EDC, 1991), funded by the National Science Foun- 
dation, has developed a series of modular units that 

exploit the potential of computer support for the el- 
ementary school mathematics classroom in a variety 
of powerful ways. Similarly, The Power Series (UC- 
SMP/Shell Centre, 1992) offers an effective element 
in teacher development, through the support that 
the ‘single micro classroom’ can provide in explor- 
ing new, more open ways of working. There are now 
many other ‘enrichment materials’ using the com- 
puter to support learning, particularly those less- 
routine activities that many teachers find difficult 
to handle. 

Full technology-integrated curricula, with mate- 
rials to support them, are hardly available yet. If 
there is an exception, it is a few new courses in 
higher education, such as that described by Hodg- 
son and Muller. There are early signs of moves 
to develop materials to support complete curricula; 
some of the latest round of NSF-supported projects, 
for example Seeing and Thinking Mathematically at 
EDC and a parallel project at TERC, have a strong 
emphasis on technology. 

It is interesting that all three examples quoted 
above (and many others) use the computer as a ‘cat- 
alyst for learning’ (Fraser, 1989) rather than as a 
‘tool’ for doing mathematics or a ‘tutorial system’. 

No one doubts that the computer as a tool is a 
central element in the curriculum but the develop- 
ment of curricula to realise this is slow. Of course, 
the level of computer provision needed to make it 
more than a passing experience is still beyond most 
schools. It is interesting and ironic to remember the 
pioneering work of the Computer Assisted Mathe- 
matics Program (Johnson et al, 1966-68), in which 
students learned mathematics in a Basic program- 
ming environment; Kieren (1974) showed that far 
more students got through to fluency in algebra in 
this way - a result that has been confirmed but not 
yet implemented anywhere. As we have noted, even 
the simple calculator is far from fully integrated into 
curricula. 

Computer-based tutorial systems have contin- 
ued to emerge, and to become more sophisticated, 
sometimes embodying elements of artificial intelli- 
gence of an ‘expert system’ kind. Apart from pro- 
gramming itself, perhaps the first big idea for using 
computers in mathematical education was in teach- 
ing technical skills, particularly arithmetic. The ap- 
proach followed the behaviourist teaching-machine 
model. To provide effective teaching in this way has 
proved a much harder problem than was expected. 
We believe that it is still far from solution. It seems 
that the computer-tutor can be effective in teaching 
facts and straightforward techniques to people who 
have little difficulty with them; so, of course, are 



8 Influence of Computers and Informatics on Mathematics and Its Teaching 

other methods. However, despite great efforts by 
some talented people, it has not so far proved possi- 
ble to write programs which are successful in diag- 
nosing and remediating students’ conceptual errors 
underlying technical skills that they find difficult. It 
remains true that tutorial systems have not begun 
to tackle the main defects of the traditional (and 
largely current) mathematics curriculum, still con- 
centrating on automating those learning activities 
(largely drill-based) that are both over-represented 
and, on their own, ineffective. 

The next steps 

It seems from the above that Domains A and 
B are making steady progress and that Domain C 
presents the greatest difficulties - thus it seems that 
further work on large-scale implementation should 
become a priority over the next decade. There are 
some small signs of movement in this direction in 
various countries. However, the difficulty of achiev- 
ing large scale change of any kind is often under- 
rated, or at least neglected. It clearly needs empiri- 
cal study of the dynamics of change in the education 
system as a whole, with all the factors this brings 
in. We already know far more about the benefits 
that could flow from the use of technology (even 
within current financial constraints) than is realised 
in practice. Without attention to Domain C, this 
mismatch will simply get worse. 

What, specifically, are we to do about this? 
This is not the place for a serious discussion of 
methodologies of research and curriculum develop- 
ment (Burkhardt, Fraser and Ridgway, 1990). Very 
briefly, there is no proven successful answer but 
some seem to be less susceptible to corruption of 
outcomes than others. We believe that the essence 
is an empirical approach - find out what actually 
happens to your draft ideas in practice, in circum- 
stances sufficiently representative of what you are 
aiming for, and then revise the materials repeat- 
edly until they work in the way intended. We have 
found (e.g. Shell Centre, 1984) that such an ap- 
proach, taken for granted in other fields, can com- 
bine educational ambition with user-friendliness to a 
level not achievable with more casual development. 
Structured classroom observation makes a key con- 
tribution to this approach, providing much richer 
feedback than is often acquired in the development 
of educational materials (Burkhardt, Fraser et al, 
1982). However, more rigorous comparative evalu- 
ation of alternative approaches is sorely needed. A 
few more comments are made below. 

It is important to ask of everyone in the sys- 
tem, but particularly teachers, “Why should they 

change?“. It seems (Fullan, 1980) that both pres- 
sure and support are needed for effective change but 
producing a balanced ‘well-engineered’ package that 
works is still an unsolved problem. One lever for 
change that cannot be ignored is the assessment sys- 
tem; if a system does not recognise, measure and re- 
ward new curriculum elements then they will not be 
taken seriously by many - WYTIWYG (what you 
test is what you get). Pressure is often preferred by 
politicians because it is less expensive than support, 
so that an effective balance is destroyed. 

The questions we have raised imply a great deal 
of work, integrating research techniques with cur- 
riculum development, before we have even a basic 
understanding of the classroom potential that we 
see so vividly illustrated in this book. Experience 
suggests that, along the way, we shall find other 
possibilities of at least as much promise. 

In order to realise any of these possibilities, they 
will need to be systematically developed in detail 
with representative samples of teachers and stu- 
dents, using structured detailed data from the class- 
room. 

Systematic research and development 

The slow progress in B and, particularly, C 
partly reflect a general problem in education - that 
the level of expenditure on designing and developing 
soundly-based changes is remarkably low; in Eng- 
land and the US, for example, this ‘research and 
development ratio’ is substantially less than 0.1% of 
educational expenditure, whereas in other changing 
fields such as medicine or modern industry it is typi- 
cally between 5 and 15%. We believe that this arises 
because education is still dominated by the ‘craft- 
based’ approach, which assumes that experienced 
professionals have satisfactory methods of handling 
each situation that presents itself - that everything 
is basically well under control. 

This craft-based approach works well when two 
conditions are satisfied: 

the system is working satisfactorily 
and 

there is no expectation of major change 

Otherwise it involves the extrapolation of reliable 
experience beyond its domain of validity - always a 
hazardous process. 

In this respect the situation in education is 
rather similar to that in medicine a century ago, 
or engineering further in the past. There are signs 
that the more systematic ‘research-based’ approach 
(which now dominates the other two fields) is more 
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widely recognised as important in education, but 
there is still a long way to go. No one would dream 
of using a drug, or flying in an aeroplane, that had 
only been developed and tested as sketchily as most 
new (or, indeed, old) curricula. Nonetheless, the sit,- 
uation persists - perhaps because educational disas- 
ters are much less immediately visible. 

Some dismiss such arguments on the grounds 
that teaching and learning are much more varied 
and less controllable than engineering or medical 
situations. Though this is true in some respects, 
systematic observation of typical mathematics class- 
rooms (HMI, 1979) shows a remarkable uniformity 
in delivering a curriculum that is inappropriate and 
seriously impoverished by current standards. Simi- 
lar results are observed in most countries. 

The research and development ratio illustrates 
how little serious attempt has been made in educa- 
tion to work systematically to do better. The pro- 
cesses of s‘ystematic development are either absent 
or sketchy, particularly in the quality of feedback 
and the typicality of the development environment. 
The search for better development methods is al- 
most non-existent. We believe that we are still es- 
sentially leaping off cliffs, flapping ‘wings’ tied to 
our shoulders - but nobody notices the mess. 

These things need not be. So far from costing 
money, they represent a potential source of large 
saving in the overall operation of the education sys- 
tem. 

These considerations are not, of course, confined 
to technology-inspired change. They are, however, 
particularly acute in that circumstance because of 
the pace of change needed. We are facing a situation 
in which children are taught to do mathematics in 
ways that are very largely outmoded, with at least 
80% of curriculum time wasted on trying, more or 
less successfully, to develop fluency in skills of now- 
limited value. 

In planning a systematic approach, we think it is 
useful to distinguish different levels of research and 
development in education. Studies at each succes- 
sive level involve an order of magnitude more stu- 
dents, and teachers, than at the previous one. Four 
levels are: 
L Learning - studies of student’s learning, the 

nature of cognitive processes, difficulties and 
misconceptions (10’ - 10’ children minimum) 

Tl Teaching Possibilities - studies of different 
kinds of stimuli and their effects on student 
learning (10’ - lo2 children minimum) 

T2 Realizable teaching - studies on what can a& 
tually be achieved with typical teachers under 
realistic circumstances (lo2 - lo3 children mini- 

mum) 
C Curriculum change on a large scale - studies of 

how curriculum change can be effected and what 
other school or social factors affect it? (lo4 - lo7 
children minimum) 
All these levels are important, the earlier ones 

contribute to a fundamental understanding of the 
later ones. However, much more serious work has 
been done at the early L and Tl levels; a more 
balanced effort would be productive. The crucial 
distinction between Tl and T2 is often not made. 
At the Tl level the teacher variables are almost ir- 
relevant - work there simply shows that, there is a 
teacher, usually a member of the development team, 
who can make these things happen. At the T2 level, 
curriculum developers face the challenge of show- 
ing that a wide range of unexceptional teachers, in 
normal circumstances of support, can also function 
in the desired ways. Similarly, the C level brings 
in all the variables that relate to the pressures on 
the classroom from school and society, which are so 
critical to the implementation of any change. These 
distinctions appear to be important in the limited 
impact of technology so far - and in doing better in 
the future. 
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An Update of the 1985 Strasbourg Conference 

The first edition of this book grew out of a conference in Strasbourg in March 1985. The attendees at 
that conference divided themselves into three Working Groups on the subjects of The Effect of Comput- 
ers on Mathematics, The Impact of Computers and Computer Science on the Mathematics 
Curriculum and Computers As an Aid to Teaching and Learning Mathematics. The reports of 
these three working groups formed the first three chapters in the previous edition. In this edition the leaders 
of the three workshops have updated the reports which appeared in the previous edition. These updated 
reports appear on the following pages. 
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Part I 

THE EFFECT OF COMPUTERS ON MATHEMATICS 

R. F. Churchhouse 
University of Wales, Cardiff, UK 

1.0 Introduction 

Mathematical concepts have always depended 
on methods of calculation and methods of writing. 
Decimal numeration, the writing of symbols, the 
construction of tables of numerical values all pre- 
ceded modern ideas of real number and of function. 
Mathematicians calculated integrals, and made use 
of the integration sign, long before the emergence of 
Riemann’s or Lebesgue’s concepts of the integral. In 
a similar manner, one can expect the new methods 
of calculation and of writing which computers and 
informatics offer to permit the emergence of new 
mathematical concepts. But, already today, they 
are pointing to the value of ideas and methods, old 
or new, which do not command a place in contem- 
porary “traditional” mathematics. And they permit 
and invite us to take a new look at the most tradi- 
tional ideas. 

Let us consider different ideas of a real number. 
There is a point on the line R, and this representa- 
tion can be effective for prompting the understand- 
ing of addition and multiplication. There is also an 
accumulation point of fractions, for example, con- 
tinued fractions giving the best approximation of a 
real by rationals. There is also a non- terminating 
decimal expansion. There is also a number written 
in floating-point notation. Experience with even a 
simple pocket calculator can help validate the last 
three aspects. The algorithm of continued fractions 
- which is only that of Euclid - is again becoming a 
standard tool in many parts of mathematics. Com- 
plicated operations (exponentiation, summation of 
series, iterations) will, with the computer’s aid, be- 
come easy. Yet even these simplified operations will 
give rise to new mathematical problems: for exam- 
ple, summing terms in two different orders (starting 
with the largest or starting from the smallest) will 
not always produce the same numerical result (see, 
e.g., Churchhouse, 1980, 1985). 

Again, consider the notion of function. Teach- 
ing distinguishes between, on the one hand, elemen- 
tary and special functions - that is, those functions 
tabulated from the 17th to the 19th century - and, 
on the other, the general concept of function intro- 
duced by Dirichlet in 1830. Even today, to “solve” a 
differential equation is taken to mean reducing the 
solution to integrals, and if possible to elementary 
functions. However, what is involved in functional 

equations is the effective calculation and the qual- 
itative study of solutions. The functions in which 
one is interested therefore are calculable functions 
and no longer only those which are tabulated. The 
theories of approximation and of the superposition 
of functions - developed well before computers - are 
now validated. The field of elementary functions 
is extended, through the discretisation of nonlinear 
problems. Informatics, too, compels us to take a 
new look at the notion of a variable, and at the link 
between symbol and value. This link is strongly 
exploited in mathematics (for example, in the sym- 
bolism of the calculus). In informatics, the necessity 
of working out, of realizing the values has presented 
this problem in a new way. The symbolism of func- 
tions is not entirely transferable, and the attributes 
of a variable are different in languages such as For- 
tran, Lisp and Prolog. 

In the sections that follow we look at some as- 
pects of how computers and informatics have al- 
ready affected mathematics and mathematical re- 
search and present some thoughts on what future 
effects might be seen. We do not claim that our 
survey is comprehensive, especially so in the disci- 
plines of applicable mathematics, but we hope that 
it provides some pointers. In any event information 
technology, in the widest sense, is advancing far too 
fast for any predictions to be of value for a period 
of more than a few years. 

1.1 New and revived areas of mathematical 
research 

Computers not only provide a new tool in math- 
ematical research and teaching. They are, at the 
same time, themselves the source of new areas of 
research. Not all of the research stimulated by the 
availability of computers is in new branches of math- 
ematics; some is of ancient lineage, going back to the 
19th or 18th cent’ury, but open now to attack with 
a weapon not available to Euler, Gauss, Jacobi, Ra- 
manujan, etc. Who can doubt, though, that these 
giants of the past would have exploited these new 
possibilities with enthusiasm had they been avail- 
able? It is one of the unique features of mathe- 
matics that it is based upon a body of results that 
never loses its value. Fashions and interests may 
change, but the neglected subject of the last cen- 
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tury, or even of the last millennium, may prove to 
be of new interest at any time when conditions are 
right for its re-emergence. So the corpus expands; 
nothing ever dies, though it may remain dormant 
for centuries. In the age of information technology 
we need to emphasize this fact, for it underlies ev- 
erything that follows. 

One of the most famous examples of mathe- 
matical research being stimulated by the use of a 
computer is the soliton (solitary wave) solution of 
the Korteweg-de Vries equation by Zabusky and 
Kruskal (1965), which was initially suggested by nu- 
merical results. Continuing experimental investiga- 
tions have indicated the existence of other, related, 
solutions and theoretical research has provided a 
substantial framework for investigating soliton se 
lutions of several nonlinear wave equations. 

Another example is found in the work of Ya- 
maguti, which may be summarized briefly by say- 
ing that he observed continuous, but nowhere- 
differentiable, functions via numerical experiments 
on dynamical systems defined iteratively whose so- 
lutions exhibit very chaotic behaviour. Particular 
cases produce the Weierstrass function and the Tak- 
agi function (see also the chapter by Tall and West); 
the latter may be written 

T(X) = 2 2-“&qx) 
k=l 

where 

0 < I < l/2 
d(x)={;;l-x) 1/2<I<l. 

and has recently been used in teaching elementary 
analysis. Further research, in collaboration with 
Hata on a family of finite difference schemes led to 
Lebesgue’s Singular Function. 

Among long-established branches of Pure Math- 
ematics where computers have had a major impact 
are Group Theory, Combinatorics and Number The- 
ory. Many applications of computers in these areas 
have been published in proceedings of conferences 
(for example, Churchhouse and Herz (1968), Atkin 
and Birch (1971), Leech (1970)). 

The applications are already too numerous to 
list in full or describe in detail but it is clear that 
the search for sporadic groups, the investigation of 
Burnside’s problem, the study of rational points on 
elliptic curves, and the search for large primes would 
be quite impossible without computers. The fac- 
torisation of large integers is another example; al- 
though intrinsically it is not an exciting topic it has 
recently assumed considerable importance in rela- 
tion to cryptography and public-key systems (Beker 

and Piper, 1982). Many of these applications have 
benefited considerably from the availability of pro- 
gram packages specifically designed as an aid for re- 
searchers in the field; the CAYLEY system for the 
study of finite simple groups is a well-known exam- 
ple. Another is the development of Symbolic Math- 
ematical Systems (see Section 1.6 and the chapter 
by Hodgson and Muller). Such systems relieve re- 
search workers of a great deal of drudgery. Indeed, 
they make possible manipulations which just could 
not be done manually in any reasonable time or with 
any valid hope of an accurate result. Another “old” 
topic that has taken on a new lease of life is that 
of continued fractions, both as providing approxi- 
mations to real numbers and, in analytical form, in 
numerical analysis. 

The availability of colour graphics displays and 
packages has opened up exciting possibilities for re- 
search not only in geometry, modelling and fluid 
flow but in less obvious areas such as analysis (see 
the chapter by Tall and West). The study of the it- 
eration of complex-valued functions has been trans- 
formed recently; the complex nature of Julia sets 
and their descendants is made beautifully apparent 
by the use of colour graphics, even through much of 
their mathematical nature remains unknown (see, 
for example, Section I.4 below). 

It is clear to us that the computer is having, and 
will continue to have, a significant impact on the 
directions of mathematics research and on the way 
in which mathematicians carry out their research. 
Computers will not only be commonly used to arrive 
at conjectures but also to assist in finding proofs. 
In addition, some important questions are raised: 
(i) How should computers be used to assist math- 
ematicians in communicating their discoveries and 
in keeping abreast of the research of others? and 
(ii) What are likely to be the intellectual and se 
cial consequences, so far as mathematics and math- 
ematicians are concerned, of the widespread interest 
in, and use of computers? 

1.2 Proof 

In mathematics a “proof” is, strictly, a chain of 
deductions from the axioms; in practice, of course, 
a proof is accepted if it makes use of results which 
have themselves been deduced from the axioms, or 
from other results, etc., etc. It would be possible, 
but exceedingly tedious, to write out a proof of the 
theorem that every positive integer is the sum of 
the squares of four integers by starting from the ax- 
ioms of arithmetic, but few people would regard this 
as necessary and would accept various intermediate 
steps - an identity of Jacobi, or representation of 
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integers by binary quadratic forms - as valid rungs 
on the ladder, since each of these steps is deducible 
from other results which are deducible . . . . . from the 
axioms. 

Computers might be used in mathematical 
proofs; they might, initially, suggest what is true 
and, equally important, what is not, they might be 
used for computations which are required in a proof; 
they might be used - as in the proof of the 4-colour 
theorem (Appel and Haken, 1976) - to examine all of 
the finite set of cases, on which the truth of the the- 
orem ultimately depends; they might even be pro- 
grammed to find part of the proof by trying many 
possible combinations of known axioms, theorems or 
identities, though “combinatorial explosion” makes 
such an approach infeasible except in very special 
cases. 

As examples, computers have been used to sug- 
gest results in group theory, combinatorics, number 
theory, coding theory and to support the truth of 
conjectures such as the Riemann Hypothesis. For an 
early survey article see Churchhouse (1973). Among 
notable theorems which were initially conjectured 
on the basis of numerical evidence are the Prime 
Number Theorem (Gauss) and several important re- 
sults of Ramanujan (1927) including the congruence 
properties of the partition function and of the func- 
tion T(R). On the other hand Lander and Parkin 
(1967) and a computer found that 

27’ + 84’ + 110’ + 1335 = 144’ 

and so disproved a conjecture of Euler that had 
stood for nearly 200 years. One very specific re- 
cent achievement deserves special mention viz: the 
disproof by Elkies (1988) of the Euler Conjecture on 
sums of fourth powers. Euler conjectured that (in- 
ter alia) no fourth power could be the sum of three 
fourth powers. Elkies however found that 

(2682440)4 + ( 15365639)4 + (18796760)” 

= (20615673)4 

and went on to prove that not only are there an in- 
finity of such counterexamples but, when expressed 
as the representation of 1 as the sum of three ra- 
tional fourth powers, the solutions are dense in 
< 0,l >. 

Accuracy and reliability of the computations 
should not be an issue today. Where a result is 
sufficiently important or in doubt it can be checked 
by someone else on a different machine; this has 
been done on several occasions and if the result is 
confirmed and, assuming that the underlying math- 
ematics is correct, the result can be accept,ed with 
considerable confidence, if not certainty. Computer- 
assisted proofs need not be any more suspect than 

purely human proofs; many false “proofs” - includ- 
ing some of the 4-colour theorem - have been pub- 
lished in the past; we do not believe that the com- 
puter will increase the number of false proofs, quite 
the contrary. 

It is, of course, accepted that no amount of nu- 
merical evidence constitutes a proof of a theorem 
relating to an infinite set; the numerical evidence 
may be misleading even for a very large set of val- 
ues of the variables involved. A well-known example 
from analytic number theory is Littlewood’s proof 
(see Ingham, 1932) that despite all the numerical 
evidence then, and even now, available 

(where r(x) indicates the number of primes less 
than or equal to x) not only event,ually changes sign, 
but does so infinitely often. 

A criticism of computer-assisted proofs - such as 
that of the 4-colour theorem - is that they tend to 
rely on brute-force and give little insight into why 
the theorem is true. Unfortunately some results e.g. 
finding large primes or factoring large integers in- 
trinsically require such methods, and whilst it may 
be true that a computer proof may bring little in- 
sight, its very existence may inspire people to find 
more elegant, shorter, or illuminating proofs. 

Taking a longer-term view, the availability of 
computer assistance may encourage mathematicians 
to a more precise syntax and to express more for- 
mally what is in their minds (de Bruijn, 1970). Such 
a development may, in turn, aid the teaching of the 
art of constructing proofs and so lead to the develop- 
ment of “expert systems” to undertake a least some 
aspects of mathematical work (including all the rou- 
tine algebraic manipulation, computation, etc.), in 
partial fulfillment of Leibniz’s dream of a rational 
calculating device. 

One final point: Since every proposition that is 
provable has among its many proofs one of minimal 
length and since the proofs of any given length are 
(at most) finite in number there must be true theo- 
rems of mathematics that cannot be demonstrated 
by traditional discourse within the longest human 
lifetime. It would appear then t,hat there are math- 
ematical theorems that can only be proved with the 
aid of computers if we are unwilling to wait too long. 

1.3 Experimentation in Mathematics 

Certain branches of mathemat.ics have always 
been open to experimentation but the arrival of 
computers means the scope for experimentation in 
mathematics has been greatly increased. In some of 
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the sections above we have indicated cases where ex- 
periments have been used to provide data on which 
conjectures and, in some cases, theorems have been 
based. Euler, remarking on the necessity of observa- 
tion in mathematics, said: “The problems of num- 
bers that we know have usually been discovered by 
observation, and discovered well before their valid- 
ity has been confirmed by demonstration . . ...” 

The sheer speed of computers means that calcu- 
lations which would once have taken a lifetime can 
now be completed in hours, or even minutes. Add to 
this the fact that the results can often, if required, 
be presented in graphical form rather than as a list 
of numbers and we see that the interpretation of the 
experiments may be made much easier. The case of 
the iteration of complex-valued functions illustrates 
this point. 

Of course, when a constraint is relaxed, there is 
a danger of excess. The ability to perform calcula- 
tions does not mean that everything can or should 
be calculated. There is a balance to be struck and 
this must be guided by experience - not to mention 
the cost of the computations. The effort and cost 
involved need to be combined with the probability 
of success, in the sense of solving a problem or un- 
covering some useful fact. Computation for the sake 
of computation is not to be encouraged. 

Although experimentation in pure mathematics 
has its uses it is, perhaps, in the area of statistics 
that it is particularly valuable. We take two exam- 
ples. 

Simulation 

Even before the availability of the modern 
computing technology, experimental sampling and 
Monte Carlo methods have played a role in statis- 
tics for studying the performance of statistical tech- 
niques under the assumption of probability models. 
The computer has enhanced this aspect on a large 
scale. One famous example is the Princeton Ro- 
bustness Study (Andrews et al, 1972) where sets of 
estimators under a system of different modelling as- 
sumptions are studied by means of computer simu- 
lation. The results have stimulated new mathemati- 
cal research into robust estimators (e.g. asymptotic 
theory) but on the other hand they cannot merely 
be interpreted as conjectures that can and should 
be validated by mathematical proof, but they have 
an importance in itself and have already influenced 
the practice of analyzing data. 

More generally, computers have given a ma- 
jor impetus to the idea of mathematical modelling 
wherein a physical or logical situation is embodied 
in a mathematical model whose operation may then 

be simulated on a computer. Thus we no longer 
need to place physical models in a wind tunnel but 
instead simulate the model on a computer. Similarly 
we do not have to build a new telephone system to 
see if it works since we can first simulate the system 
on a computer. 

Exploratory Data Analysis 

It is sometimes stated that the computer has led 
to an unwelcome shift from hard thinking to a sense- 
less computation of examples and experimentation. 
A balanced picture would say that the computer 
has led to broader variety of “types of rationality” 
to approach problems and it is necessary to judge in 
every situation which approach is more reasonable. 

The classical paradigm for applying statistics is 
to think first very hard and then construct a proba- 
bilistic model and an adequate design for gathering 
data. But this strategy is not feasible in quite a lot 
of situations where little is known about the data 
and the underlying system of interest. In connec- 
tion with the numerical and graphical capabilities 
of computers a new methodology of data analysis, 
called Exploratory Data Analysis (Tukey, 1977), has 
been developed. The computer has made it possible 
to experiment with several models for a data set, to 
construct a variety of interesting plots of the data to 
gain insights into patterns, structures and anoma- 
lies of the data and to develop conjectures concern- 
ing the features of the system underlying the data. 
Such a type of exploratory mathematics would not 
be practicable on a large scale without using com- 
puters. 

I.4 Iterative methods 

Methods of solving systems of linear equations 
are traditionally divided into (i) direct and (ii) in- 
direct, or iterative, methods. The direct methods 
include Gaussian elimination, the indirect methods 
include the Gauss-Seidel method. Direct methods 
have the advantages (a) that they will always pro- 
duce the solution provided that it exists, is unique 
and that sufficient accuracy is retained at every 
stage, and (b) that the solution is found after a 
known number of operations. They have the disad- 
vantage that very sparse systems of equations, such 
as arise in finite difference approximations to differ- 
ential equations, may become rapidly less sparse as 
the elimination process proceeds so raising the stor- 
age requirement from a multiple of n (for n equa- 
tions) to something like n2. Iterative methods, on 
the other hand, may fail to converge to a solution 
and, if they do converge, it is not obvious how many 
operations they will require to produce the desired 
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accuracy. They have, however, the very consider- 
able advantages that they are very well suited to 
computers and preserve the sparsity of the coeffi- 
cient matrix throughout. 

Direct methods of solution of nonlinear systems 
are rarely available; there is, after all, no direct 
method for solving the general polynomial of even 
the fifth degree and so iterative methods are gen- 
erally used. As in the case of linear systems, con- 
vergence may not always occur, though conditions 
sufficient to ensure convergence are usually known; 
and although in some cases the number of iterations 
necessary to produce convergence to a specified ac- 
curacy may not be easily predicted, it is frequently 
not a matter of great importance and, if time is lim- 
ited, accelerating techniques can often be used. 

The revival of interest in iterative methods 
brought about by the use of computers has led to 
significant advances in the study of functions which 
are iteratively defined, e.g. by a relation of the type 

Z n+l = F(Zn) 

where Zo is a given complex number and the func- 
tion F(Z) may contain one or more parameters. 
Some functions of this type, such as 

Z n+1 = 2: + c 

were studied over 60 years ago by Julia (1918) and 
Fatou (1919), but attracted relatively little interest 
at that time. In the case where the function F(Z) 
involves one complex parameter C and we define the 
set of points KC to be those points Z such that the 
iterated sequence of points given by 

Z, F(Z), F(F(Z)), . . .etc. 

does not go to 00, then the boundary of Kc is called 
the Julia set associated with F(Z) and C. Only re- 
cently, thanks to the availability of computers and, 
particularly, of colour graphics terminals has the ex- 
traordinary nature of these Julia sets and their nu- 
merous spin-offs been appreciated. For example, the 
Mandelbrot set is defined as the set of values of C 
for which Kc is connected. The relation above is a 
fructal curve, the discovery of which, due to Man- 
delbrot, has inspired a great deal of exciting and 
attractive research by Douady, Hubbard and many 
others (Devaney, 1989). 

The enthusiastic study of fractals has grown very 
rapidly in recent years and the ready availability of 
high definition computer graphics has made it possi- 
ble for schoolchildren, as well as teachers, to produce 
a wonderful variety of exotic pictures based upon 
iteration of simple functions of complex variables 
(Peitgen et al, 1992). Even more recently the work 

of Barnsley on iterated function schemes, which re- 
sult in remarkably lifelike pictures of ferns and trees, 
has aroused a lot of interest. The mathematical the- 
ory of fractals is much more demanding than their 
production on a computer but good progress has 
been made here, undoubtedly inspired by the com- 
puter graphics successes. 

1.5 Algorithms 

An algorithm is simply a procedure for solving 
a specific problem or class of problems. The notion 
of an algorithm has been around for over 2000 years 
(e.g. the E UC 1 I’d ean Algorithm for finding the high- 
est common factor of two integers), but it has at- 
tracted much greater interest in recent years follow- 
ing the introduction of computers and their applica- 
tion not only in mathematics but also to problems 
arising in technology, automation, business, com- 
merce, economics, the social sciences, etc. (see also 
the chapter by Maurer). Computer algorithms have 
been developed for many commonly occurring types 
of problems. In some cases several algorithms have 
been produced to solve the same problems, e.g. to 
sort a file of names into alphabetical order or to in- 
vert a matrix, and in such cases people who wish to 
use an algorithm will not only want to be sure that 
the algorithm will do what it is supposed to do, but 
also which of the several algorithms available is, in 
some sense, the “best” for their purposes. An algo- 
rithm which economizes on processor time may be 
extravagant in its use of storage space or vice-versa 
and the need to find algorithms which are optimal, 
or at least efficient, with respect to one or more 
parameters has led to the development of complex- 
ity theory. Thus the Fast Fourier Transform has 
reduced the time complexity of computing Fourier 
transforms from order n2 to order n log n, which is 
of considerable practical importance for large val- 
ues of n. More recently the problem of designing 
algorithms which can be efficiently run on several 
processors working in parallel has attracted consid- 
erable interest. 

Algorithms which are ideal on a single proces- 
sor may be highly inefficient, or even fail entirely, 
on parallel processors. The search for algorithms 
for the efficient solution of mathematical problems 
on systems of parallel computers is a major area of 
research and conferences on this topic are held regu- 
larly. The problems are mathematically challenging 
and are also of considerable practical importance. 
With parallel computer systems now being readily 
available, courses on parallel computing are being 
taught at undergraduate level which, five years ago, 
would have been possible in very few places. 
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A final point is this: the growing importance of 
algorithms suggests an enlarged role for proof by al- 
gorithm in which a constrictive proof of an existence 
theorem is obtained by exhibiting an algorithm to 
construct the object posited. 

1.6 Symbolic Mathematical Systems 

The possibility of using a computer to manipu- 
late symbols, rather than numbers, and so provide 
users with packages for algebraic manipulation and 
indefinite integration was appreciated from the ear- 
liest days of computers. Packages such as ALPAK 
and Slagle’s SAINT (Slagle, 1963) both date from 
the early 1960’s. Not only were such packages avail- 
able, they were used, Around 1960, Lajos Tokacs 
used ALPAK to carry out some very tedious alge- 
braic manipulation involving 1200 terms to find the 
second moment in a problem in queueing theory, of 
importance to Bell Laboratories. No one had had 
the courage or energy to do this by hand. When the 
second moment was finally found it reduced to just 
three terms, after which a shortened mathematical 
derivation was obtained and a general theory de- 
veloped. Two points are worth noting: After the 
brute- force use of ALPAK the nature of the solu- 
tion inspired mathematicians to find a more elegant 
derivation - in support of our remark in Section 1.2; 
secondly, without the use of a symbolic manipula- 
tion package it is unlikely that this work would have 
been done at all. 

Another early system, FORMAC, was utilized to 
help with the solution of the restricted case of the 3- 
Body Problem and, more recently, it has been used 
to check that two 752-term polynomials, occurring 
in the theory of plane partitions, are identical. 

Some symbolic manipulation packages are gen- 
eral, but many more are applications specific. We 
have mentioned CAYLEY which is widely used for 
the study of finite groups both at research level 
and as a teaching aid. Other specific systems in- 
clude MATRIX, REDUCE (Fitch, 1985), MAC- 
SYMA (Pavelle and Wang, 1985); Maple (Char, 
1988); Mathematics (Wolfram, 1988); many more 
traditional algebra systems are surveyed in Pavelle 
et al (1981). These are further discussed in the chap- 
ter by Hodgson and Muller. 

1.7 Computers and Mathematical Communi- 
cation 

Whilst it affords great personal satisfaction to 
prove (or disprove, or conjecture) a result, the math- 
ematical community only gains if that result is coni- 
municated to others. This communication may take 
various forms (though the distinctions are not rigid). 

l epistolary - where A writes a letter to B 
communicating the result; 

l proscriptive - where A writes the result on 
a wall (literal or metaphorical) for others to read; 

l privately published - the usual form is a de- 
partmental technical report, whose existence is an- 
nounced; 

l publicly published - journals or books. 
This communication may be received either di- 

rectly by the person who is going to use the result, 
or indirectly. 

The advent of computed-aided typesetting and 
camera- ready copy has obviously changed the vi- 
sual form of mathematical comunication (partic- 
ularly the publicly-published) and its economics. 
This has consequences for mathematicians (espe- 
cially editors) who may need to read the input to 
such type-setting systems. But computer technol- 
ogy is capable of changing and is changing, far more 
than this. 

Epistolary. Computer networks have revolu- 
tionized this method of communication by allow- 
ing “letters” to be sent via electronic mail instead 
of physical mail As more and more mathematicians 
are linked by such networks, they will replace most 
written communication. 

Proscriptive. In addition to the physical no- 
tice boards in one’s own department or elsewhere 
on which one can place proofs (or, more likely, an- 
nouncements of technical reports containing proofs), 
computer networks distribute electronic “bulletin 
boards” to various sites which “subscribe” to them. 
In some areas of computer science in North America, 
most results are announced on such bulletin boards. 

Private Publishing. This is closely related to 
the above. Such networks also distribute electronic 
“newsletters” to individual subscribers, which often 
contain lengthy articles in draft form, or state con- 
jectures or problems. 

Public Publishing. This is the area whose 
form has been directly least affected. Though there 
is talk of it, no serious refereed journals distributed 
by electronic means exist. 
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Part II 

THE IMPACT OF COMPUTERS AND COMPUTER SCIENCE ON THE 
MATHEMATICS CURRICULUM 

Anthony Ralston 
SUNY at Buffalo, Buffalo, NY 14260, USA 

2.0 The Changing Science of Mathematics 

In this section we will consider how computers 
and computer science should be causing changes in 
the mathematics curriculum because of the chang- 
ing importance of various branches of mathematics 
wrought by computers and computer science (see 
the chapter by Steen). One aspect of this change 
is that increasingly the knowledge of mathematics 
important to the user of mathematics is no longer 
that of detailed knowledge but rather what might 
be called “meta-knowledge” about the characteris- 
tics and power of methods, often numerical, for the 
solution of classes of problems (see the chapter by 
Mascarello and Winkelmann). A related perspec- 
tive is that computers have brought mathematics 
much closer in philosophy to the classical natural 
sciences where there has always been an interplay 
between theory and experiment. Now mathemat- 
ics, too, has a laboratory - the computer - on which 
experiments can be performed which lead to the- 
ories and on which theories can be tested. These 
points should be kept in mind in what follows. Al- 
though we shall not return explicitly to them, they 
influence much of this section. 

2.1 The Common Mathematical Needs of 
Students in Mathematics, Science and Engi- 
neering 

(a) Preparation for University 
Mathematics 

To provide a context in which to discuss the im- 
pact of computers and computer science on curricu- 
lum and pedagogy, it is necessary to agree first, in 
general, on the appropriate mathematics for the sec- 
ondary school student (see the chapter by Graf et 
al) and then to consider the university curriculum. 
Since there are significant differences between dif- 
ferent parts of the world on when secondary school 
ends and university instruction begins, the com- 
ments which follow will have to be interpreted in 
the local context. 

Algebra has traditionally been an important 
subject in high school. Since elements of abst,ract 
algebra are likely to become increasingly important 
in mathematics education, it is clear that algebra 

will remain of central importance in the secondary 
school curriculum. The important thing, however, is 
not to have students achieve great manipulative skill 
in algebra (e.g. in polynomial algebra) but rather 
to teach them to consider algebra as a natural tool 
for solving problems in many situations. Neverthe- 
less, the ability to use formulas and other algebraic 
expressions will remain necessary. 

In recent years there has been a trend toward 
replacing much of Euclidean plane geometry with 
those aspects of geometry more closely akin to al- 
gebra. This is useful as a preparation for university 
mathematics but there is much feeling among math- 
ematics educators that the loss of Euclidean geome- 
try is a sad development. A consensus on how geom- 
etry might best be taught at school and university 
is not yet available. It should be noted, however, 
that some computer scientists feel that the aspect of 
traditional instruction in geometry concerned with 
teaching the meaning and construction of rigorous 
proofs can be achieved through material concerned 
with the analysis and verification of algorithms (see 
the chapter by Maurer). 

For many parts of mathematics trigonometry is 
useful preparation. But we note that much of the 
tedious work which was necessary in the past, both 
numerical and symbolic, can now be easily done on 
hand-held computers. 

Next we mention calculus. In many countries 
this has been a secondary school subject for many 
years for most university-bound students while in 
other countries only the very best students begin 
calculus in secondary school. The main thrust of 
secondary school calculus has been to provide stu- 
dents with techniques, and to prepare those intend- 
ing to study mathematics at university with a first 
introduction to the concepts they will encounter at 
the university level. Since all the techniques of sec- 
ondary school calculus as well as much of univer- 
sity calculus can now be done on hand-held devices 
or on symbolic mathematical systems (often called 
“computer algebra” systems) on computers (see the 
chapter by Hodgson and Muller), calculus a.t the sec- 
ondary as well as university level must focus almost 
entirely on concepts and not on computation. 

19 
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Various new subjects have become part of the 
secondary school curriculum in recent years. Among 
these is probability which has come into the cur- 
riculum in many countries. Topics such as discrete 
probability distributions, the binomial distribution 
and related topics are appropriate. So too, is an 
introduction to data analysis and elementary statis- 
tics because of their importance in science as well as 
mathematics. Another subject, about which there 
will be further discussion below, which we would 
like to see more of in the secondary school curricu- 
lum, is discrete mathematics including elementary 
combinatorics and graph theory as well as an intro- 
duction to induction and recursion. In this connec- 
tion it would be appropriate to introduce both the 
design and verification of a number of important al- 
gorithms such as those for sorting. Finally we note 
that elementary linear algebra, particularly matrix 
algebra and work with systems of linear equations, 
should certainly be considered for the secondary 
school curriculum. 

(b) The University Mathematics 
Curriculum 

The core of the university mathematics curricu- 
lum for many years has been the calculus and, to a 
lesser extent, linear algebra. This is the case no mat- 
ter how much mathematics the student may have 
studied in secondary school. Computers themselves 
have an impact on both the content of this curricu- 
lum and its pedagogy. Not only do computers allow 
more interesting and effective presentation of clas- 
sical subject matter but, in addition, as with the 
secondary curriculum, they affect what subject mat- 
ter is important to students. For example, symbolic 
mathematical systems suggest a deemphasis on the 
more skill-oriented portions of the current curricu- 
lum. 

Informatics (i.e. computer science) itself also 
implies changes in the content of the core curricu- 
lum. This is essentially because informatics is a 
highly mathematical discipline whose problems re- 
quire almost universally the tools of discrete rather 
than continuous mathematics. Thus, there is now 
a strong argument to provide a balance in the 
core curriculum between the traditional continuous 
mathematics topics and topics in discrete math- 
ematics (Ralston 1981, Ralston and Young 1983, 
Ralston 1989). For university courses aimed at a 
broad spectrum of mathematics, science and en- 
gineering students, this balance may well contain 
nearly equal portions of the continuous and the dis- 
crete. For those courses aimed at specific student 
populations, the balance might be weighted more 
in the direction of the discrete for informatics and 

social and management science students, might be 
about equal for mathematics students themselves 
and surely should be weighted more toward tradi- 
tional continuous mathematics for physical science 
and engineering students. It needs to be empha- 
sized, however, that all groups of students need 
some exposure to both the continuous and discrete 
approaches to mathematics. Whether students are 
exposed to calculus first and then discrete math- 
ematics or vice versa will depend on the student 
population and on institutional convenience. 

The actual content of the discrete mathemat- 
ics component is still quite variable. However, the 
discrete component normally contains at least some 
“traditional” discrete mathematics (e.g. combina- 
torics, graph theory, discrete probability, difference 
equations) as well as perhaps some abstract algebra 
although the latter may follow in a later course after 
completion of the core courses. 

We note also the importance of mathematical 
logic in the core university curriculum. Although 
traditionally an advanced undergraduate or a post- 
graduate subject (at which levels there will be a 
continuing need for specialized courses), logic is so 
important in informatics that it needs to be intro- 
duced early in the university mathematics curricu- 
lum. Moreover, with the increasing need for people 
in the scientific and technical professions to han- 
dle information in a precise manner, logic has great 
value for a wide variety of students. Logic is an im- 
portant constituent of many discrete mathematics 
courses (see below). But it can also be considered 
as a subject for a course by itself which would fol- 
low the introduction in discrete mathematics. Such 
a course can usefully be given a distinctive computer 
flavor as described by Schagrin et al (1985). 

As a final matter, we stress the importance of 
using the paradigms of informatics (e.g. an algo- 
rithmic approach, iteration, recursion) in the teach- 
ing of mathematics at all levels. Although these 
paradigms may seem most easily applicable to dis- 
crete mathematics, there is considerable scope for 
their introduction into the classical continuous cur- 
riculum. 

The reader may be surprised to find no mention 
of numerical analysis here (or hereafter in this doc- 
ument) because this subject is the one that most 
obviously combines the continuous and discrete ap- 
proaches to mathematics. But we take the posi- 
tion that numerical analysis is now such a well- 
established subject in the mathematics curriculum 
that it does not need to be discussed in the context 
of this report. This is, however, not to say that the 
subject mat.ter of numerical analysis is no longer af- 
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fected by advances in computing; developments in, 
for example, parallel computing are having great im- 
pact on numerical analysis. 

2.2 A Discussion of Particular Curriculum 
Areas on Which Computers and Informatics 
Have an Impact 

Although discrete mathematics and calculus are 
discussed separately in what follows, it should be 
emphasized that there is no intellectual reason to 
consider them as separate subjects. Indeed, they are 
mutually supportive and ideally would be taught in 
integrated courses (see the chapter by Seidman and 
Rice). However, for at least some years to come, 
such integrated courses will be relatively rare, not 
least because of the lack of textbooks for integrated 
courses. 

(a) Discrete Mathematics Courses 

We begin with a discussion of what topics in dis- 
crete mathematics should be contained in courses 
intended for mathematics students as well as for 
students in the social and management sciences. Al- 
though the topics to be listed below cover a broad 
spectrum, it is possible to design a coherent course 
covering these topics if the course is built around 
themes such as algorithms and their analysis and 
inductive and recursive thinking. 

A Discrete Mathematics Syllabus 

1. Mathematical Preliminaries - Sets, functions, re- 
lations, summation and product notation, ma- 
trix algebra, an introduction to proof and logic 
concepts. 

2. Mathematical induction including its applica- 
tion to algorithms and recursive definitions. 

3. Graphs, digraphs and trees including path, 
searching and coloring algorithms, tree traversal, 
game trees and spanning trees and applications 
in a variety of areas. 

4. Basic Combinatorics including the sum and 
product rules, permutations, combinations and 
binomial coefficients, inclusion-exclusion, the 
pigeonhole principle and combinatorial algo- 
rithms. 

5. Difference equations (i.e. recurrence relations) 
including first order equations, constant coeffi- 
cient equations and the relationship of recur- 
rence relations to the analysis of algorithms, par- 
ticularly divide-and-conquer algorithms. 

6. Discrete probability including random variables, 
discrete distributions and expected value. 

7. Mathematical logic including the propositional 
calculus, Boolean algebra, the verification of al- 

gorithms and an introduction to the predicate 
calculus. 

8. Infinite processes in discrete mathematics: Se- 
quences, series, generating functions, approxi- 
mation algorithms. 
In addition, other possible topics depending 

upon local needs and desires are: 
9. 

10. 

11. 
12. 

Algorithmic linear algebra including the use of 
Gaussian elimination as an entree to abstract 
linear algebra and an introduction to linear pro- 
gramming and applications of linear algebra. 
Decision mathematics including such things as 
queueing theory and packing problems. 
Algebraic structures such as rings, groups etc. 
Finite state machines and their relation to lan- 
guages and algorithms. 

And, of course, there can be extensions of all the 
above topic areas to more advanced subject matter 
if desired and appropriate. 

Since the Strasbourg conference in 1985, at least 
40 books have been published from which a course 
on the above lines can be taught (see, for example, 
Epp, 1990 and Maurer and Ralston, 1991). 

The experience of those who have taught such 
courses is that, despite the potpourri of topics listed 
above, these courses can be made interesting and 
satisfying if a consistent, coherent approach is taken 
which emphasizes algorithmic, recursive and induc- 
tive thinking. 

Following a course from a syllabus like that 
above, a variety of advanced courses in discrete 
mathematics can be contemplated although only 
the largest institutions would be able to offer all 
of these. Indeed, each of the subject areas listed 
above suggests one or more advanced courses which 
would build on the introductory material in a first 
discrete mathematics course. Most of these courses 
are currently in a process of evolution as the sub- 
ject matter in the first discrete mathematics course 
changes and develops and as the applications of dis- 
crete mathematics grow and diversify. A program 
which combines a carefully constructed introductory 
discrete mathematics course with several advanced 
courses will give the student a firm basis for study- 
ing informatics as well as providing a basis for pro- 
fessional work in modern applied mathematics and 
other fields in science and engineering. 
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(b) Calculus in the Computer Age 

(i) The Role and Relevance of Calculus 

Among the key factors which compel change in 
the teaching of university mathematics courses are: 

- the substantial experience with minicomput- 
ers and microcomputers and programming packages 
which many students have had before coming to the 
university; 

- the growth of new areas of applied mathemat- 
ics such as the analysis of algorithms and computa- 
tional complexity. 

One result of this is that many students have at- 
titudes and expectations which lead them to believe 
that the most challenging and meaningful mathe- 
matical problems today are related to computers 
and informatics. This cannot help but influence 
how we must motivate mathematics students and 
all other students in mathematics courses. 

In considering the place of calculus in the com- 
puter age, we cannot forget that it is one of hu- 
mankind’s great intellectual achievements. Every 
educated person should be aware of it. Its his- 
tory exemplifies the “unreasonable effectiveness” of 
mathematics better than any other branch of math- 
ematics. And its effectiveness is as great today as 
it has ever been. But this does not excuse teaching 
calculus as is so often the case now with an empha- 
sis only on the execution of mechanical procedures 
- and paper-and-pencil procedures at that. Instead 
calculus needs to be taught to illustrate the unique 
ways of thinking it epitomizes. 

The realm of applications of calculus remains im- 
mense. They are, indeed, increasing due to the in- 
creasing mathematization of heretofore qualitative 
sciences like biology. In constructing calculus mod- 
els of phenomena and then solving the resulting 
equations, there is often an interplay between these 
models and their discrete counterparts with the cal- 
culus models representing the limiting behaviour of 
the discrete models. It is now more important than 
ever to include this interplay in calculus (and dis- 
crete mathematics) courses because inevitably the 
solution of most problems in calculus involves the 
(discrete) computer. The discretization necessary 
to solve problems of calculus with a computer often 
has not borne a close relationship to the underlying 
discrete model. But the increasing power of com- 
puters means that more and more frequently it is 
possible to have computer models which mirror very 
closely the discrete models from which the continu- 
ous model was initially abstracted. 

There already are powerful software tools which 
can be used in the study of calculus. These in- 

clude symbolic mathematical systems and a variety 
of graphical packages. Advances have taken place 
so rapidly in these areas that it is now the case that 
very powerful symbolic and graphical systems are 
available on hand-held computers (e.g. the BP-48s) 
as well as on microcomputers. One result of this is 
that an understanding of functions, variables, pa- 
rameters, derivatives etc. and the ability to inter- 
pret formulas and graphics is becoming more im- 
portant to the student than skills in executing the 
(numerical or symbolic) procedures of calculus. In 
the teaching of calculus to all students the need is 
clear for a shift from an emphasis on calculational 
technique to one which emphasizes the development 
of mathematical insight. 

(ii) The Content of Calculus Courses 

If functional behaviour and representation are 
to be the focus of the calculus course, then continu- 
ous functions and discrete functions (i.e. sequences) 
must be emphasized and motivated by a wide vari- 
ety of mathematical models. (Indeed, mathemat- 
ical models and their applications in a variety of 
disciplines should be an important part of calcu- 
lus courses.) (Note: it can be argued that se- 
quences belong more properly in the discrete math- 
ematics course discussed previously. This only illus- 
trates the need to bring the discrete and continuous 
points of view together into an integrated sequence 
of courses as soon as possible. 

An important theme in calculus courses should 
be the contrast between the local and global be- 
haviour of functions. Local behaviour is, of course, 
derived by studying the derivative for continuous 
functions (and the difference operator for discrete 
functions). And similarly the integral (and summa- 
tion) operators are used to derive global information 
about functions. Undoubtedly it will remain neces- 
sary to develop some ability to do formal computa- 
tions with derivatives and integrals. But the major 
emphasis should be on numerical algorithms (par- 
ticularly for integrals) and on how derivatives and 
integrals can be used to understand the behaviour 
of functions. 

A topic such as the Taylor series representation 
of a function should be used to show how good local 
information can be obtained using low-degree Taylor 
polynomials and interpolating polynomials, another 
area where the analogy between the continuous and 
the discrete may be usefully shown. 

Finally, there should be a balance in the cal- 
culus course between traditional topics and ones 
whose importance has greatly increased because of 
the advent of computers and informatics. Thus, 
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for example, the O() and 00 notations, which en- 
able the asymptotic growth rates of functions to 
be compared to standard functions like polynomials 
and logarithms, are not always taught in calculus 
courses, but they should become so. 

This discussion is intended only to provide the 
flavor of how an orientation toward computation 
should change the approach toward teaching most 
of the standard calculus topics. 

(iii) Computers for Learning and 
Teaching Calculus 

Computers enable teachers to modify their 
methods of teaching calculus (and, of course, much 
other mathematics also) in order to meet better the 
need of their students. Computer graphics is a pow- 
erful medium in which to provide examples - and 
non-examples - of continuous functions, discontin- 
uous functions, the area under a curve, direction 
fields and nowhere differentiable functions as well as 
in many other areas. Well-designed software (there 
still isn’t nearly enough of this) can be used by 
students to discover and explore the concepts men- 
tioned above as well as such fundamental concepts 
as slope and tangency (see also Section 2.3). But the 
effective use of such software requires that teachers 
sometimes depart from a lecturing style and go in- 
stead to guiding and interacting style with small 
groups of students or individual students. 

Well-designed software will also permit enhance- 
ments by students through the writing of (usually 
short) programs. This is just another way in which 
students can be actively involved in their own learn- 
ing although it is important that the use of the 
computer does not become the message instead of 
the mathematics which it is supposed to illustrate. 
Thus, programming per se should not play any sig- 
nificant role in a calculus course. 

Another impact of the computer in calculus may 
be to change the order in which topics are taught. 
For example, it is becoming increasingly common 
to introduce limits at the very start of a calculus 
course. Tangent functions and area under a curve 
can be motivated and defined graphically. When 
a formal definition of a limit is needed, students 
will be ready for it. As another example, differ- 
ential equations can now be treated much earlier 
in the curriculum than was previously possible be- 
cause of the ease of understanding made possible by 
new graphics systems (see the chapter by Tall and 
West). They can be introduced right after differ- 
entiation and before integration. Studies are now 
under way to discover whether such reorderings will 
lead to a greater or more rapid understanding of 

fundamental concepts and theorems. 
To take full advantage of the use of computers in 

teaching calculus, it will be necessary to change the 
standard classroom environment. Classrooms need 
to be provided with large monitors or screens on 
which the monitors may be projected. Both inside 
and outside the classroom, students need adminis- 
tratively easy and user-friendly access to comput- 
ers and software. Teachers will need private com- 
puter facilities in order to prepare course material. 
A prerequisite for this is in-service training so that 
teachers may become comfortable with computers 
and then fluent in their use and aware of possibili- 
ties beyond what may be available in the particular 
software on which they have learned. 

Finally, we note the value of using computers 
in the classroom to teach mathematics. The desir- 
ability of this for calculus and related subjects is 
particularly clear since the dynamics of computer 
graphics is ideally suited to help explain a subject 
which is essentially about change. Indeed, it is ironic 
that only static technology - the chalkboard and the 
overhead projector - are still used so widely to teach 
calculus. There is a considerable amount of software 
available now which can be used in the classroom to 
teach calculus (e.g. Flanders (1991)) and differen- 
tial equations. There is much less software available 
to teach discrete mathematics in the classroom but 
there are numerous aspects of discrete mathemat- 
ics (e.g. induction and recursion) for which suitable 
software would be valuable in the classroom. We 
can expect to see the development of such software 
in the near future. 

2.3 Exploration and Discovery in 
Mathematics 

The idea of using computers to enable students 
to explore mathematics and discover mathematical 
patterns for themselves is not a new idea (Steen, 
1988). However, the advent of powerful and avail- 
able computer systems makes this point so impor- 
tant in teaching mathematics today that we devote 
an entire section to it. 

First, why should exploration and discovery be 
important components of the educational process in 
mathematics? The answers parallel the reasons why 
we teach mathematics in the first place: 

l active learning leads to better retention and un- 
derstanding and more liking of the mathemat- 
ics we teach because the mathematics is seen 
as a basic component of human culture; it also 
leads to more self-confidence in the ability to use 
mathematics to solve problems; 
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exploration and discovery helps to teach people can be overcome; teachers can be trained to feel 
to think; comfortable with this mode of learning. 
discovery provides the greatest aesthetic expe- 
rience in mathematics, the “aha” of seeing or 
proving something is what makes mathematics 
attractive; 
exploration and discovery are perhaps the best 
ways for students to see that mathematics is so 
useful; 
discovery enables the student to see a familiar 
idea applicable in a new context, thereby en- 
abling a grasp of the power and universality of 
mathematics. 
Computer technology may be used to assist in 

2.4 Some Speculation about the Future 

As mathematics becomes increasingly an exper- 
imental science, it is inevitable that computers and 
computer science will have increasing influence on 
the mathematics curriculum. Computer science will 
become a gradually greater focus of applications of 
mathematics and this will affect what is important 
in mathematics. At the same time the means by 
which all mathematics is taught will be inextrica- 
bly entwined with computer technology. Although 
the cost of this technology will continue to be a 
problem for developing countries, the curricular in- 
ertia in developing countries is far less than that 
in the developed countries. Developing countries 
have an unparalleled opportunity to use computers 
and the influence of computer science to modernize 
their mathematics curricula and their mathematics 
teaching faster than will be possible in developed 
countries. 

mathematical exploration and discovery in a variety 
of ways; for example: 

through visualization of a great variety of two 
and three dimensional objects via computer 
graphics, students may explore questions and 
discover results by themselves. 
through computer graphical presentations of in- 
teresting geometries like “flatland” and turtle 
geometry; 
via exploratory data analysis to, for example, 
draw conclusions from data (e.g. is it bimodal? 
are there outliers?), to transform data (e.g. by 
logarithmic plots), to smooth data and to com- 
pare different sets of data. 
by graphical and numerical explorations of how 
to approximate complicated functions by simple 
ones; 
by applying the first step of the inductive 
paradigm - compute, conjecture, prove - in 
many, many different situations; 
by using symbolic mathematical systems to dis- 
cover mathematical formulas such as the bino- 
mial theorem; 
by designing and executing different algorithms 
for the same or related tasks. 

This list could be made much longer. Readers will 
probably be led to make their own suggestions. 

There are various implications to using comput- 
ers to facilitate exploration and discovery: 

l we must start with easy tasks so that students 
feel they are really succeeding on their own and 
are not being led step by step by the teacher; 

l teachers need to be educated for this kind of in- 
structional mode; few teachers can become com- 
fortable with these ideas without explicit educa- 
tion; we note, in particular, that testing what 
has been learned by the student is not easy. But 
experience has shown that success is not only 
possible but yields rich rewards. The difficulties 
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Part III 

COMPUTERS AS AN AID TO TEACHING AND LEARNING MATHEMATICS 

B. Cornu 
IUFM, Grenoble, France 

3.0 Introduction 

Mathematicians and mathematics teachers have 
been provided with a new tool, the computer. There 
is no shortage of applications or interesting exam- 
ples which one can quote. But, like all tools, the 
computer by itself does not supply a solution to 
the problems of mathematics education. There is 
no automatic beneficial effect linked to a computer: 
The mere provision of micros in a class - or lecture 
room will not solve teaching problems. It is essen- 
tial, therefore, that we should develop a serious pro- 
gramme of research, experimentation and reflective 
criticism into the use of informatics and the com- 
puter as an aid to teaching mathematics. It will not 
suffice to think only in terms of mathematics and 
the computer, and of the production of software 
which amuses and interests mathematicians. We 
must also take into account types of knowledge and 
the ways in which these can be transmitted, and at- 
tempt to study, in a serious epistemologically-based 
manner, various concepts and the obstacles which 
they present to learners. We must think of students, 
their development and the matching of new and old 
knowledge. We must consider in depth the teaching 
possibilities created by the computer. It is essential, 
above all, that we should move beyond the stage of 
opinions, enthusiasms, and wishful thinking and en- 
gage in a true analysis of the issues. Only in this way 
will we come to a true resolution of certain problems 
of teaching. Such research, of necessity experimen- 
tal, will have to be critically evaluated. It must be 
shown how, in given circumstances, the use of the 
computer can facilitate the acquisition of a partic- 
ular concept. Finally, such research work will have 
to be built upon and developed to provide a vital 
component in the training (whether formal or self- 
directed) of teachers and lecturers. Only then can 
computers have any large-scale effect on mathemat- 
ics teaching. 

Certainly such research has been done in the 
past few years, and we can now see examples of uses 
of computers in education, based on a serious st,udy 
of the didactical problems to be solved. In such 
uses, the computer is not a tool supplementary to 
traditional teaching; it is integrated in a pedagog- 
ical strategy, adapted to the actual obstacles the 
students have in learning. But much remains to be 
done. Both the development of educational research 
and the evolution of technology have the potential 

to effect major changes in teaching and learning in 
the future. 

Computers for mathematics teaching are not so 
widely used as one could think. Appropriate soft- 
ware and strategies do exist; but they are used 
by few teachers; one of the main problems now 
is to help all teachers to use computers, not as a 
new experience, but as a common tool for teach- 
ing. This requires not only good training for teach- 
ers and good pedagogical products and tools, but 
also good integration of new technologies in curric- 
ula and good long term pedagogical strategies. 

3.1 A changing view of mathematics 

There are many references in this book to the 
way in which the computer can lead to a changed 
view of what mathematics and mathematical activ- 
ities comprise. For example, as the experimental 
aspects of mathematics assume greater prominence 
(see Section 2.3), and there is a corresponding wish 
to ensure that provision should be made for students 
to acquire skills in, and experience of, observing, 
exploring, forming insights and intuitions, making 
predictions, testing hypotheses, conducting trials, 
controlling variables, simulating, etc. Examples of 
how such work can be carried out are found in later 
chapters in this book. However, mechanisms need to 
be found for disseminating information about fruit- 
ful experimental environments and how these can 
be formed. 

Yet, as we put new emphasis on the particular 
activities listed above, it is also necessary to ensure 
that such traditional activities as proving, general- 
ising and abstracting are not neglected or omitted. 
We will need to find an appropriate balance between 
‘experimental’ and more formal mathematics. 

The possibilities presented by the computer will 
actually help focus our attention on the kind and 
types of knowledge which we wish students to ac- 
quire. Not only are new possibilities offered to us, 
but also a greater incentive to ident,ify more pre- 
cisely our educational goals. 

If our aims of teaching change significantly so 
as to encompass and stress the ‘process’ of mathe- 
matics more than the ‘products’ of the mathemat- 
ical activities of others, then there will, of course, 
be a need to identify those parts of mathemat,ics 
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most suitable for our purposes. Topics and areas of 
mathematics must be selected which encourage and 
facilitate an experimental approach. 

Finally, in this section we must stress two impor- 
tant, interrelated points. Many, indeed the major- 
ity, of our students do not intend to become math- 
ematicians. We must not lose sight of the implica- 
tions of this in terms of educational goals and em- 
phases. But, also, many of these may be students 
of the experimental sciences. This raises further im- 
portant issues, for experiments in mathematics dif- 
fer somewhat from those in the physical and natu- 
ral sciences. The techniques are often very similar, 
but in mathematics we have that extra, vital ingre- 
dient of ‘proof’. Experiments are an essential and 
neglected part of mathematics, yet mathematics is 
not an experimental science. The distinctions be- 
tween disciplines and ways of thought will have to 
be displayed and observed. 

3.2 Computers change the relation between 
teacher and student 

Computers can affect the behaviour of students. 
This creates new interactions and relationships be- 
tween student, knowledge, computer and teacher. 
The role of the teacher in such situations demands 
considerable thought. 

(a) The mathematical activity of the stu- 
dent 

Students will be better able to learn conceptual 
material and develop autonomous (as opposed to 
imitative) behaviour patterns with respect to math- 
ematical ideas if they can be cognitively active in 
response to mathematical phenomena presented to 
them. This activity should consist of the formation 
of mental images to represent mathematical objects 
and processes. It should also include the develop- 
ment of skills in manipulating these objects and pro- 
cesses. In this way students can increase their abil- 
ity to think mathematically. 

Inducing students to emerge from passivity and 
to think actively about mathematics is, however, 
not easy. One approach is to make use of the com- 
puter to supply sufficiently powerful and novel expe- 
riences to stimulate such behaviour. The action of a 
computer program and the structure of data as it is 
represented in the computer can form useful mod- 
els for thinking about mathematical entities. For 
example, a “WHILE loop” whose body is a simple 
sum is a process that can represent the mathemati- 
cal entity 

gxi. 
i=l 

This expression, which troubles so many students, 
can then be thought of in terms of a simple, famil- 
iar and useful computer process. Again, in Pascal, 
representing a fraction as a record with two inte- 
ger fields (the second being non-zero) helps students 
think about rational numbers as ordered pairs of 
integers, especially if they are given the experience 
of writing programs to implement the arithmetic of 
fractions without truncation. 

More generally, many mathematical concepts 
can be defined or described as procedures. This 
gives a more dynamic approach, and can help the 
student in understanding and in using these con- 
cepts. Algorithmics (see the chanpter by Maurer) 
gives many tools for introducing mathematical con- 
cepts in such a way. 

Many examples of ways in which such ex- 
periences can be incorporated into mainstream, 
tertiary-level courses are available. Moreover, the 
success of such initiatives would seem to be inde- 
pendent of several issues which in discussion tend 
to be overrated. An important factor in this ap- 
proach appears to be that students should write the 
programs and so must be cognitively active about 
the processes and data structures they are imple- 
menting. These experiences are then coordinated 
with classroom activity. 

In their chapter, Mascarello and Winkelmann 
describe a course containing ‘continuous’ topics such 
as multiple integration and ordinary differential 
equations. Here the students wrote programs in 
a low-level language running on a microcomputer. 
These were interactive and the results were used for 
experimentation and demonstration. 

Of course, writing programs is not the only use- 
ful way in which students can use the computer. 
The use of complicated software packages for il- 
lustration of phenomena that are very difficult to 
display otherwise can clearly broaden the students’ 
awareness and add to their general understanding 
(see, for example, the chapter by Tall and West). 
They can, of course, also be used for exploration 
and discovery. Indeed, some would see the most 
exciting opportunity offered by the computer to be 
the way in which it can motivate students to exer- 
cise the process of discovery. Here we should only 
stress the need to see exploration and discovery as 
essential mathematical activities to be practised. 
Traditionally, this has not been so - teaching and 
learning have been almost wholly concerned with 
the transmission and reception of accepted mathe- 
matical facts. However, now, for example, computer 
symbolic mathematical systems (see the chapter by 
Hodgson and Muller) permit such rapid and flaw- 
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less processing of non- trivial examples that it is at a time when teachers will still be fighting hard 
easy first to look for patterns which suggest con- to gain new skills and acquire confidence in them. 
jectures and generalisations, and then to search for It would be foolish to underestimate the challenge 
counterexamples or machine-aided proofs. this presents. 

Computers then can greatly assist us in extend- 
ing the range and the depth of students’ mathemat- 
ical activities. In some approaches the students will 
write their own programs (and there will be an at- 
tendant risk that mathematical aims may become 
obscured by some of the programming problems); 
in others students will use prepared software. Both 
approaches have already been shown to be of great 

. value; further investigations into both will now have 
to be continued. 

(b) The role of the teacher 

The computer can be used in two distinct ways 
in the classroom. In one it is an aid for the teacher, 
an electronic blackboard - more powerful than the 
traditional blackboard, the overhead projector, or a 
calculating machine - but nevertheless a tool whose 
output is almost entirely under the teacher’s con- 
trol. In this role the computer does not upset the 
traditional balance in the classroom. It will still 
demand effort on the teacher’s part to select or pro- 
vide suitable software and it can give rise to ex- 
tra administrative problems; in return it should en- 
hance learning. However, it will not revolutionise 
the classroom. 

If, however, students are allowed and expected to 
interact with computers, then the position changes, 
for this leads of necessity to a change of method- 
ology. The teacher no longer has total control - 
his/her role can no longer be limited to exposi- 
tion, task-setting and marking. The format ‘lecture- 
examples, homework-exam’ must be augmented by, 
for example, ‘project (through interaction between 
student, machine and teacher) assessment on the 
basis of a completed (and possibly debugged) as- 
signment’. 

Probably the teacher must combine diverse uses 
of the computer. Some activities fit well with the 
‘blackboard computer’; some others will be more 
efficient if each student has the opportunity to in- 
teract with the computer. 

The acquisition of new skills will be time- 
consuming and constantly changing hardware and 
software will make the process a continuing one. For 
many mathematicians these new skills will be read- 
ily usable in their research work. Others may be 
tempted - particularly when universities and other 
educational institutions are under pressure - to feel 
that such time would be more profitably spent in 
increasing personal research output, rather than 
in improving their teaching, particularly if this re- 
quires such a large step in the dark. 

Computer usage is still actively avoided by many 
mathematicians and by many mathematics teach- 
ers. The problem at the tertiary level is particu- 
larly great, for the gulf between the traditional lec- 
ture often given to a hundred or more students and 
the classroom/laboratory in which students interact 
with computers is enormous. To bridge this gulf will 
need considerable investment in both material and 
human resources. Time, assistance and in-service 
training will have to be provided on a scale un- 
precedented at this level. Particular attention will 
have to be directed at those teachers who still have 
many years - even decades - to go before they re- 
tire from teaching. First, however, the necessity for 
change will have to be accepted, and this will only 
come through clear, unequivocal demonstration of 
the benefits which can accrue from innovation. 

The current problem now is to make all teach- 
ers able to use computers in teaching, or to know 
why they will not use them! This leads to different 
problems: 

l The availability of computers in the teachers’ en- 
vironment: Can they easily find and use a com- 
puter at home for preparing their teaching and 
elaborating activities? Can they easily find and 
use a computer in the school? Are computers 
easily available in classrooms? 

Such a change would produce a revolution in 
most class- and lecture-rooms. It demands that 
teachers should not only acquire new knowledge, 
skills and confidence in the use of hardware and 
software, but that they should also radically change 
their present aims and emphases, and accept a less- 
ening in the degree of control which they presently 
exert over what happens in their classrooms. This 
last demand means a sacrifice of traditional security, 

l The user-friendliness of hardware and software: 
Will it take hours and hours to prepare a lesson 
with computers, and will very specialised abili- 
ties to use such software be needed? 

l The integration of the computer in the teach- 
ing strategy and in the learning environment. 
The computer is a tool among others, and its 
use must be integrated in a pedagogical strat- 
egy. Text,books, homework and all the activities 
of the learner must take this into account. 
The computer does not only change the teacher’s 

role, but also the attitude and activities of the 
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students. The relationship is not only between 
the teacher and the learner: The computer takes 
its place in the relation, and it also develops the 
group work and the project activities. Learning 
from pupil-pupil talk is one of the components of 
the learning environments provided by new tech- 
nologies. Different types of environments, differ- 
ent teaching methods and different strategies can 
be used by teachers. Computers change the organ- 
isation of education, and give teachers the role of a 
pedagogical-engineer in elaborating their strategy, 
in preparing their teaching, in choosing among the 
resources available and the tools and products they 
will use. 

3.3 Some particular uses of the computer in 
the classroom 

(b) Many types of utilities are available for use 
in teaching. Spreadsheets are the best known ex- 
ample. They provide a good environment for intro- 
ducing many concepts in arithmetic, algebra, and 
even calculus. At a very elementary level, they per- 
mit interesting activities about the concepts of vari- 
ables, parameters, unknowns, etc. They also pro- 
vide nice illustrations of iteration. They are increas- 
ingly used in teaching. 

We have already remarked on the way in which 
computers can assist in the introduction, develop- 
ment and reinforcement of mathematical concepts, 
in building up intuition and insight, etc. In this sec- 
tion we look at particular ways in which they can 
be used within the classroom. 

(c) Databases are now more easily accessible. 
They suggest documentation activities, they allow 
students to look for sophisticated information and 
so develop project work. They also give teachers the 
possibility to use or build large sets of exercises and 
activities. The distant interrogation of databases is 
now common and enlarges the resources for teach- 
ers. 

(a) Graphic possibilities 

Many of the applications of computers in teach- 
ing make use of the possibilities provided for graphic 
display. There can be no doubt about their value in 
providing quickly good quality graphic illustrations 
which can help build intuition. The example of or- 
dinary differential equations such as z’ = z2 - t, 
whose solutions cannot be written down in elemen- 
tary terms, is now widely known and used: Visu- 
alising the field of tangents and visualising many 
solutions of the equation make the student better 
able to understand the concepts which intervene in 
this domain. Moreover, this allows them to discuss 
exciting questions concerning the behaviour of solu- 
tions. 

(d) Artificial intelligence and problem-solv- 
ing tools are developing. The first step is to have 
software and tools able to solve mathematical prob- 
lems. The second step is to produce software able 
to help students in problem solving. 

Where the computer scores over many other me- 
dia is that graphics capabilities now enable move- 
ment as well as static diagrams to be portrayed. 
This, of course, was true of the film. Yet now the 
possibility of being able to change parameters adds a 
completely new dimension to the teaching/learning 
experience. 

(e) Hypermedia and multimedia products: 
These allow the integration of different media, and 
their combination for educational uses. They al- 
low activities which are not ‘linear’, but in which 
users may build their own paths and organise their 
own learning. They considerably enrich other ed- 
ucational tools, linking and making simultaneously 
available all existing types of software and other ed- 
ucational technology products. We surmise that in 
the future this domain will provoke great changes in 
the use of technology in education. 

(f ) Self-evaluation and individualised in- 
struction 

Much interesting and high quality graphic soft- 
ware is now available and allows visual representa- 
tions from areas such as calculus, differential equa- 
tions, linear algebra, numerical analysis, and geom- 
etry. 

One of the advantages of the computer is that it 
helps the individualisation of teaching and learning. 
This is not only because the student can sometimes 
work alone with the computer, but mostly because 
the computer can help to provide a teaching envi- 
ronment which matches the needs of each student 
~ the way he learns, the right speed for her, the 
appropriate activities. 

A famous example in geometry is that of Cabri- The computer can provide a tool for self- 
GeometrC which allows pupils to draw geometrical evaluation and can help students to take charge of 

figures very easily, and to modify them by moving 
some elements (points, lines, etc.), and see at the 
same time how the figure evolves. Invariants and 
loci can be visualised in a very user-friendly way. 
Such software can be used by the teacher for demon- 
strating or by the students in an interactive way. 
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the organisation of their own work. It is a diffi- 
cult problem for students to judge how well they 
are coping with a subject. One use of comput- 
ers is to enable students to test themselves. Ques- 
tion banks can be made available and instantaneous 
scores given. 

The advantages of Computer-assisted Learning 
(CAL) for individualised instruction have, of course, 
been argued for some twenty years, namely that the 
computer can offer non-threatening, individualised 
responses to students. There have, indeed, been sev- 
eral demonstrations of the value of CAL, for exam- 
ple, PLATO in the USA. However, as the cognitive 
complexity of what has to be learned increases, the 
difficulties of producing adequate software become 
very great. 

The problems become less pronounced when the 
aim of the program is to revise or to exercise and not 
to teach. Thus ‘Recalling Algebra’ and ‘Recalling 
Mathematics’ (Kinch) are examples of software de- 
signed to help students prepare for the Entry Level 
Mathematics Exam at California State University 
which have been favourably received. 

More and more, educational software includes a 
“counsellor”, helping the student to make his or her 
way through the activities of the software, evaluat- 
ing him or her, and individualising the activities. 

(g) Assessment and Recording 

The computer can be used for testing students’ 
progress. Some software employs the random gen- 
eration of test items. Such testing can, of course, 
go far beyond reliance on multiple choice items and 
can measure responses other than correct and in- 
correct. Such newer testing procedures, which can 
be designed to capitalise on the graphic potentiali- 
ties of the computer, can reduce testing time, allow 
tests to be broken off and resumed at any time, of- 
fer immediate summaries and analyses, and assign 
specific help for identified deficiencies. 

The obvious disadvantages include preparation 
costs and the need to provide ready access to a com- 
puter. Open-ended testing of projects or personal 
problem solving is at present difficult, but begin- 
nings are being made. Computer-assisted recording 
also has great potential. 

A computer at home, or a computer easily usable 
at school, enables students to use individualised sets 
of data for homework or assessments 

Very interesting examples of ‘learning credit 
cards’ are being experimented with: The card con- 
tains information about the learner, and gives him 
or her access to appropriate software and activities. 

(h) Pocket calculators must be mentionned 
here. Even if their possibilities are small in com- 
parison with computers, they are improving very 
rapidly: We now have calculators with graphic 
possibilities and even with symbolic capabilities. 
And the permanent availability of pocket calcula- 
tors gives them great power. In many countries, the 
use of pocket calculators in mathematics has been 
introduced into the curricula so that all teachers and 
all pupils use calculators. 

(i) Student errors 

Related to the possibilities described above is 
that of investigating the errors which students make 
in learning mathematics. Such information can be 
used in two ways: To help the student remove mis- 
conceptions, which is its role in individualised CAL, 
or to help the mathematics educator to identify spe- 
cific points of difficulty and to design curricula with 
these in mind. Errors are symptoms which allow 
us not only to identify stumbling blocks, but also 
to form an impression of the student’s conceptions. 
The computer allows students to respond to their 
errors in. a new way: They can identify and con- 
trol them themselves. Getting rid of them can even 
become a motivation for learning. 

One example of the use of the computer to detect 
and correct errors is found in Okon-Rinne’s course- 
ware. This enables a student to choose a basic func- 
tion such as f(z) = 1x1 and then to experiment with 
the effects which translations and reflections have on 
it. Thus the graph can be translated vertically or 
horizontally or reflected in the vertical axis. Simul- 
taneously the function changes to correspond to the 
new graph. The intention is to detect such common 
errors as confusing J(z) = 12-21 with f(z) = l~+21, 
or f(z) = I~+21 with f(z) = ltl+2. When an error 
is detected, a tutorial subroutine is activated and af- 
terwards the student has the option of continuing or 
branching back to an earlier unit. 

3.4 Student responses to work with comput- 
ers 

It is common to talk about the enthusiasm gen- 
erated in students by computer-baaed systems. In 
many experiments, it is claimed that this has re- 
sulted in students developing a new interest in the 
subject and that the general level of student activity 
had increased as a result of reacting with a computer 
package. Not only had activity increased, but so had 
confidence. Dubinsky typically reports (of a course 
on discrete structures): ‘This approach makes for 
a lively course in which students are responsive in 
class and active outside class. In comparison with 
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similar groups to whom I have tried to teach this 
material, these students seem to be more prone to 
speak in terms of sets and less confused by compli- 
cated logical statements’. 

It must not be thought, however, that enthusi- 
asm can be automatically generated through the use 
of a computer. Much will depend on the students 
and the teaching situation; there are also negative 
experiences to report! One must also judge on how 
much students learn as well as the enthusiasm they 
show whilst engaged on the task. 

Here one is faced with a new problem in teach- 
ing. Students can frequently appear fascinated by 
computer demonstrations or by working interac- 
tively with a computer, but what happens ‘when 
the machine is switched off’? Will the students only 
be able to imitate what they have seen or will they 
obtain a deeper understanding of concepts? 

It is recognised that the value of much computer 
work is largely dependent upon the follow-up activ- 
ities which ‘must guard against the possibility that 
the machine is doing all the work and providing all 
the answers’. Many traditional activities will still 
have to be carried out, thus suggesting yet again 
that the computer’s main contribution will be to en- 
hance student understanding and not to save time 
for the lecturer. The introduction of the computer 
is unlikely to solve (or even ease) the problem of 
overloaded syllabuses. 

3.5 The provision of software 

The way software is conceived and designed 
evolves very quickly. The progress of technology 
and the development of multimedia tools enriches 
the possibilities for pedagogical uses. The roles of 
teachers, of pedagogs and of computer scientists in 
software design has evolved. Very user-friendly sys- 
tems allow any teacher to create teaching situations 
with computers. 

Current software resources may be considered in 
several categories: 

(a) Sophisticated systems (in computer terms) 
such as the symbolic manipulation systems, large 
statistical packages, etc., form the first category. 
These systems have been developed in a ‘goal- 
oriented’ fashion, that is they seek to provide solu- 
tions to specific mathematical problems. They have 
not needed to consider to any great extent ‘peda- 
gogical design’. Interest in their use as pedagogical 
tools is growing. 

Commercial companies exist with an interest 
in marketing this type of software and research 

mathematicians are involved in creating such sys- 
tems. As a result, sophisticated packages are self- 
perpetuating, Since they will exist, we need to un- 
derstand their pedagogical uses and the possibly 
dramatic effects they could have on current mathe- 
matics education. 

(b) Less sophisticated in computer terms but 
still very demanding in pedagogical design are the 
software packages suitable for use on a microcom- 
puter. These packages attempt to aid the stu- 
dent’s mathematical development and employ such 
themes as visualisation, simulation, exploration and 
problem-solving. They may be used by students 
working alone, in groups, or with a teacher. Many 
individuals and groups are writing such packages. 
Many are also provided by educational software 
companies. 

A major problem arises here. The production of 
packages that can be recommended for widespread 
use as pedagogically sound and well-tested is an 
expensive, complicated task requiring considerable 
professional resources. It should involve fundamen- 
tal research based on the structured observation of 
the materials in use in parallel with the develop- 
ment of the materials. Thus the team may need to 
include mathematicians, educators, psychologists, 
computer scientists, graphic designers, publishers 
and editors. The financial needs of such a group 
would be considerable. 

(c) General purpose programming languages can 
be used as tools aiding students’ mathematical de- 
velopment and are a readily available teaching re- 
source. Extension of such languages or even cre- 
ation of new ones expressly for this purpose would 
be welcome. 

This brief discussion of the present position 
points out the need (i) to establish channels of com- 
munication so that researchers and educators are 
aware of resources currently available and (ii) to es- 
tablish structured research studies using currently 
available resources in order to gain and share un- 
derstanding of their use as pedagogical tools. 

The emergence of software packages has raised 
a new problem for mathematics teachers, that of 
black boxes, for they often/usually produce answers 
without giving any hint of the way in which they 
were obtained. This may well conceal a wealth of 
deep mathematics. (It could, of course, be argued 
that the problem is not new, but merely heightened - 
for students have been employing algorithms whose 
workings they did not understand for centuries!). 

How can students learn (be taught/encouraged) 
to look critically at the answers supplied? How 
much should students be required to know about 
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the workings of black-boxes before being allowed to 
use them? For example, there are packages which 
invert matrices. If such a package uses floating-point 
arithmetic, it can give answers which should not be 
accepted at face value. At least students should be 
warned about this or, better, should learn to recog- 
nise when this has occured. 

3.6 Cultural, social and economic factors 

We have written of the computer as an aid to 
mathematics teaching and learning. So is the over- 
head projector. The difference though between the 
two tools is not, however, solely the enormous dif- 
ference in the range of possibilities opened up by 
the former. Equally, it springs from the enormous 
effect which the computer is having upon society 
outside the confines of educational systems. As a 
result society has expectations concerning comput- 
ers and their use, expectations which often have lit- 
tle basis in reality. Students too have expectations 
about their use. There are then enormous pressures 
on educators at all levels to use computers, not nec- 
essarily for their intrinsic value, but because society 
expects it, and not because to do so might be con- 
sidered old-fashioned and reactionary. 

It will be difficult for computers to be used effec- 
tively in education until society has become better 
informed about their power and limitations. Un- 
realistic expectations must be strongly discouraged. 
There is a danger that false advertising by computer 
companies and software developers, and a pressure 
from various sections of society, could lead to ill- 
designed, over-optimistic innovation and, in turn, 
to a backlash comparable with that of the 1970s 
resulting from the hasty introduction of the ‘New 
Math’. Political decision makers in some countries 
are ‘pushing’ computers and computer-related cur- 
ricula into education without adequate considera- 
tion of objectives and consequences. 

It is important, therefore, to realise that: 
l reasonable use of computers in education re- 

quires software programs and packages whose 
educational standards and qualities are compa- 
rable with the technical ones offered by the avail- 
able hardware, 

l integrating computers into the curriculum must 
be coordinated with teacher/faculty in-service, 
professional development programs, 

l educational budgets must be prepared to permit 
appropriate expenditure on hardware, software, 
and teacher development, 

l no curriculum should remain stagnant for a long 
period. 

Not all problems associated with computers in 
education can be anticipated. Many questions 
need to be answered through research initiatives di- 
rected at investigating the possibilities, limitations 
and possible dangers of computer use in education. 
Some causes for concern are: 

uniformity in students’ thinking and reasoning 
could arise from overuse of computers in the 
learning process, 
standardisation of software development (in an 
attempt to form a commercial market) may lead 
to mediocrity and conformity, 
subtleties of communication between teachers 
and students could be impoverished by over- 
using computers, 
insensitive working with computers could ad- 
versely influence the total intellectual develop- 
ment of students (of their intuitive thinking, cre- 
ativity, perception, etc.). 
The case of developing countries demands spe- 

cial attention. For them the provision and mainte- 
nance of hardware creates great problems. More- 
over, scarce resources must be husbanded carefully. 
The computer could offer special advantages to 
them; on the other hand the absence or shortage of 
computers could widen still further the gap between 
them and the developed countries. Several confer- 
ences have considered the question of new technolo- 
gies in education for developing countries (see, for 
example, Amara, Boudriga and Harzallah, 1986). 

3.7 Conclusion 

We are only experiencing the very beginning of 
the effect of computers on the teaching and learn- 
ing of mathematics. Gradually, we are beginning 
to take advantage of some of their more obvious 
possibilities such as their quick and accurate prc+ 
duction of graphical material, their quick and accu- 
rate (though not always precise) arithmetic, analyse 
large quantities of data. 

In numerous publications one can see examples 
of mathematical situations for which the computer 
and informatics allow us to see and approach situa- 
tions from a new point of view. Obvious examples 
which spring to mind are the many applications in 
statistics (dealing with vast quantities of data), in 
probability (with all the possibilities opened up for 
simulation by pseuderandom number generators); 
in geometry, too, there is a range of interesting ac- 
tivities - production and processing of images, curve 
plotting, the transformation of images (translations, 
reflections, etc.), loci, exploration of images and fig- 
ures. The dynamic aspect dominates here: One can 
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visualise instantly the effect of varying a parameter. 
In linear algebra, an algorithmic approach furnishes 
a tool both for calculations and also for demon- 
stration. Here again the dynamic aspect plays an 
important role: To see a matrix steadily assume a 
diagonal form is very different from obtaining the 
result once and for all after a long and involved cal- 
culation. But it .is above all in analysis that the 
opportunities to utilise informatics are richest and 
most numerous. The study of numbers, of func- 
tions, of the solution of equations, observation and 
study of sequences and series (and in particular of 
their speed of convergence), integral calculus, differ- 
ential equations, asymptotic expansions, discretisa- 
tion, power series for functions, etc. In addition to 
these ‘classical’ fields where the use of the computer 
arises naturally, one has also seen developments in 
newer fields which have occurred largely because of 
computers: Formal symbolic logic is a striking in- 
stance; discrete mathematics can provide us with 
other examples. The computer is not only an aid 
for computation and demonstration, but a force for 
development. 

In all of these cases, the contribution of the com- 
puter takes several forms. Firstly, it is a calculating 
tool allowing numerous and rapid calculations; it 
also serves to place renewed emphasis on numeri- 
cal methods, and thus on the study of algorithms; 
and, especially, it is a pedagogical tool for promot- 
ing teaching and learning. 

However, let us reiterate, the act of using a com- 
puter does not automatically lead to an improve- 
ment. It is not a magic wand! Like all tools, it can 
serve us badly; we must learn how to get the best 
from it. 

The development of technology (computers be- 
coming smaller and cheaper) and the development 
of new tools (such as multimedia ones) will certainly 
provoke very large changes in education. Complex 
learning environments and integrated software will 
become more and more available. The technology 
age in education is still to come! 

Computers are now widely to be found in schools 
and universities, but they are not always widely 
used. Teachers are being trained in their use, but 
principally in techniques and programming, and the 
question of giving them a true pedagogical training 
is not totally solved. It is also necessary to bear 
in mind that if we wish to change the educational 
system, then there will be a need simultaneously to 
reform both the training given to those preparing to 
teach in schools and universities and also the con- 
tinuing education of existing teachers. Many inter- 
esting and rich experiments have been done, many 

enthusiastic teachers have produced activities and 
tools, and have tried new pedagogical strategies us- 
ing computers. We now need to have ALL teachers 
able to use computers as a natural tool, and to in- 
tegrate them into their teaching. 

At the same time there is the need to carry out 
much research and experimentation so that we may 
effectively understand and control the impact of the 
use of the computer on students’ learning and on 
their conceptions and representations of mathemat- 
ical objects, Only after such studies will we be able 
to provide high quality software and, most impor- 
tantly, a new range of didactical activities, tasks and 
situations to enhance learning. 
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LIVING WITH A NEW MATHEMATICAL SPECIES 
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Computers are both the creature and the creator 
of mathematics. They are, in the apt phrase of Sey- 
mour Papert, “mathematics-speaking beings.” J. 
David Bolter, in his stimulating book Turing’s Man 
[Bolter, 19841, calls computers “embodied mathe- 
matics.” Computers shape and enhance the power 
of mathematics, while mathematics shapes and en- 
hances the power of computers. Each forces the 
other to grow and change, creating, in Thomas 
Kuhn’s language, a new mathematical paradigm. 

Until recently, mathematics was a strictly hu- 
man endeavor. But suddenly, in a brief instant on 
the time scale of mathematics, a new species has 
entered the mathematical ecosystem. Computers 
speak mathematics, but in a dialect that is difficult 
for some humans to understand. Their number sys- 
tems are finite rather than infinite; their addition is 
not commutative; and they don’t really understand 
“zero,” not to speak of “infinity.” Nonetheless, they 
do embody mathematics. 

The core of mathematics is changing under the 
ecological onslaught of mathematics-speaking com- 
puters. New specialties in computational complex- 
ity, theory of algorithms, graph theory, and formal 
logic attest to the impact that computing is hav- 
ing on mathematical research. As Arthur Jaffe has 
argued so well (in [Jaffe, 1984]), the computer rev- 
olution is a mathematical revolution. 

New Mathematics for a New Age 

Computers are discrete, finite machines. Unlike 
a Turing machine with an infinite tape, real ma- 
chines have limits of both time and space. Theirs is 
not an idealistic Platonic mathemat,ics, but a math- 
ematics of limited resources. The goal is not just to 
get a result, but to get the best result for the least ef- 
fort. Optimization, efficiency, speed, productivity- 
these are essential objectives of modern computer 
mathematics. 

Computers are also logic machines. They em- 
body the fundamental engine of mathematics- 
rigorous propositional calculus. The first celebrated 
computer proof was that of the four-color theorem: 
the computer served there as a sophisticated ac- 
countant, checking out thousands of cases of reduc- 
tions. Despite philosophical alarms that computer- 
based proofs change mathematics from an a pri- 
ori to a contingent, fallible subject (see, e.g., [Ty- 
moczko, 1979]), careful analysis reveals that noth- 
ing much has really changed. The human practice 

of mathematics has always been fallible; now it has 
a partner in fallibility. 

Research on the so-called Feigenbaum constant 
reveals just how far this evolution has progressed in 
just a few years: computer-assisted investigations 
of families of periodic maps suggested the presence 
of a mysterious universal limit, apparently indepen- 
dent of the particular family of maps. Subsequent 
theoretical investigations led to proofs that are true 
hybrids of classical analysis and computer program- 
ming [Eckmann, 19841, showing that computer- 
assisted proofs are possible not just in graph theory, 
but also in functional analysis. 

Computers are also computing machines. By 
absorbing, transforming, and summarizing massive 
quantities of data, computers can simulate reality. 
No longer need the scientist build an elaborate wind 
tunnel or a scale model refinery in order to test en- 
gineering designs. Wherever basic science is well 
understood, computer models can emulate physical 
processes by carrying out instead the process im- 
plied by mathematical equations. Whereas mathe- 
matical models used to be primarily tools used by 
theoretical scientists to formulate general theories, 
now they are practical tools of enormous value in 
the everyday world of engineering and economics. 

It has been just over fifty years since Alan Turing 
developed his seminal scheme of computability [Tur- 
ing, 19361 in which he argued that machines could 
do whatever humans might hope to do. In abstract 
terms, what he proposed was a universal machine of 
mathematics (see [Hodges, 19831 for details). It took 
two decades of engineering effort to turn Turing’s 
abstract ideas into productive real machines. Dur- 
ing that same period abstract mathematics flour- 
ished, led by Bourbaki, symbolized by the “gener- 
alized abstract nonsense” of category theory. But 
with abstraction came power, with rigor came cer- 
tainty. Once real computers emerged, the complex- 
ity of programs quickly overwhelmed the informal 
techniques of backyard programmers. Formal meth- 
ods became de rigueur; even the once-maligned cat- 
egory theory is now enlisted to represent finite au- 
tomata and recursive functions (see, e.g., [Beckman, 
19841, [Lewis, 19811). 0 nce again, as happened be- 
fore with physics, mathematics became more effica- 
cious by becoming more abstract. 

33 
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The Core of the Curriculum 

Twenty-five years ago in the United States 
the Committee on the Undergraduate Program in 
Mathematics (CUPM) issued a series of reports that 
led to a gradual standardization of curricula among 
undergraduate mathematics departments [CUPM, 
19651. Shortly thereafter, in 1971, Garrett Birkhoff 
and J. Barkley Rosser presented papers at a meeting 
of the Mathematical Association of America con- 
cerning predictions for undergraduate mathemat- 
ics in 1984. Birkhoff urged increased emphasis on 
modelling, numerical algebra, scientific computing, 
and discrete mathematics. He also advocated in- 
creased use of computer methods in pure ‘math- 
ematics: “Far from muddying the limpid waters 
of clear mathematical thinking, [computers] make 
them more transparent by filtering out most of the 
messy drudgery which would otherwise accompany 
the working out of specific illustrations.” [Birkhoff, 
1972, p. 6511 R osser emphasized many of the same 
points, and warned of impending disaster to un- 
dergraduate mathematics if their advice went un- 
heeded: “Unless we revise [mathematics courses] 
so as to embody much use of computers, most of 
the clientele for these courses will instead be taking 
computer courses in 1984.” [Rosser, 1972, p. 6391 

In the first decade after these words were writ- 
ten, U.S. undergraduate and graduate degrees in 
mathematics declined by 50%. The clientele for 
traditional mathematics migrated to computer sci- 
ence, and the former CUPM consensus all but dis- 
appeared. In 1981 CUPM issued a new report, this 
one on the Undergraduate Program in Mathemat- 
ical Sciences ([CUPM, 19811, reprinted in [CUPM, 
19891). Beyond calculus and linear algebra, they 
could agree on no specific content for the core of a 
mathematics major: “There is no longer a common 
body of pure mathematical information that every 
[mathematics major] should know.” 

The symbol of reformation became discrete 
mathematics. Anthony Ralston argued forcefully 
the need for change before both the mathematics 
community [Ralston, 19811 and the computer sci- 
ence community [Ralston, 19801. Discret.e math- 
ematics, in Ralston’s view, is the central link be- 
tween the fields. The advocacy of discrete math- 
ematics rapidly became quite vigorous (see, e.g., 
[Kemeny, 19831, [Ralston, 1983,] and [Steen, 1984]), 
and the Sloan Foundation funded experimental cur- 
ricula at six institutions to encourage development 
of discrete-based alternatives to st,andard freshman 
calculus. The impact of this work can be seen in 
the growth of courses and publicat,ions: in the five 
year period from 1985 to 1990, hundreds of courses 

were created and over 40 new textbooks in discrete 
mathematics were published. 

Soon calculus itself came under scrutiny, as a 
natural force for counter-reformation. Critics ar- 
gued that the power of computation and the ubiq- 
uity of applications had changed fundamentally the 
role of calculus in the practice of mathematics (e.g., 
[Douglas, 1986; Steen, 19881). The National Science 
Foundation launched diverse projects to reshape the 
nature of calculus instruction. Virtually all of these 
projects feature supporting roles for the numeric, 
symbolic, and graphic power of computers. 

The need for consensus on the contents of un- 
dergraduate mathematics is perhaps the most im- 
portant issue facing American college and univer- 
sity mathematics departments [CUPM, 19891. On 
the one hand departments that have a strong tra- 
ditional major often fail to provide their students 
with the robust background required to survive the 
evolutionary turmoil in the mathematical sciences. 
Like the Giant Panda, these departments depend for 
survival on a dwindling supply of bamboo-strong 
students interested in pure mathematics. On the 
other hand, departments offering flabby composite 
majors run a different risk: by avoiding advanced, 
abstract requirements, they often misrepresent the 
true source of mathematical knowledge and power. 
Like zoo-bred animals unable to forage in the wild, 
students who have never been required to master 
a deep theorem are ill-equipped to master the sig- 
nificant theoretical complications of real-world com- 
puting and mathematics. 

Computer Literacy 

Mathematical scientists at American institutions 
of higher education are responsible not only for the 
technical training of future scientists and engineers, 
but also for the technological literacy of the edu- 
cated public-of future lawyers, politicians, doctors, 
educators, and clergy. Public demand that college 
graduates be prepared to live and work in a com- 
puter age has caused many institutions to introduce 
requirements in quantitative or computer literacy. 

In 1981 the Alfred P. Sloan Foundation initiated 
curricular exploration of “the new liberal arts,” the 
role of applied mathematical and computer sciences 
in the education of students outside technical fields. 
“The ability to cast one’s thoughts in a form that 
makes possible mathematical manipulation and to 
perform that manipulation . . . [has] become essen- 
tial in higher education, and above all in liberal ed- 
ucation.” [Koerner, 1981, p, 61 Ot,hers echoed this 
call for reform of liberal education. David Saxon, 
President of the University of California wrote in 
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a Science editorial that liberal education “will con- cover a broad and varied spectrum, from business- 
tinue to be a failed idea aa along as our students oriented data processing curricula, through manage- 
are shut out from, or only superficially acquainted ment information science, to theoretical computer 
with, knowledge of the kinds of questions science science. All of these intersect with the mathematics 
can answer and those it cannot.” [Saxon, 19821 curriculum, each in different, ways. 

Too often these days the general public views 
computer literacy as a modern substitute for math- 
ematical knowledge. Unfortunately, this often leads 
students to superficial courses that emphasize vo- 
cabulary and experiences over concepts and princi- 
ples [Steen, 1985). The advocates of computer lit- 
eracy conjure images of an electronic society dom- 
inated by the information industries. Their slogan 
of “literacy” echoes traditional educational values, 
conferring the aura but not the logic of legitimacy. 

Typical courses in computer literacy are filled 
with ephemeral details whose intellectual life will 
barely survive the students’ school years. These 
courses contain neither a Shakespeare nor a Newton, 
neither a ‘Faulkner nor a Darwin; they convey no 
fundamental principles nor enduring truths. Com- 
puter literacy is more like driver education than like 
calculus. It teaches students the prevailing rules of 
the road concerning computers, but does not leave 
them well-prepared for a lifetime of work in the in- 
formation age. 

To help clarify these conflicting approaches, 
Mary Shaw of Carnegie Mellon University put to- 
gether a composite report on the undergraduate 
computer science curriculum. This report is quite 
forceful about the contribution mathematics makes 
to the study of computer science: “The most im- 
portant contribution a mathematics curriculum can 
make to computer science is the one least likely to 
be encapsulated as an individual course: a deep ap- 
preciation of the modes of thought that characterize 
mathematics.” [Shaw, 1984, p. 551 

The converse is equally true: one of the more 

Algorithms and data structures are to computer 
science what functions and matrices are to math- 
ematics. As much of the traditional mathematics 
curriculum is devoted to elementary functions and 
matrices, so beginning courses in computing--by 
whatever name--should stress standard algorithms 
and typical data structures. As early as students 
study linear equations they could also learn about 
stacks and queues; when they move on to conic sec- 
tions and quadratic equations, they could in a par- 
allel course investigate linked lists and binary trees. 

important contributions that computer science can 
make to the study of mathematics is to develop in 
students an appreciation for the power of abstract 
methods when applied to concrete situations. Stu- 
dents of traditional mathematics used to study a 
subject called “Real and Abstract Analysis;” stu- 
dents of computer science now can take a course 
titled “Real and Abstract Machines.” In the for- 
mer “new math,” as well as in modern algebra, stu- 
dents learned about relations, abstract versions of 
functions; today business students study “relational 
data structures” in their computer courses, and ad- 
vertisers tout “fully relational” as the latest innova- 
tion in business software. 

Computer languages can (and should) be stud- 
ied for the concepts they represent-procedures in 
Pascal and C, recursion and lists in Lisp-rather 
than for the syntactic details of semicolons and line 
numbers. They should not be undersold as mere 
technical devices for encoding problems for a dumb 
machine, nor oversold as exemplars of a new form 
of literacy. Computer languages are not modern 
equivalents of Latin or French; they do not deal in 
nuance and emotion, nor are they capable of per- 
suasion, conviction, or humor. Although computer 
languages do represent a new and powerful way to 
think about problems, they are not a new form of 
literacy. 

An interesting and pedagogically attractive ex- 
ample of the power of abstraction made concrete can 
be seen in the popular electronic spreadsheets that 
are marketed under such trade names as Lotus and 
Excel. Originally designed for accounting, they can 
as well emulate cellular automata or the Ising model 
for ferromagnetic materials [Hayes, 19831. They 
can also be “programmed” to carry out most stan- 
dard mathematical algorithms--the Euclidean al- 
gorithm, the simplex method, Euler’s method for 
solving differential equations [Arganbright, 19851. 
An electronic spreadsheet--the archetype of ap- 
plied computing-is a structured form for recur- 
sive procedures--the fundamental tool of algorith- 
mic mathematics. It is a realization of abstract 
mathematics, and carries with it much of the power 
and versatility of mathematics. 

Computers in the Classroom 

Computer Science 

In the United States, computer science programs 

Just as the introduction of calculators upset the 
comfortable pattern of primary school arithmetic, 
so the spread of computers will upset the traditions 
of secondary and tertiary mathematics. This year 
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long division is passe; next year integration will be of rules and template-driven tests (see e.g., [Smith, 
under attack. 1988; Zorn, 19871). 

The impact of computing on secondary school 
mathematics has been the subject of many discus- 
sions in the United States (e.g., [Steen, 19871). Jim 
Fey, coordinator of two assessments ([Corbitt, 1985; 
Fey, 1984]), described these efforts as “an unequivc+ 
cal dissent from the spirit and substance of efforts to 
improve school mathematics that seek broad agree- 
ment on conservative curricula.” [Fey, 1984, p. viii] 
The new Curriculum and Evaluation Standards for 
School Mathematics [NCTM, 19891 of the National 
Council of Teachers of Mathematics as well as other 
recommendations from the U.S. National Academy 
of Sciences ([NRC, 1989; MSEB, 19901) set expec- 
tations for school mathematics that employ calcula- 
tors and computers in every appropriate manner. 

Teachers in tune with the computer age seek 
change in both curriculum and pedagogy. But the 
inertia of the system remains high. For example, 
the 1982 International Assessment of Mathematics 
documented that in the United States calculators 
are never permitted in one-third of the 8th grade 
classes, and rarely used in all but 5% of the rest 
[McKnight, 19871. Recent data [NAEP, 19911 show 
some improvement, but still fall well short of the 
NCTM recommendations. 

It is commonplace now to debate the wisdom 
of teaching skills (such as differentiation) that com- 
puters can do as well or better than humans. Is 
it really worth spending one month of every year 
teaching half of a country’s 18-year-old students 
how to imitate a computer? What is not yet so 
common is to examine critically the effect of ap- 
plying to mathematics pedagogy computer systems 
that are themselves only capable of following rules 
or matching templates. Is it wise to devise sophisti- 
cated computer systems to teach efficiently precisely 
those skills that computers can do better than hu- 
mans, particularly those skills that make the com- 
puter tutor possible? In other words, since com- 
puters can now do the calculations of algebra and 
calculus, should we use this power to reduce the 
curricular emphasis on calculations or to make the 
teaching of these calculations more efficient? This 
is a new question, with a very old answer. 

Let Us Teach Guessing 

Laptop computers are now common-they cost 
about as much as ten textbooks, but take up only 
the space of one. Herb Wilf argues (in [Wilf, 19821) 
that it is only a matter of time before students will 
carry with them a device to perform all the al- 
gorithms of undergraduate mathematics. Richard 
Rand, in a survey [Rand, 19841 of applied research 
based on symbolic algebra agrees: “It will not be 
long before computer algebra is as common to engi- 
neering students as the now obsolete slide rule once 
was.” Just five years after Wilf’s article appeared, 
the same journal carried a review [Nievergelt, 19871 
of the first pocket calculator with symbolic algebra 
capabilities. 

Forty years ago George P6lya wrote a brief pa- 
per with the memorable title “Let Us Teach Guess- 
ing” [Pblya, 19501. It is not differentiation that our 
students need to learn, but the art of guessing. A 
month spent learning the rules of differentiation re- 
inforces a student’s ability to learn (and live by) 
the rules. In contrast, time spent making conjec- 
tures about derivatives will teach a student some- 
thing about the art of mathematics and the science 
of order. 

Widespread use of computers that do school and 
college mathematics will challenge standard educa- 
tional practice [Steen, 19901. For the most part, 
computers reinforce the student’s desire for cor- 
rect answers. In the past, their school uses have 
primarily extended the older “teaching machines:” 
programmed drill with pre-determined branches for 
all possible responses. But the recent linking 
of symbolic algebra programs with so-called “ex- 
pert systems” into sophisticated “intelligent t,utors” 
has produced a rich new territory for imaginative 
computer-assisted pedagogy that advocates claim 
can rescue mathematics teaching from the morass 

With the aid of the mathematics-speaking com- 
puter, students can for the first time learn college 
mathematics by discovery. This is an opportunity 
for pedagogy that mathematics educators cannot af- 
ford to pass up. Mathematics is, after all, the sci- 
ence of order and pattern, not just a mechanism for 
grinding out formulas. Students discovering math- 
ematics gain insight into the discovery of pattern, 
and slowly build confidence in their own ability to 
understand mathematics. Formerly, only students 
of sufficient genius to forge ahead on their own could 
have the experience of discovery. Now with comput- 
ers as an aid, the majority of students can experi- 
ence for themselves the joy of discovery. 

Metaphors for Mathematics 

Two metaphors from science are useful for un- 
derstanding the relation between computer science, 
mat,hematics, and education. Cosmologists long de- 
bat,ed two theories for the origin of the universe- 
the Big Bang theory, and the theory of Continuous 
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Creation. Current evidence tilts the cosmology de- 
bate in favor of the Big Bang. Unfortunately, this 
is all too often the public image of mathematics as 
well, even though in mathematics the evidence fa- 
vors Continuous Creation. 

The impact of computer science on mathemat- 
ics and of mathematics on computer science is the 
most powerful evidence available to beginning stu- 
dents that mathematics is not just the product of 
an original Euclidean big bang, but is continually 
created in response to challenges both internal and 
external. Students today, even beginning students, 
can learn things that were simply not known twenty 
years ago. We must not only teach new mathemat- 
ics and new computer science, but we must teach as 
well the fact that this mathematics and computer 
science is new. That’s a very important lesson for 
the public to learn. 

The other apt metaphor for mathematics comes 
from the history of the theory of evolution. Prior 
to Darwin, the educated public believed that forms 
of life were static, just a~ the educated public of 
today assumes that the forms of mathematics are 
static, laid down by Euclid, Newton, and Einstein. 
Students learning mathematics from contemporary 
textbooks are like the pupils of Linnaeus, the great 
eighteenth-century Swedish botanist: they see a 
static, pre-Darwinian discipline that is neither grow- 
ing nor evolving. Learning mathematics for most 
students is an exercise in classification and memo- 
rization, in labeling notations, definitions, theorems, 
and techniques that are laid out in textbooks as so 
much flora in a wondrous if somewhat abstract Pla- 
tonic universe. 

Students rarely realize that mathematics con- 
tinually evolves in response to both internal and 
external pressures. Notations change; conjectures 
emerge; theorems are proved; counterexamples are 
discovered. Indeed, the passion for intellectual or- 
der combined with the pressure of new problems- 
especially those posed by the computer-force re- 
searchers to continually create new mathematics 
and archive old theories. 

The practice of computing and the theory of 
computer science combine to change mathematics 
in ways that are highly visible and attractive to stu- 
dents. This continual change reveals to students the 
living character of mathematics, restoring to the ed- 
ucated public some of what the experts have always 
known-that mathematics is a living, evolving com- 
ponent of human culture. 
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WHAT ARE ALGORITHMS? WHAT IS ALGORITHMICS? 
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Overview. Roughly speaking, an algorithm is a 
precise, systematic method for solving some class of 
problems. Algorithmics is the systematic study of 
algorithms - how to devise them, describe them, val- 
idate them and compare their relative merits. There 
have been algorithms in mathematics since ancient 
times, but algorithmics is new. Only with the ad- 
vent of computers has it been possible to tackle such 
large and complicated problems that a systematic 
approach to algorithms is necessary. Because al- 
gorithms are now essential in almost all business 
and scientific applications of mathematics (as well 
as being increasingly important to mathematicians 
themselves and fundamentally important to com- 
puter scientists), it is important that mathematics 
education take algorithms and algorithmics into ac- 
count. 

This paper has four sections. In Section 1, by far 
the longest, we explain what algorithms are in much 
more detail, presenting many examples. In Section 
2 we do the same for algorithmics. In Section 3 we 
discuss several reasons why the study of algorithms 
and algorithmics is valuable in mathematics, and 
we also discuss some counterarguments. Finally, in 
Section 4 we make some suggestions for incorporat- 
ing algorithms and algorithmics into the secondary 
and tertiary mathematics curriculum. 

1. What Are Algorithms? 
Algorithms turn input data into output data 

through sequences of actions. For instance, an al- 
gorithm might take two integers and output their 
product. The rules specifying the algorithm (includ- 
ing rules specifying what inputs are allowed) must 
be precise enough to satisfy 

1. Determinateness. For each allowed input, 
the first action is uniquely determined, and 
more generally, after each action in the se- 
quence the successor action is uniquely de- 
termined. 

It doesn’t do us any good to have an algorithm that 
doesn’t stop, so we also require 

2. Finiteness. For any allowed input, the al- 
gorithm must stop after a finite sequence of 
actions. 

Usually algorithms are devised to solve problems. 
Such algorithms must be appropriate for the pur- 
pose at hand: 

3. Conclusiveness. When the algorithm termi- 
nates, it must either output a solution to the 

problem for the given input, or it must indi- 
cate that it cannot solve the problem. 

In some cases it is reasonable to relax these stringent 
requirements; we’ll take up this point later. One 
can also ask: how precise is precise? Just how are 
the rules to be stated to make them precise? Good 
question. It depends on who or what you are talking 
to. We will also address this further. But let’s turn 
immediately to some examples. 

Example 1: Arabic Multiplication 

The traditional paper and pencil algorithm for 
multiplying two numbers expressed in arabic numer- 
als is brilliant. Too bad we all take it for granted. 
It’s brilliant because it reduces a general problem 
to a small subcase - how to multiply two single- 
digit integers - and does so in a small amount of 
space. Here’s the result of applying the algorithm 
to 432 x 378: 

378 

3456 
3024 

1296 

163296 

Each row of intermediate calculation is obtained 
by multiplying the top factor (432) by one digit of 
the bottom factor. If we expand out the first inter- 
mediate row in more detail, we get 

432 
8 

16 
24 (1) 

32 

3456 

Of course, it’s never written this way. To save 
space, the “carries” are either all done mentally, or 
they are marked with small digits as follows: 

3 42516 

We include Display (1) t o make the role of single- 
digit multiplications explicit. For instance, 16 is the 
product of the 2 in 432 by the 8 in 378. 

Now, is this format precise enough for present- 
ing Arabic multiplication? Apparently so, because 
such a format does seem to suffice for teaching the 
algorithm to children (when presented with many 
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examples, lots of oral explanations, and hands-on 
practice). And you do need to make use of dia- 
grams if the physical positioning of symbols on the 
page is part of the algorithm. 

Nonetheless, this is not the format we will use 
for other algorithms, and it is not a good format 
for systematically .verifying the defining conditions 
l-3 above, So we now restate Arabic multiplica- 
tion using “algorithmic language”, a language style 
quite similar to a programming language. (We will 
assume basic familiarity with how such languages 
are to be read, e.g., what a loop is, what an assign- 
ment is.) Actually, we restate only the part shown 
in Display (1) - a multidigit number times a sin- 
gle digit number 
procedures, 

DigMult(a, b) 

The algorithm makes use of two 

which multiplies the single 
digits a and b and returns Ml 
and M,., the left and right dig- 
its of the product. 

DigAdd(u, 6) which adds the single digits a 
and b and returns Al and A,, 
the left and right digits of the 
sum. (Al will be either 0 or 
1.) 

Here’s the algorithm: 

Input ao, al,. , a,,, [the ones, tens,. . , digits 
of an (m+l)-digit number] 

b [the one-digit multiplier] 
Algorithm 

carry +-- 0 
for j = 0 to m 

DigMult(aj, 6) 
DigAdd(M,, carry) [add any carry from 

previous product] 
Pj c A,. [jth digit of the product known] 
DigAdd(Ml, Al) [needed in case the carry 

affects the left digit] 
carry + A,. [carry to the next single- 

digit multiplication] 
endfor 
if carry > 0 then Z’,+l +- carry 

output PO, P,, . . , P,,, and sometimes Pm+1 
[digits of the product] 

This is no doubt hard to follow, but try carry- 
ing it out on the example above. Look at 432 x 7 
(the middle line of the first example), which shows 
why the two lines before “endfor” are needed. That 
this description is hard to follow should bring home 
the point that the Arabic algorit,hm is really quite 

subtle. (For instance, we don’t include a step just 
before endfor to carry Al, because at this point Ai 
is always 0. Do you see why?) 

The advantage of this formulation of the algo- 
rithm is that it is easier to verify that it is an al- 
gorithm. Is it determinate? Yes, because each line 
leaves no doubt about what is to be done, and the 
order of execution is also specified - go down the 
page, except when you get to the end of a loop, go 
back to the beginning. Is it finite? Yes, because 
the loop has only 5 lines, and the loop gets carried 
out m + 1 times. Does it solve the problem? This 
is not so obvious, but the specificity of the lines 
makes it easier to present a proof when it is time to 
get around to that. (We will talk about algorithm 
verification later.) 

Notice that this algorithm involves iteration: 
some subprocess is applied repetitively. In this case 
the subprocess of multiplying two single-digit num- 
bers (and then carrying) was iterated. While an 
algorithm does not have to involve iteration (or a 
related type of repetition called recursion), almost 
all algorithms of interest in mathematics do. 

Example 2: Euclid’s Algorithm 

This one is much older than the first, and also 
much simpler, but perhaps not so well known. It is 
the classical Greek method for finding the greatest 
common divisor (gcd) of two positive integers. It 
assumes you already know how to divide and find 
remainders. The algorithm keeps dividing and find- 
ing a remainder until the remainder is 0. Then the 
previous remainder is the gcd of the original num- 
bers. 

Here is a numerical example. Find the gcd of 
147 and 33. The quotient of 147 divided by 33 is 4 
with remainder 15. That is, 

147 = 33 x 4 + 15. 

So any number that divides 147 and 33 also divides 
15, and conversely, any number that divides 33 and 
15 divides 147. Now, do the same operations to 33 
and 15 that we did to 147 and 33: 15 divides into 33 
with remainder 3. Thus a number divides 33 and 15 
if and only if it divides 15 and 3. But 3 divides into 
15 exactly. So the largest number dividing 3 and 15 
is 3 itself. Thus the gcd of 147 and 33 is 3. 

In algorithmic language, Euclid’s algorithm is 
the following: 
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Input rn, n 
Algorithm 

[integers >= 0] 

num + m; denom + n 
repeat until denom = 0 

quot +- [num/denomJ 
[integer part of num/denom] 

rem + num - quot*denom 
num + denom; denom + rem 

[update num and denom] 
endrepeat 

Output num 

For instance, for the numerical example above, 
initially num(erator) is 147 and denom(inator) is 33. 
Since 33 # 0, we enter the repeat loop, quot(ient) 
is computed as 4 and rem(ainder) as 15. Then 
(33,15) become the new (num,denom) pair. Since 
denom is still not 0, we traverse the loop again, and 
(num,denom) becomes (15,3). At this point, work- 
ing by hand, we immediately recognized that 3 di- 
vides 15, but a computer must “discover” this by 
following the rules. Since 3 # 0, we enter the loop 
again, and update (num,denom) to (3,0). Now de- 
nom = 0 and the algorithm quits, outputting num = 
3 as the gtd. 

Notice there is no factoring in this algorithm. 
Another way to find gcd(m, n) is to factor m and 
n, and then take the product of all common factors. 
This second method is the standard one currently 
taught in elementary schools in North America. For 
small values of m and n, the second method is often 
faster than Euclid’s method, but factoring very large 
numbers is very hard. In general, Euclid’s method 
is the way to go. 

Euclid’s method is an algorithm. Clearly it is 
determinate. It is finite, because rem is always a 
nonnegative integer and gets smaller with each it- 
eration, so eventually it must reach 0 and the algo- 
rithm stops. The algorithm is conclusive (correctly 
determines the gcd) for the reasons we argued in- 
formally above. A formal proof would be by math- 
ematical induction. 

Example 3: Matrix Multiplication 

Let A be an m x n matrix and B an n x p matrix. 
Call the entry of A in row i (down from the top) and 
column j (from the left) aij. Similarly, B = [bjk]. 
Then their product Al3 is defined to be the m x p 
matrix whose (i, L) entry is 

n 

In particular, the (2,l) entry of the product is 

4*7+5*(-5)+6*3=21 

How can we express the definition of matrix multi- 
plication as an algorithm? 

Informally, you just go through each combina- 
tion of a row from A and a column from B and com- 
pute their product according to (2). Their product 
is a sum of real-number products, so we can com- 
pute it by keeping a running sum and successively 
adding real products until we are done. In algorith- 
mic language we have 

Input A, B, m, n,p 
Algorithm 

for i = 1 to m 
for L = 1 to p 

Cik + 0 
[initialize the ilc entry of C = Al?] 

for j = 1 to 71 
cik + Cik + Uij * bjk 

endfor 
endfor 

endfor 
output c 

Example 4: Construct fi 

All the examples so far have been arithmetic or 
algebraic. Here’s one from geometry. By construct- 
ing a number r, we shall mean constructing a line 
segment of length r, starting with a line segment of 
length 1 and using a straightedge and compass. To 
construct a, construct a unit perpendicular at one 
end of the initial unit segment. By the Pythagorean 
Theorem, the hypotenuse has length 4. Now it is 
possible to construct fi by repeating the process. 
Construct a unit perpendicular at the end of the seg- 
ment of length fi. The new hypotenuse will have 
length A. See Figure 1. 

1 1 xh 
A=2 6 

Lb 1 

1 j=l 

For instance, Figure 1 
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By induction, it should be clear that fi may be 
constructed for all positive integers IZ. Here is the 
construction in algorithmic language. 

Input n, unit line segment AB 
Algorithm 

for c = 2 to n 
Construct BC I AB, with BC = 1 
AB+AC [change names] 

endfor 
Output AB [segment of length fl 

Is this determinate enough to be called an algo- 
rithm? It depends on the audience. If the reader 
knows well how to construct perpendiculars with 
straightedge and compass, it is. If not, the line 
“Construct BC I Al?” must be expanded. 

Example 5: Towers of Hanoi 

Algorithmic approaches apply not just to tradi- 
tional ma.thematical topics, but also to any situa- 
tion where a systematic and repetitive approach is 
needed for a solution. Towers of Hanoi (TOH) is a 
game played with a set of n rings (or disks) of differ- 
ent sizes and three poles. Initially the rings are all 
on one pole, from smallest on top to largest on the 
bottom. The object is to get them all to another 
pole, in the same order, making moves according to 
the following rules. 

1. Move only one ring at a time. 
2. A larger ring may never be placed on a 

smaller ring. 
TOH is often used by psychologists doing experi- 
ments wit,h children. While it is easy to figure out 
solutions for n = 3 or 4, for larger R most kids soon 
lose their way. University students often don’t do 
much better! The key to understanding why the 
game can be solved is recurszon - reduce to the pre- 
vious case. Suppose we already know how to solve 
the (n-l)-ring game. Regarding that subgame a.5 
an indivisible block, then Figure 2 shows how to 
solve the n-ring game. This solution may be put into 
algorithmic language if we allow a procedure (recall 
DigMult in Example 1) to invoke itself. The pro- 
cedure H in the algorithm is first defined (in terms 
of itself) and t.hen invoked by the (one-line) main 
algorithm. The poles are numbered 1,2,3. Note, 
therefore, that, if r and s are numbers of two differ- 
ent, poles, then 6 - r - s is the number of the third 
pole. 

Figure 2 

Input num, Pinit, Pfin [number of disks, 
initial pole number, final pole number] 

Algorithm 
procedure H(n, r, s) 

[move n disks from pole r to pole s] 
if n = 1 then Move disk on T to s 

else H(n- 1, r, 6-r-s) 
[move all but bottom disk to nontarget pole] 

Move disk on r to s 
H(n-1,6-r-s, s) 

[move other disks onto target pole] 
endif 

endprocedure 
H(num, Pinit, Pfin) 

[main algorit,hm - invoke H] 
Output Solution to the game 

That this is an algorithm is not so clear. It’s 
not clear how to start carrying out the call of H, 
since mostly it just calls itself again instead of mov- 
ing disks. It’s also not clear that when it, finishes 
(if it finishes), it has solved the game. But in fact 
it is an algorithm, and once one develops a good 
understanding of how recursion works, it is fairly 
evident why. In any event, good programming lan- 
guages have recursion built in, and t,hus the algo- 
rithm above is easy to translat,e into such la.nguages. 

Example 6: The Quadratic formula 

The traditional formula for solving az’+bz+c = 
0 seems simple enough; where’s the algorithm and 
why bother with it? Well, there are several cases - 
two distinct real roots, one repeat,cd real root, no 
real roots ~ and properly choosing between cases is 
an algorithmic matter. Even if the audience knows 
about complex numbers, if t,hey want, to c0mput.e 
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solut,ions, there is the problem t,hat, most calculators 
and comput,ers won’t accept a request to take the 
square root of a negative number. So presenting the 
solution process as an algorithm has merit. 

Input a, b, c [coefficients of 
oc2 + bz + c, with a # 0] 

Algorithm 
D + b2 - 4ac 
if [three cases follow] 

D > 0 then [two real roots] 
S+-fi 

ZI - (b+s)/2a 
x2 e (b-s)/2a 

D = 0 then 11 -22 + b/2a 
[one repeated real root] 

D < 0 then [two complex roots] 
St-&D 

~1 +- (b+is)/2a 
x2 + (b-is)/2a 

endif 
Output the roots, 21 and zz 

If we want to be even more comprehensive, and 
allow input with a = 0, then we have to include 
several more cases. Note that there are no loops in 
this algorithm, but several if-statements (even more 
if a = 0 is allowed). Many procedures in the ev- 
eryday world involve more multiple decisions than 
iteration - think of tax laws. Such procedures trans- 
late into algorithms with many if-statements. 

Example 7: Numerical Solution of Equations 

There is no formula for most equations f(z) = 0 
that need to be solved in real applications, so one 
must use numerical approximations. A common ap- 
proach is the bisection method. If f(z) is continu- 
ous, and one can find input values a and b with 
f(a) < 0 and f(b) > 0, then there is at least one 
root in between. (f(a) > 0 and f(b) < 0 is just as 
good, and below we cover both cases by the condi- 
tion f(a)f(b) < 0.) Try the midpoint c = (a + b)/2. 
It is unlikely that f(c) = 0, but the sign of f(c) tells 
us which half of the interval [a, b] to look in further. 
Now iterate: 

Input a, b [f(a)f(b) < 01 
Algorithm 

repeat 
c c- (a + b)/2 
if J(c) = 0 then exit 
if sign(f(c)) = sign(f(a)) 

then b + c 
else a + c 

endrepeat 
output c 

Now, this is not an algorithm, because it can go 
on forever. For instance, if f(z) = z2 - 2, a = 1 and 
b = 2, then it takes an infinite number of halvings 
to converge to the root c = fi. Of course, a cutoff 
condition can be added: 

endrepeat when la-b1 < tolerance 

for whatever tolerance you choose. Even with such 
a condition, a real computer running this algorithm 
may not terminate, because, if the tolerance chosen 
is very small, roundoff error may result in la-61 > 
tolerance no matter how many iterations are per- 
formed. 

Nonetheless, it may be best to present this algo- 
rithm initially in the nonterminating form above - 
it gets at the key idea of bisection without obscur- 
ing details, and it also ties in with the concepts of 
infinite processes and limits needed for a full math- 
ematical attack. So this is our first example that 
suggests why the three defining conditions at the 
start of this section should often be relaxed. 

Example 8: Sequences of Heads and Tails 

An important role of mathematics is to guide us 
in making decisions under uncertainty. This can of- 
ten be done using probability theory, but often the 
most direct approach is simulation. To take a very 
simple example, suppose we flip a fair coin until we 
get two heads in a row. How many flips should we 
expect to take? If we actually carry out this ex- 
periment many times, we find out what to expect. 
Here is a algorithm to carry out the experiment one 
time. Rand(O,l) is a command for flipping a coin; 
the output 1 means heads, 0 means tails. The algo- 
rithm could be run a thousand times inside a loop 
of a bigger algorithm, which could then analyze the 
output data in various ways (take the average, the 
variance, draw graphs, etc). 
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Input (none) 
Algorithm 

count +- headct + 0 
repeat 

flip + Rand(O,l) [0 or 1, at random] 
count + count + 1 
if flip = 1 

then headct + headct + I 
else headct + 0 

endrepeat when headct = 2 

buttons, approach (4) is available while approach 
(3) is not. 

Still other approaches are possible. Using the 
distributive law, we could instead evaluate 

a61 + abz + . . . + ab,. 

The direct approach to this, using the fact that mul- 
tiplications are completed before addition (on my 
calculator), is 

a x bl + a x b2 + . . . + a x b, = 

Output count 
[total flips to get 2 heads in a row] 

Now, this algorithm violates our definition in 
two ways. First, it is not determinate: actions are 
not uniquely determined. Second, it is theoretically 
possible that it won’t terminate - we might get OS 
forever. Nonetheless, we certainly want to be able 
to study such “algorithms”. The hard part, actu- 
ally, is to get computers to perform such procedures, 
since computers really are determinate machines. In 
other words, how can computers be made to produce 
what appear to be random numbers? Fortunately, 
there are good answers, using “pseudorandom num- 
ber generators”. 

Example 9: A Calculator Exercise 

Except in Example 1 we have not said anything 
about how our calculations are carried out; it could 
be by hand, by calculator, or by computer. In fact, 
what is easy to do depends on the device. In this 
example let us specifically consider hand calcula- 
tors, since one can hope that this product of mod- 
ern technology can be made available to students 
almost worldwide. 

Consider the problem: 

evaluate a(bl + b2 + + b,). 

How shall we do this? On my scientific calculator, 
which has parentheses buttons, I can do it exactly 
in the order presented. 

a x ( bl + bz + ‘. + b, ) = (3) 

where each symbol now represents a button (except 
a, bl, etc., may represent many number buttons, and 

represents repetition). However, we can save 
time if we multiply by a on the right: 

bl + 62 + . . + b, = x a = (4) 
A “+” would do as well as the first “=“; the point 
is, the sum is computed as we go along, so once the 
sum is finished, we can proceed to multiplication. 
One button-push is saved. Also, if you have only 
a simple 4-function calculator without parentheses 

which involves considerably more button-pushes. 
But many calculators, mine included, have a fea- 
ture to shorten repeated multiplication by the same 
factor: hit the x button twice. Thus the following 
string of steps displays first abr, then abz, and so 
on: 

a x x bl = bs = b3 = ‘. . 

Now we want to add these up, but hitting + (or any 
other operator on the main display) will cancel the 
effect of x x. So instead we push M+, the memory 
plus button, which does the addition in the hidden 
memory register. Finally, at the end, we push MR 
to remove memory: 

a x x bl M+ b2 MS ... b, M+ MR (5) 
Perhaps this sequence looks sufficiently odd that a 
presentation in algorithmic language would help: 

push a x x bl M+ 
for k = 2 to n 

push bk M+ 
endfor 
push MR 

A count shows that method (5) takes the 
same number of button-pushes as the original ap- 
proach (3), and only one more than the best ap- 
proach (4). So this problem provides a good exam- 
ple of how the issue of relative efficiency of algo- 
rithms pertains to even very elementary mathemat- 
ics. 

To close this section, let us emphasize that by al- 
gorithms we do not mean computer programs. We 
mean procedures for solving problems presented in a 
sufficiently precise form for careful analysis. While 
we have written most of our algorithms in a style 
which until recently has been associated only with 
computer programs, this is because that style is a 
good one for making key points precise. Our al- 
gorithm descriptions cannot be input directly to 
any computer. They omit all sorts of information 
that a computer would need to know about (how is 
the data input and output, what type of variables 
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need to be declared, how much storage must be re- 
served?). Many computer scientists call this sort of 
algorithm description pseudocode, because it is not 
real code for computers. But it is quite real for 
the sort of communication that interests us here - 
between humans - and so we prefer to call it algo- 
rithmic language. 

2. What Is Algorithmics? 
First, algorithmics does not mean performing 

a lot of algorithms. Students worldwide have suf- 
fered too much rote repetition of mathematical al- 
gorithms over the years already. In the future, al- 
gorithms will be carried out more and more by ma- 
chines, or by person-machine combinations, so hand 
calculation except of the simplest sort should receive 
less emphasis. 

Algorithmics is the process of creating, under- 
standing, validating and comparing algorithms. In 
short, it is thinking about algorithms, not thinking 
like algorithms. 

Here is another way to put this. The phrase “al- 
gorithmic mathematics” has two meanings, tradi- 
tional and contemporary [Maurer, 19841. The tradi- 
tional meaning emphasizes carrying out algorithms, 
the contemporary emphasizes developing them and 
choosing intelligently among different algorithms for 
the same task. 

We now discuss the components of algorithmics 
in more detail. It is standard to divide algorithmics 
into three parts, design, verification, and analysis. 

Algorithm Design is the process of algorithm cre- 
ation. There are some general principles of algo 
rithm design; it does not have to depend on un- 
teachable flashes of originality. 

The most important idea, as in much of math- 
ematics, is to break a problem into pieces. If you 
can find a small building block that you underst,and, 
try to iterate on that block. To sum a sequence of 
numbers, reduce to the case of summing two num- 
bers; create a running sum and add one more num- 
ber to it each time. To multiply two large num- 
bers (Example l), figure out a way to reduce it to 
many instances of multiplying two one-digit num- 
bers. To multiply two matrices (Example 3), first 
use the definition (2) to reduce this to many cases 
of a real-number calculation, and then use iteration 
to return this to single additions and single multi- 
plications. 

Sometimes one does not immediately see how to 
reduce a large problem to small pieces. Then one 
tries to reduce it to slightly smaller pieces. What 
is the gcd of two large numbers n and n (Exam- 
ple 2)? Well, does some slightly smaller pair of 

numbers have the same gcd? Yes, m - n and n 
have the same gcd as m and n, because anything 
that divides (evenly into) m and n divides m - n 
and n, and anything that divides m - n and n di- 
vides m = (m-n) + n and n. And if subtracting n 
from m once preserves the gcd, then subtracting as 
many times as possible, leaving the remainder when 
m is divided by n, also preserves the gtd. This is 
the insight that leads to Euclid’s algorithm. 

The algorithm for Towers of Hanoi is also baaed 
on reducing to a smaller case. You. can solve the 
game with n rings if you can solve the game with 
n - 1 rings, as shown in Fig. 2. 

There are, of course, many other principles of al- 
gorithm design, and whole university courses are de- 
voted to it. Here we’ll mention two more, top down 
design and bottom up design. The former refers to 
outlining the big picture first, and then filling in the 
details of the parts later. The latter refers to start- 
ing with small pieces and putting them together 
to do the whole job. While top down is generally 
the better approach for involved problems, both ap- 
proaches have their roles. 

Algorithm design is more or less the same thing 
as problem-solving methodology. Since mathemat- 
ics education is permeated with problem solving, al- 
gorithm design is rightly an important component 
of a modern mathematics education. Practice in de- 
sign not only makes people more successful at solv- 
ing problems, but also it results in algorithms that 
are easier to communicate to others and to verify. 

Algorithm Verification is the process of confirm- 
ing that algorithms solve the problems they claim 
to solve; in other words, proving algorithms correct. 
Since loops are a primary aspect of algorithms, and 
since a loop can be iterated any nonnegative integer 
number of times, mathematical induction is the key 
method of verification. 

Take Euclid’s algorithm (Example 2). Let P(k) 
be the statement that, just before commencing the 
kth pass of the repeat loop, gcd(num, denom) is 
the same as the gcd of the original m and n. That 
P(k) is true for all k > 1 is easily proved by in- 
duction, using the fact that gcd(m, n) = gcd(n, r) 
where r is the remainder when m is divided by n. 
(We argued this fact informally when Example 2 
was introduced, and again somewhat differently five 
paragraphs ago.) When the loop entrance condi- 
tion is tested for the last time, denom = 0, and 
so clearly gcd(num, denom) = num, and num is the 
value output. So by the induction, the output equals 
gcd(m, n) and the algorithm is valid. A proof of cor- 
rectness like this is called a proof by loop invariant; 
the loop invariant is the statement you prove to be 
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correct each time you enter the loop. 
Or take the algorithm for Towers of Hanoi. We 

may do induction on n, using the statement that 
any call of procedure H(n, r, s) correctly moves n 
rings from pole P to pole s. Since the very definition 
of H involves itself with n - 1 rings, induction is 
easy to carry out.. In general, a recursive algorithm 
immediately suggests an inductive proof. 

The specifics of how to do induction for algo- 
rithms is not the point here. The point is that in- 
duction is the right tool. Mathematical induction, 
heretofore regarded in some quarters as a special- 
ized method for proving certain formulas for sums, 
must be viewed as a more central proof method in 
any curriculum that gives substantial emphasis to 
algorithmics. 

Algorithms need to be verified because more and 
more our lives depend on them, and once they are 
in place (say in our bank, to maintain our account 
records) they tend to get treated as black boxes. To 
be honest, algorithms used in the world at large are 
very complicated, too complicated for humans to 
carry out detailed mathematical proofs of correct- 
ness; and machine verification of correctness is still 
in its childhood. Thus, empirical debugging tech- 
niques play a vital role. 

But mathematical verification should not be dis- 
missed. First, big programs use many small build- 
ing blocks which can or have been verified. Second, 
the algorithms whose correctness you are primar- 
ily responsible for are the ones you create yourself, 
and knowledge of how to verify an algorithm can be 
helpful at the design stage. If you propose to in- 
clude a loop in your algorithm, and you know that 
the way to validate it is with a loop invariant, you 
will devise the loop invariant before you write the 
loop, and then you can write it to be sure that the 
loop invariant is preserved. 

Algorithm Analysis is the process of determining 
how long an algorithm takes to run, and comparing 
that run time to that of other algorithms for the 
same problem and to absolute standards for that 
problem. “Run time” is a rough way to put it, since 
that suggests an actual machine (or person) to per- 
form it, and different machines (and persons) will 
perform differently on the same algorithm. Usually 
one picks some salient feature, say the number of 
real-number additions if addition is the main oper- 
ation in the algorithm under consideration, and de- 
termines the number of repetitions of this feature as 
a function of the input size. This function is called 
the complexity of the algorithm, or its efficiency. 

Take, for instance, our algorithm for matrix mul- 
tiplication (Example 3). If the two input matrices 

are both n x n, then there are n2 entries to com- 
pute, and each entry requires n real-number multi- 
plications and n - 1 additions. Therefore, the whole 
algorithm takes n3 steps (if only multiplications are 
counted), and 2n3 - n2 (if additions and multiplica- 
tions are counted). Or take Towers of Hanoi. The 
obvious thing to count is number of ring moves. It 
turns out that, if there are n rings, the algorithm 
takes 2” - 1 moves. If t, is the number of moves 
with n rings, the recursive definition of procedure H 
leads to the conditions 

t n+1 - - 2t, + 1, t1 = 1; (6) 
the unique solution of these conditions is t, = 2”-1. 

Calculations like these become valuable if the 
number of steps appears large and one wonders 
whether the problem will be tractable with the com- 
puting equipment available. Suppose, for instance, 
that a problem requires n! steps when there are 
n input data. (Brute force approaches to the fa- 
mous Traveling Salesperson Problem take this many 
steps, and the best exact methods known are in gen- 
eral not much better.) Then when n is merely 25, 
a computer that could do a billion steps a second 
would still take 50 million years to solve the prob- 
lem! In contrast, the same computer could play 25- 
ring Towers of Hanoi in only .003 seconds, and could 
compute the product of two 1000 x 1000 matrices in 
a second. 

These efficiency calculations become even more 
interesting when you have more than one algorithm 
for the same problem. Take Example 9 for comput- 
ing a(bl + . . . + b,) on a hand calculator. The best 
approach we discussed takes n+2+C button-pushes, 
where C is the number of pushes needed to enter 
all of a,bl,... , b,; two others took n + 3 + C and 
the fourth approach took much longer. On a hand 
calculator, each button-push takes time, so even a 
saving of one is significant. Furthermore, there are 
lots of other, elementary problems where different 
calculator methods make a considerable difference. 
Take the problem of evaluating a polynomial 

p(x) = anzn + an-l2 +-l + . . . + ao. 

There are a great many multiplications involved, es- 
pecially if you don’t have an exponential key. But 
there is another way to write this polynomial, best 
understood in traditional notation if we use a nu- 
merical example. If 

p(x) = 4z4 + 3z3 + 2x2 + x + 8, 

then in nested form 

p(x) = x(2(2(4x + 3) + 2) + 1) + 8. 
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Calculating p(z) in this form takes many fewer steps 
(count them) and it’s easy to carry out even with a 
simple four-function, calculator and no memory. By 
the way, to make clear how both approaches work in 
general, and to make the algorithms precise enough 
to count the steps without confusion, the first thing 
to do is figure out how to state them in algorithmic 
language. 

Or take the algorithm for constructing fi (Ex- 
ample 4). It takes n - 1 right triangle constructions 
to obtain fi. Noting this surely will inspire stu- 
dents to find a better way. 

For Euclid’s algorithm, the number of steps de- 
pends on the specific input, not just the size (num- 
ber of digits) of the input. And in the Two Heads 
algorithm (Example 8), there is no input at all, but 
the number of steps varies. In these cases one takes 
several measures of the algorithm’s efficiency - best 
case, worst case and average case. Average case is 
especially important, but usually hard to analyze. 

The hardest problem is to compare an algorithm 
to an absolute standard. The complexity of a prob- 
lem (as opposed to the complexity of an algorithm) 
is defined to be the number of steps needed by the 
best possible algorithm for the problem. Problem 
complexity is the subject of much current research - 
it’s hard to figure out the complexity if, as usual, 
you don’t know what the best algorithm is. For in- 
stance, it is known that Arabic multiplication and 
standard matrix multiplication are not the best al- 
gorithms for their problems, at least when n is quite 
large, but no one knows what the best algorithms 
are or how fast they are. Nonetheless, progress has 
been made in finding bounds on problem complex- 
ity. And every once in a while the complexity of 
a problem can be determined completely. For in- 
stance, it is not hard to show that the algorithm we 
gave for Towers of Hanoi is optimal. 

In closing this section, we note that there are 
other ways to analyze the goodness of an algorithm 
than speed. One can consider space complexity - 
how much storage is needed. One can also con- 
sider numerical stability. For instance, in solving 
a quadratic (Example S), if b > 0 and 4ac is very 
small compared to b2, then (b - s)/2a is practically 
0, and roundoff error may swamp the computation. 
In this case it is better to set 22 to 2c/(b + s). Alge- 
braically, the two formulas are equivalent, but, less 
roundoff error is introduced in the latter since b + s 
is not near 0. 

3. Why Study Algorithmics? 
We have already given our main reason: the use 

of sophisticated algorithms to solve problems is al- 

ready pervasive in the world, and so informed citi- 
zens need to know what can be done by algorithms, 
how it is done, and how algorithms can be assessed. 
Also, a fair number of people need to know how to 
create algorithms. 

Mathematically, this is an extrinsic justifica- 
tion; algorithms are important, so students ought 
to study them whether or not they are interesting 
mathematics or do good things for mathematics ed- 
ucation. Fortunately, there is equally strong intrin- 
sic justification. 

First, introducing algorithmics in school raises 
fresh questions about old material and allows for 
greater student creativity. As Example 9 (calcu- 
lator efficiency) shows, even basic arithmetic is no 
longer cut and dried. Too many traditional curric- 
ula consisted of many computational courses where 
students were told the right methods, and a few 
proof courses (say, classical geometry) where they 
were asked to be creative, but in a narrow theo- 
retical way. In contrast, each question of the sort 
“devise an algorithm for . . .” allows for many cor- 
rect answers (not all equally good). Even a student 
who does not have a good theoretical grasp of the 
problem at hand may come up with a correct algo 
rithm. 

Even incorrect algorithms can have worthy fea- 
tures. They may involve good heuristics - imperfect 
but insightful ideas that often lead to a reasonably 
good solution in a reasonable amount of time. Also, 
an analysis of their flaws may be instructive and lead 
to interesting class discussions. For instance, sup- 
pose you want to pick a random set of two distinct 
numbers from 1 to 10. What’s wrong with picking a 
number i at random from 1 to 9 and then picking a 
number j at random from i+ 1 to lo? I once heard a 
businessman say, speaking at a college graduation, 
that in the outside world one learns from one’s fail- 
ures. While there may not be much to learn from 
mistakes in traditional rote calculations, there is a 
great deal to learn from one’s failures in devising 
algorithms. 

A second intrinsic reason for studying algorith- 
mics is: it can help students understand traditional 
mathematics better. You really have to understand 
a procedure well in order to “explain” it to a com- 
puter, or to write it in algorithmic language, For 
instance, to understand Arabic multiplication well 
enough to describe it in algorithmic language (Ex- 
ample l), you really have to understand place no- 
tation and the distributive law. And it’s not just 
procedures that come to be understood better, but 
abstract concepts as well. For instance, the function 
concept is concretized by seeing algorithms turn in- 
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puts into outputs. Real numbers are made more 
concrete as the student sees (Example 7) that suc- 
cessive rational approximations needed to compute 
them. Moreover, when students test their algorith- 
mic representations by running them on computers, 
they get instant feedback as to whether their con- 
structions are correct. 

There are also arguments against studying algo- 
rithmics in school. The basic argument goes: the 
sort of questions emphasized in algorithmics are al- 
ready outdated, or soon will be. For instance, al- 
gorithmics puts great emphasis on the relative ef- 
ficiency of algorithms. But if one approach to a 
problem takes n2 steps and another takes n steps, 
the difference in actual seconds will be unnoticeable 
for the values of n used in any classroom. Or, why 
bother discussing methods for doing computations 
on a four-function calculator when soon all calcu- 
lators will be much more powerful? Indeed, what’s 
the point of talking about the merits of different 
methods of polynomial evaluation, when on the now 
popular “algebraic” calculators, you can punch in 
the definition of a function as a formula in 2, then 
punch in a numerical value for 2 and finally just hit 
the EVAL button? One doesn’t need to know any 
method for breaking down the evaluation of the for- 
mula into small steps because the calculator does it 
all. 

Generalizing, computing devices are getting 
more and more advanced in the sense that they 
can respond to higher and higher level commands. 
When you think that, in the wings, there are ma- 
chines that will create proofs and create algorithms 
for solving problems, why do students need to be 
schooled in the ability to create algorithms them- 
selves? 

I answer as follows. No doubt the level at which 
it will be appropriate to do algorithmic analysis will 
change over time. I really like to discuss different 
methods of polynomial evaluation with my classes, 
but one day (perhaps soon) this may seem as out- 
dated to them as if I were to explain the theory be- 
hind slide rules. But if we can draw any lesson from 
the history of computing technology, humankind, 
including students, will always use technology to its 
limits, and its most powerful use will always involve 
the interaction of human and machine. To pick a 
simple example, I am not worried that the differ- 
ence between an n2-step algorithm and an n-step 
algorithm will be lost on students. First, some stu- 
dent always tries to run a recently learned algorithm 
on data that is too large, and wonders out loud why 
the machine sat spinning its wheels. Second, even if 
most students stick to small “textbook” data sets, 

it is easy to show them that in the outside world 
some very large problems must be solved where dif- 
ferences in algorithm efficiency are crucial. Sorting 
and searching (discussed later) provide good exam- 
ples; governments and large businesses must sort 
and search enormous data sets. 

The issue, then, is to keep the algorithmic exam- 
ples up to date. This can be done if educators keep 
informed about the latest research and the latest 
technology. 

Sometimes the exact opposite reason is proposed 
for not studying algorithmics. It is a theorem that 
there is no algorithm for determining which prob- 
lems are solvable by algorithms. (This is because the 
“universal Turing machine” cannot solve the “halt- 
ing problem”.) So to emphasize algorithmics either 
misleads them about what algorithms can do or cuts 
them off from problems that have no algorithmic S(F 
lutions. 

But we do not propose that only algorithmic ap- 
proaches to mathematics be studied. We only pro- 
pose that algorithmics receive much more attention 
than previously. 

4. Suggestions For Implementation 
Two disclaimers: First, my knowledge of cur- 

ricula worldwide is limited, and so I speak mostly 
from an American viewpoint. Second, in a paper 
this length, one can at most give illustrative exam- 
ples and broad ideas of how to implement algorith- 
mics. For more detailed ideas, appropriate at least 
in North America, see [NCTM 1989, Kenney 19911. 
The suggestions below concern the primary and set- . 
ondary levels except for a few brief remarks about 
the university level at the end. 

Look at traditional computations more closely. 
Basic arithmetic, computations with polynomials, 
solutions of linear equations - such things are often 
taken as routine and devoid of opportunity for fresh 
thought. But from the viewpoint of algorithmics 
there is plenty to think about. Students can dis- 
cover traditional algorithms using design principles, 
and discover alternative algorithms. While they are 
unlikely to discover significantly faster algorithms, 
they can be told ( or, at a higher level, shown) that 
faster algorithms exist, and that best algorithms are 
unknown. 

Treat nontraditional computations related to 
classical questions. In every country students learn 
closed form solutions to certain sorts of equations, 
but they don’t always look closely at how to eval- 
uate those solutions accurately, or discuss methods 
for approximately solving equations without solu- 
tion formulas. Students often learn to count per- 
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mutations and combinations, but they don’t often 
consider how to efficiently list all of them of a certain 
size, or generate a random one. In short, classical 
formulas that don’t appear algorithmic raise alge 
rithmic issues. 

Introduce some new topics. There are whole 
fields of mathematics, with many applications, that 
have an algorithmic flavor and are not represented 
at all in many curricula. Many of these are grouped 
these days under the headings discrete mathematics, 
operations research and theoretical computer sci- 
ence. Here are a few examples, but at this point they 
are little more than name-dropping, and one should 
refer to texts in these fields, such as [Hillier and 
Lieberman 1986, Manber 1989, Maurer and Ralston 
19911. 

Difference equations is the study of inductively 
defined sequences such as the step-count sequence 
t, of Towers of Hanoi in Display (6). These include 
the traditional arithmetic and geometric sequences 
and series - and much more. Computing terms in 
inductively defined sequences is immediately an al- 
gorithmic question, and conversely, analyzing algo- 
rithms reduces to analyzing difference equations. 

Graph theory, in the sense of networks, is full 
of algorithmic questions. If a graph represents an 
existing road network, how do you find the shortest 
routes between points (in distance, time, or what- 
ever)? If the network represents the possible links 
between cities is a telephone network planned for a 
developing region, how do you decide which set of 
links will connect up the region at minimum cost? 
There are a variety of good (and not so good) algo- 
rithms for such problems, and many of these algo- 
rithms are not hard for students to discover. 

Sorting and searching (e.g., alphabetizing and 
looking through an alphabetized list for a word) are 
standard computer science examples that wouldn’t 
traditionally be thought of as having any mathemat- 
ical content - clearly it is possible to sort and search, 
so what’s the problem? But once again, there are 
lots of different methods, with various efficiencies, 
and various challenges to verify them and analyze 
them. 

Make computing power available to students. 
This is a tall order. No matter how rich the country, 
there are always newer and more powerful devices 
one could want, and even in rich countries it may be 
a long time before there is one computer per student 
in every class. But the point is, algorithmic ques- 
tions take on much more life when students have 
what they regard as powerful computing aids, and 
then they discover they can still devise problems 
that aren’t solved instantaneously. As discussed ear- 

lier, even four-function calculators are very helpful 
in bringing to life algorithm design and efficiency 
questions. With computers as well as calculators, 
one can start in the early years with such things as 
the language Logo and Turtle graphics, and move 
in later years to computer algebra systems. 

Introduce algorithmic language. Whatever com- 
puting power is available, precise methods for de- 
scribing algorithms are necessary if algorithms are 
to be an object of study and not just something 
students perform. There is no standard algorithmic 
language, and perhaps different sorts of languages 
are best for problems to be treated with different 
sorts of machines (or by hand). Nonettieless, it is 
not hard to devise useful language constructs. 

Put more emphasis on mathematical induction. 
We have indicated how induction is the main 
method for validating algorithms. Actually, induc- 
tion can be viewed more broadly, and as such is at 
the foundation of algorithmics. There are inductive 
discovery techniques (reduce to the previous case, or 
build up from small cases to find a pattern), induc- 
tive definitions, as in Display (6), inductive algo- 
rithm commands (loops and recursive procedures) 
as well as inductive proofs. 

Eliminate the schism between solving and com- 
puting. Traditionally there is pure mathematics and 
applied mathematics. Pure mathematicians prove 
that solutions exists, and applied mathematicians 
figure out how to find them. In algorithmic math- 
ematics, good computation methods are found si- 
multaneously with showing that solutions exist. By 
putting these two issues together right from the ear- 
liest years, we help to overcome what has sometimes 
been an unfortunate two-class system in mathemat- 
ics and science. 

A few words about the university level. Here 
the schism between pure and applied has been par- 
ticularly acute. But it is breaking down. Many 
research mathematicians in pure fields are finding 
algorithmic questions interesting. Some algebraists, 
for instance, are now very interested in how classical 
objects in group theory can best be computed [Bee- 
son 1990; Mines, Richman and Ruitenberg 19881. 
This could filter into the classroom. Even in calcu- 
lus, some questions can be given a much more al- 
gorithmic flavor than they have been. The rules of 
differentiation, instead of simply being a set of rules, 
can be viewed as the parts of an algorithm that de- 
termines the derivative for any elementary function 
(once elementary functions are given an inductive 
definition!). The rules of integration can be viewed 
as part of an algorithm that determines the integral 
of some elementary functions, and some discussion 
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can be added that integration is no longer an “art”, 
because there is an algorithm for determining ex- 
actly when a function can be integrated in closed 
form. Those university mathematicians who have 
gotten interested in algorithmic questions should be 
encouraged to share with their colleagues their ideas 
about how to introduce these new approaches in the 
standard courses. 
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It is now clear to an anybody that a working 
mathematician cannot ignore computers: as a con- 
sequence, it is commonly admitted that students in 
mathematics, and especially those who intend to be 
teachers in the field, have to be exposed to some 
high-level language (such as Pascal). Nevertheless, 
this is far from enough: the question of whether stu- 
dents in mathematics should be familiar with some 
parts of the theoretical foundations of computer sci- 
ence cannot be avoided because these topics are pre- 
cisely the parts of computer science close to mathe- 
matics and seem to be necessary in order to estab- 
lish connections between both fields that go beyond 
the ability of using the computing power of modern 
machines. 

In France, following this line of ideas, the study 
of algorithms and related topics has become, in 
most universities, a significant part of the standard 
curriculum leading to graduation in mathematics. 
Also, an optional test in computer science has been 
offered for a few years in the well-established “Con- 
tours d’AgrCgation de Mathematiques”, which is a 
kind of “teaching Ph-D”, passed by most of the 
teachers for the age-group 17-22. 

The author has recently published a book en- 
titled “Fondements Mathdmatiques de l’Informa- 
tique”[I990], which covers a large part of the re- 
quirements in computer science for undergraduate 
programs in mathematics. The aim of the present 
contribution is precisely to present some general 
ideas that grew during the process of writing up 
that book. These ideas are my personal views al- 
though I owe a great debt to many colleagues with 
whom I have had inspiring discussions. 

Before going into greater detail, let me make one 
remark: Mastering some of the basic tools in com- 
puter science will not turn a mathematician into a 
computer scientist. Instead, it should help to de- 
velop a different frame of mind, suitable to under- 
stand the specific features of comput,er science. This 
is most important for a mathematician because, as is 
shown in other contributions in this book, these spe- 
cific features will necessalily affect bot,h the teaching 
and t,he practice of mathematics themselves. 

Around the notion of computation 
Computation Theory is considered by many peo- 

ple to be a very dull subject; nevertheless, it is the 
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first burden of the theory to provide a suitable crite- 
rion for drawing a limit between what is computable 
(or eflective) and what is not. A simple way would 
be to use the word computable for everything that 
can be processed on a real computer. Although this 
point of view is not completely meaningless, it re- 
mains rather vague and cannot be considered as a 
genuine mathematical notion because of its lack of 
precision. Furthermore, this point of view is not 
even historically correct: a lot of outstanding work 
connected with the subject of computation theory 
was published before the first modern computer was 
built. For example, note the work of Turing [1936], 
Post [1936] on computation theory itself, and also 
the work of McCulloch and Pitts [1943] on the mod- 
elling of neuron nets, from which the theory of au- 
tomata grew. 

It is precisely the theory of automata that we we 
propose to choose as a starting point. Many reasons 
can be put forward in order to justify such a choice. 
The theory is simple, established on firm mathe- 
matical grounds and provides various exercises in 
programming: for example, one can simulate an au- 
tomaton in a high-level language like Pascal or dis- 
cuss algorithms that compute the minimal automa- 
ton. Also, the concept of non-determinism, which 
is of utmost importance in theoretical computer sci- 
ence, can be quickly and naturally introduced in a 
simple setting. Finally, the theory of automata has 
several applications: to text editors and compilers 
in particular; this is not a minor argument. 

Nevertheless, one can easily come to the con- 
clusion that automata do not provide a satisfactory 
model for real machines. This conclusion can be 
reached by writing down simple languages that are 
not accepted by a finite automaton but also through 
the convincing observation that a central feature of 
computers is completely wiped out, namely their 
ability to store data in a memory. We are thus 
back to our original problem of defining the notion 
of computable and it is reasonable, at this point, 
to require that this notion should be described us- 
ing various different techniques that come out to 
be equivalent: this will ensure that a mathemat- 
ical invariant has really been found and this will 
make Church’s Thesis highly plausible. (Recall that 
Church’s thesis states that the notion of machine- 

..- -._ ..I II-- 
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computable function and the mathematical family 
of recursive functions are identical). 

Four distinct approaches can be taken. 
Adding a memory device to a finite au- 
tomaton. This yields the definition of a Turing 
machine. 
Directly modelling actual computers. This 
can be done through the notion of a random ac- 
cess machine (cf. Cook and Reckhow [1973]) 
operated by a very simple language similar to 
machine code. 
Defining a simple class of programs. For 
example one can define a restricted version of 
Pascal which uses only the integer type and the 
control sequences if . . . then . . else and while 
. . . do. 
Defining the class of (partial) recursive 
functions. This is a good opportunity to dis- 
cuss functional languages: recursive definitions 
can be handled by using constructs that are ex- 
actly similar to those appearing in Lisp. 
The proof that all these definitions are actually 

equivalent is a source of very interesting observa- 
tions. For example, the fact that the restricted ver- 
sion of Pascal can compute all recursive functions 
proves the well-known fact that the goto statement 
can be dispensed with. It may be worthwhile to note 
that replacing while . . . do by for only allows the 
computation of primitive recursive functions. Also, 
the simulation of a random access machine by a Tur- 
ing machine is a good exercise that shows how to 
handle a sequential memory. 

Once the notion of a computable function has 
been given a precise definition, it becomes possible 
to discuss decidability issues: By coding Turing ma- 
chines and constructing a universal machine, it does 
not require much more effort to state correctly the 
“halting problem” and show that it is semidecidable 
but not decidable (which means that a machine can 
find positive answers in a finite computation time 
but cannot do the same both for positive and nega- 
tive answers). It is not clear that the study of gen- 
eral recursion theory should be pursued. Still, one 
may wish to present the semantics of recursive pro- 
cedures and the fixed-point approach to programs 
and develop the recursion-theoretic tools that are 
needed, such as Kleene’s theorem (which basically 
states that the name of a recursive function can be 
used within its own definition). 

Then, one can have a discussion on whether or 
not the dichotomy decidable/undecidable is of prac- 
tical significance. This is a way to introduce Com- 
plexity Theory through the constraints of time. Go- 
ing back to the various mathematical models of com- 

putation, one can explain how a basic cost can be 
attached to the execution of each instruction, the 
overall cost (or complexity) being the sum of all 
basic costs. Thus, one can define the complexity 
function of an algorithm which measures its cost in 
terms of the size of the data. Of course this com- 
plexity depends on the abstract machine chosen but 
one can check that, when one machine is simulated 
by another, the complexity functions are polynomi- 
ally related. This allows the definition of the class 
P of polynomial time computations, which is a rea- 
sonable candidate for modelling a class of problems 
sometimes called feasible or tractable. 

Around the notion of algorithm 

Now that we are equipped with a theoretical no 
tion of complexity, it is necessary to use it in con- 
crete situations. This can be done through a re- 
view of various algorithms. This review is, by no 
means, an exercise in programming style, even if 
correct programs have to be written at some point. 
The emphasis should be on the design and analy- 
sis of algorithms, which are very closely connected. 
Of course, the rules of the game should be clearly 
stated and discussed, especially the choice between 
the two main notions of complexity that are in use: 
worst-case analysis and average-case analysis. This 
choice depends on the underlying model: for exam- 
ple, average-case analysis is relevant when the prob- 
ability of “ill-behaved” cases is small. In both cases, 
the analysis is combinatorial in character and quite 
often yields non-trivial recurrence relations. In or- 
der to handle these, some specific tools are needed, 
like the statistics of permutations and distributions 
and the use of generating series (cf. Knuth [1973]). 
Generally, such techniques (e.g. the use of singu- 
lar points of the generating series) only allow an 
asymptotic analysis and one may ask if this kind 
of information has any practical meaning: after all, 
the size of the data are bounded by the computing 
environment! It turns out that the asymptotic anal- 
ysis is actually relevant: When a given algorithm 
runs in time O(n logn), for example, it is usually 
true that the constant implicit in the 0 notation is 
rather small and that the asymptotic behaviour is 
reached rather quickly. 

The students should also get used to performing 
the analysis of the complexity of an algorithm with- 
out going back to the original definitions, based on 
abstract models of computation. If the size of the 
integers is bounded (which is often the case in prac- 
tical situations), the complexity is roughly the num- 
ber of machine instructions performed during execu- 
tion. This validates the use of the overall number of 



comparisons as a measure of complexity for sorting 
algorithms. When large integers are involved, things 
become a bit more’ complicated: a convenient, way 
is to multiply the number of instructions performed 
by n2, where n is the number of digits of the inte- 
gers used. This is to take into account the cost of 
multiplication as O(n2). 

Together with algorithms the specific data struc- 
tures used in computer science should be discussed: 
stacks, files, trees, graphs etc. It should be stressed 
that this point of view is quite different from the 
one that was taken in the previous section: In com- 
putation theory, we considered simulations involv- 
ing basic manipulations on data structures and we 
claimed that these manipulations were not costly, 
becauce we were interested in the general notion of 
polynomial time. In practical cases, a given polyno- 
mial time algorithm can be superior to another one 
and, very often, the choice of a good data structure 
may actually save a significant part. of the running 
time. 

The choice of algorithms that can be reviewed is 
quite large and depends on the mathematical back- 
ground of the students. At an advanced level, it is 
probably more rewarding to give examples that use 
mathematics in a non-trivial way, such as: 

l The fast Fourier transform and its applica- 
tion to fast multiplication of integers (in time 
0( n log n, log log n)). 

l Basic algorithms for computer algebra. 
This can be an opportunity to demonstrate the 
use of a computer algebra system, like Maple or 
Macsyma. 

l The simplex algorithm for linear program- 
ming. 

l Primality tests, at least probabilistic ones. 
Unfortunately, it is not possible to discuss these 

algorithms in detail. and we will only briefly com- 
ment on the last example. As is well known, test- 
ing primality by sieving requires a large amount of 
time and memory. In order to overcome this diffi- 
culty, one may try to use the mathematical prop- 
erties of prime numbers. For example, it is known 
that, whenever p is prime and a is not zero modulo 
p, the so-called Jacobi symbol 0 

a is equal to a*. 
This is not the case in general.’ More precisely, if 
n is not prime, at most one half of the possible o’s 
satisfy the equality 

a 
0 

- 
n 

= a* (mod n). 

As was observed by Solovay and Strassen, the com- 
putations required to compute Jacobi symbols and 
exponentials modulo n can be performed efficiently. 
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This makes it possible to recognize whether or not 
a given integer n is prime by picking random values 
of a and testing the above equality. If sufficiently 
many tests are successful, n is declared to be prime. 

At a more elementary level, examples can be 
taken from the following list (which is not exhaus- 
tive): 

Sorting. This should include a comparison of 
various algorithms and a discussion of quicksort, 
as an illustration of the power of the divide and 
conquer method. 

Searching, with an emphasis on the choice of 
specific trees as data structures. 

Pattern matching, because of the connection 
with automata. 

Graph algorithms, for the nice interplay be- 
tween discrete mathematics and computer sci- 
ence. 

Graph algorithms can be a way to introduce 
HF-complete problems. Indead, one can observe 
that computing shortest paths can be done in a 
very efficient way whereas no polynomial time al- 
gorithm is known for many graph problems, such as 
the Hamiltonian path problem. This problem can be 
described in very concrete terms as follows: Given 
a set of cities together with possible air connections 
between them, can one tour all the cities, visiting 
each city once and returning to one’s starting point? 
In order to handle this problem, one can 

l guess a plausible solution 

l check its correctness (in polynomial time) 

All problems that can be solved in such a non- 
deterministic manner are called n/P-problems, and 
an h/P-complete problem is an n/P-problem that 
can be used as a “subroutine” in order to solve 
all other NP-problems, with polynomially many 
extra steps of computations. It is an open prob- 
lem (probably the most important problem in the- 
oretical computer science) whether or not an n/P- 
complete problem can be solved through a polyno- 
mial time algorithm, and as a consequence, n/P- 
complete problems are considered to be difficult: 
They can only be attacked by time-consuming tech- 
niques such as backtracking. 

Of course, the class of AD-complete problems 
can be given a formal definition through non- 
deterministic Turing machines. Once this is done, 
one can prove Cook’s Theorem (Cook [1971]), stat- 
ing that the satisfiability problem for clauses of the 
propositional calculus is MF-complete. More ex- 
amples of n/P-complete problems can be given (cf. 
Garey and Johnson [1979]), such as: 
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l The travelling salesman problem include at most one positive literal. The resolution 
l The knapsack problem method is a way to derive a contradiction from a set 
l The clique problem of clauses by making systematic use of the tautology 

Finally, some indications can be given on how to 
handle N’P-complete problems and also on practi- 
cal applications of these notions, through the use of 
“one-way” functions. 

Around logic 

Many authors now emphasize the role of logic in 
the foundations of computer science. This is pre- 
sumably because of the deep connection that exists 
between computer programs and proofs. This con- 
nection was already implicit in the section on com- 
putation theory: The undecidability phenomenon is 
closely related to Godel’s Incompleteness Theorems 
that show the extreme limits of deductive mathe- 
matics. 

It is therefore necessary to include a thorough 
introduction to logic in order to endow mathemati- 
cians with a synthetic view of computer science. But 
it should be added that the interplay between math- 
ematical logic and computer science is such that 
logic cannot be taught now as it it was before the 
advent of computers. This applies both to the for- 
mal presentation of syntactical objects and to the 
development of the theory itself. 

As far as the predicate calculus is concerned, 
it is almost compulsory to use a constructive ap- 
proach based on Skolem functions and Herbrand’s 
theorem. (Recall that Skolem functions ensure that, 
whenever a formula %a(~, yr , . . . , yn) holds, a pos- 
sible solution z of this can be computed by a term 
f(Yl,..., yn).) Herbrand’s theorem states that, pro 
vided Skolem functions exist, any set of formulae 
from which no contradiction can be derived can be 
realized in a model whose domain is the set of closed 
terms). This provides both completeness and com- 
pactness by reduction to the propositional calculus. 
At this point, one should not avoid discussing un- 
decidability issues again: even if one starts with a 
finite set of formulas, one usually gets an infinite 
number of Herbrand clauses and therefore the Her- 
brand procedure does not necessarily come to a stop. 

From the formal point of view, it is extremely 
helpful to follow computer scientists and to consider 
formulas as trees and not only as strings of sym- 
bols, as was done classically. With this approach, 
a notion such as a free occurrence of a variable is 
given a clear, almost geometrical definition, which 
was not the case when it was introduced through 
a cumbersome recurrence. This can be quite im- 
portant considering the fact that syntax must be 
quickly understood by students who have not been 
exposed to logic beforehand. 

For the same kind of reasons, students have to be 
motivated as early as possible. Indeed, this can be 
done by discussing the aim of artificial intelligence: 
How to make correct inferences from a database of 
known facts. This is meaningful even in the simple 
framework of propositional calculus and the diffi- 
culty of the problem can be understood by recalling 
that the satisfiability problem is h/P-complete. The 
search for solutions to the deduction problem that 
are not brute search algorithms leads to the method 
of resolution, which can be made very efficient in the 
particular case of Horn clauses through linear res- 
olution. For the convenience of the reader, let us 
recall that clauses are disjunctions of literals; liter- 
als are either positive, i.e. propositional variables or 
negative (negation of such variables). Horn clauses 

In the above setting, the search for a more ef- 
ficient procedure leads to Robinson’s unification- 
resolution algorithm, and as in the case of the 
propositional calculus, one has to restrict oneself 
to Horn clauses if one is really concerned with ef- 
ficiency. As is well known, such a restriction en- 
ables the use of backtracking and this is basically 
the strategy of the Prolog language. The study of 
Prolog offers a very interesting application of logic 
in computer science. It shows that the views of ar- 
tificial intelligence can be turned into an actual pro- 

’ gramming methodology. Of course, it is clear that 
Prolog is a programming language and not a thee- 
rem prover and that completeness is lost, as a con- 
sequence of various features of the actual language, 
as the lack of the so-called “occur-check” and the 
use of the “cut” primitive. In order to show how 
the language works, simple programs can be writ- 
ten and discussed. 

Now, Prolog is not the only example of appli- 
cation of logic to computer science and one can 
choose to give an exposition of program verification 
through Hoare’s logic. Recall that this method is 
based on cutting the execution path of a Pascal-like 
program into loop-free pieces. To each cutpoint A 
is attached a formula +A, whose free variables are 
the actual variables of the program. Logic comes 
into the picture in proving that, if execution leads 
from A to B and if 4~ is true at A, with the current 
values of the variables, then 4~ is true at B, with 
the resulting values of the variables. This is used 
to show partial correctness of the program, which 
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means that, if execution terminates, the final for- 
mula expresses that the result is as expected. Total 
correctness can be proved along the same lines by 
using a well-founded relation and proving that loops 
decrease values of the variables with respect to this 
well-ordering. 

Finally, another topic where logic and com- 
puter science interact at the conceptual level is 
the &calculus, considered as another approach to 
program-correcness. Once again, it is based on the 
connection between algorithms and proofs. This 
time one is talking about formalized proofs within 
the framework of intuistionistic logic (without use of 
the middle-third) and about systems of rules using 
the typed-&calculus, where a proof yields a term t, 
which is, in a way, its algorithmic content (cf Kriv- 
ine and Parigot [1990]). In order to be more precise, 
let us recall that X-calculus builds terms from vari- 
ables, through the following rules: 

l if t and u are terms, then (tu) is also (application 
of t to u) 

l if t is a term and t a variable, then Xz.t also 
(abstraction) 
The X-calculus can be considered as a kind of 

machine language, a term being turned into a so- 
called normal form by reduction rules. In order to 
program a function with integer arguments (for ex- 
ample), one proves a formula (stating that, the re- 
sult is an integer). This gives a term t and execution 
is just the reduction of the application of t to the 
terms denoting the arguments. Because of the way 
programming is performed, correctness is ensured. 
Of course, the work on this type of programming 
strategy is only beginning and one should not con- 
ceal that the resulting programming style is highly 
inefficient at this stage. 

More on syntax 

Because of the organization of our paper around 
computation, algorithms and logic, we have not 
discussed some quite interesting connections where 
mathematics provides the necessary background. 
For example, we mentioned that logical formulas 
can be considered as trees and the same is true of 
computer programs. Now both usually appear as 
strings of symbols. It is therefore very important 
to be able to recover the full tree structure from its 
string version. This is a part of compilation, called 
syntat analysis (cf Aho, Sethi, IJllman [1986]). It 
turns out that the theory of context-free languages 
is exactly the tool needed to perform syntax analysis 
efficiently. 

Conclusion 

In this short paper, we have tried to describe 
what we consider as the mathematical basis of com- 
puter science, to show how the chosen topics can be 
organized and to motivate the choices that we have 
made. Following the further developments of com- 
puter science, these contents will presumably have 
to be expanded or modified. For example, it may 
appear important to discuss boolean networks (to 
model VLSI) or to introduce tools for the study of 
relational databases. In any case, we feel that math- 
ematical tools for computer science will become a 
part of any advanced curriculum in mathematics. 
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Introduction 
Historical Sketch and Trends 
The three traditional cultural techniques (Kul- 

turtechniken), which play the most important role 
in our children’s education are reading, writing and 
calculating. From the time of their “definition” 
(perhaps 1200 years ago; Alkuin, an adviser of 
Charlemagne, mentioned them) the sets of methods 
establishing these techniques have undergone great 
changes and so did the subsets which were accessible 
at school levels. In our times the largest expansion 
occurred in calculating, which developed into a tech- 
nique of solving problems formally with numbers, 
symbols, graphics and words. On one side, this is 
a result of extensive mat,hematica.l research, which 
among other results brought about powerful algo- 
rithms, easy to execute. On the other side this trend 
was accelerated by the rise of powerful processors for 
algorithms, namely computer systems together with 
their scientific background, informatics (i.e. com- 
puter science). These aids make a variety of formal 
problem-solving methods accessible for school math- 
ematics and other subjects, which previously could 
not be executed by students and pupils. Algorithms 
form one important class of these methods. 

The development outlined above caused and still 
has a significant impact on school mathematics ed- 
ucation. At least three of the didactical dimensions 
of the mathematics classroom are envolved: content, 
method and medium, to say nothing of the pupil - 
teacher relationship. Control on these impacts can 
only be gained by integrating and organising them 
into mathematics curriculum at all levels, since, as 
A. Ralston [1990] points out “ . . only . . curricu- 
lum content can serve as a lever to change the en- 
tire mathematics education system”. Comput,er use 
in mathematics education started as a very special 
method with mostly special topics. Future co& 
puter use should be a standard method, applied in 
whole strands of subject matter. This article will 
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give a review of some effective and successful steps 
and some reasonable trends in the pursuit of this 
goal in school mathematics. 

In addition, many of the examples of this pa- 
per indicate that the technology is already a signifi- 
cant factor in school classrooms, a factor that more 
than deserves its place. The contribution that it 
can make to the social and academic interactions is 
vivid and, once experienced, always valued. 

Finally, just as children play out a wide range 
of roles in being part of the community they are in, 
so too can computers. Thus we ask the reader to 
consider the computer as a member of the classroom 
community, one that is able to contribute to the 
day’s activities in an appropriate fashion. 

Considerations and concrete suggestions for the 
use of computers in mathematics teaching depend 
on knowledge about and experience with such in- 
struments shared by teachers and mathematics edu- 
cators. Fifteen years ago these people had access to 
computers mostly as programmers in numerically- 
oriented languages. So computing power was mainly 
used in secondary math education for numerical al- 
gorithms in the form of short Basic programs. Ten 
years ago, another step - but still in the algorithmic 
spirit - was taken with Logo on various home com- 
puters with its underlying philosophy of exploring 
mathematics in specially designed microworlds and 
of learning mathematics by teaching it to the com- 
puter; Logo also included the use of geometry and 
symbolic manipulations. Primary education was in- 
volved with these ideas, even kindergarten. 

The proliferat,ion of so-called standard software 
on personal computers in the last decade gave way 
to new considerations and experiments, especially 
with spreadsheets, programs for data representa- 
tion, statistical and numerical packages, dat,abases, 
CAD (Computer Aided Design)-soft,ware and com- 

__ ._._ ..--..-_1__, -*---- 
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puter algebra systems. But in the beginning such 
software was not very user-friendly, and afterwards 
became too complex; the need soon became obvi- 
ous for special school adaptations which allowed 
easy specializations, employed mathematical nota- 
tion similar to that used at school, and used power- 
ful and helpful metaphors, so that even users with 
little training and only occasional practice (as is typ- 
ical of school users) could succesfully handle them. 
This led to the creation of general and didactical 
software tools which sometimes also had a tutorial 
component, thereby integrating some traditions of 
computer-aided instruction (CAI). All these forms 
of using the computer came into being in sequence 
but can now be found simultaneously in discussions 
about mathematics teaching. 

Even if suitable hardware and software are now 
available for ordinary schools, several necessary in- 
gredients are still missing: Teacher training is far 
from sufficient; hardware availability in most schools 
is still dictated by the needs of computer science and 
computer awareness courses and the concentration 
of machines in special locations prevents or makes 
difficult the natural, selective use of software - e.g. a 
function plotter - during short episodes in the teach- 
ing process. 

Influences on the Goals and Aims of 
Mathematics Teaching 

In elementary schools children meet basic pro- 
cesses with patterns and numbers in the mathemat- 
ics classroom for the first time. There is a range of 
uses of technology that have proved positive and 
stimulating in helping children to express them- 
selves and to progress in a confident and enjoyable 
fashion. In particular these can help to discovery - 
partly unconsciously - of the importance of underly- 
ing structures as an aid to qualified communication 
in language and problem solving. The computer is 
well-suited to setting up structures - this will be il- 
lustrated in the examples that are discussed in detail 
in the section on Illustrative Software below. (For 
a more comprehensive discussion of the influence of 
computers on mathematics teaching, see the survey 
by Fey, 1989.) 

The emergence of multimedia technology means 
that our communication with computers and, in- 
deed, amongst ourselves will employ words, pictures 
and sound in equal partnership and will not be lim- 
ited to a fixed sequential presentation. Although 
this article draws on the experience of using micro- 
computers in the classroom, it will also be relevant 
to the more sophisticated interactive video delivery 
that is now available. 

At the secondary levels we consider two main 
aspects which influence the goals and aims of math- 
ematics education: the (mathematical) preparation 
of students for their lives and occupations, and the 
role of mathematics and its applications in society. 

The students’ preparation for their lives and oc- 
cupations starts in the first instance at school with 
its various disciplines. Since through the availabil- 
ity of computers, there are now strong tendencies 
to introduce simulations into the school teaching of 
science, most notably in biology, or of introducing 
elements of statistics and data analysis into the mea- 
suring sciences and geography (cf. Winkelmann, 
1987), this is obviously a challenge to the teaching 
of mathematics: Mathematics should elucidate the 
principles, possibilities and possible pitfalls of these 
methods; ad-hoc-explanations of such methods by 
the specific content-oriented disciplines are surely 
not appropriate for giving the student a coherent 
appreciation. 

It is important to realize that routine calcula- 
tions of all complexities will be done increasingly by 
ubiquitously available machines which must be con- 
trolled at various levels by the users concerned. This 
requires more insight, more breadth, more ability 
to check consistency, but fewer routine algorithms. 
Such an emphasis belongs to the perennial goals of 
mathematics teaching, of course, especially in the 
new math movement. But now there is really the 
possibility of leaving out some of the drill because 
technology can take over. Even an insight into the 
fundamentals of computers and their programs may 
belong to the preparation for life. This can often be 
shared with the other formal discipline, informat- 
its/computer science, if it is implemented. It is hard 
to be more specific, since the determination of the 
elementary and more advanced cultural techniques 
which are needed by the future citizens presupposes 
a futurist view of society which is notoriously hard 
to specify. 

As to preparation for vocations, for university 
studies, fundamental ideas and experiences in al- 
gebra, geometry and fractals, analysis, data analy- 
sis and statistics, simulation and chaos would now 
seem to be necessary in different kinds of studies. 
More specific preparat,ions for special vocations are 
again difficult to determine. For example, CAD 
(Computer-Aided D esi g n which helps the construc- 
tion of planar, spatial a.nd other objects on the com- 
puter screen) is necessary for an increasing number 
of technical vocations, and this means the need for 
new and different qualifications in geometry; but 
what is exactly needed and how to build a curricu- 
lum to fulfil1 the needs of the trades remains unclear. 
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The same is also true for the other domains men- 
tioned in this chapter; therefore, it is not laziness 
that the descriptions above are so general and un- 
specific. The general direction of necessary change 
can clearly be seen, but concrete decisions cannot be 
built on scientific knowledge yet; we have to experi- 
ment and gather ideas, examples and proven results 
in concrete circumstances. 

Mathematics education at school not only has 
the task of delivering to students the qualifications 
asked for in vocations and daily life, but it should 
also give insight into the role of mathematics in cul- 

.ture and society, into the fundamental possibilities 
for understanding and description offered by math- 
ematics, and into connected assumptions and lim- 
itations. In this respect, on the one hand today 
the greater part of the applications of mathematics 
is transmitted by the computer and thereby influ- 
enced in its character, as will be discussed in some 
instance below, and on the other hand the computer 
is fundamentally a mathematical machine and thus 
its proliferation is a tremendous amplification of the 
mathematization of our lives. 

Primary School 

Computers and Calculators for Young 
Children 

The greatest impact of computers on the learn- 
ing of school mathematics has occurred in secondary 
school. However, we wish to begin by discussing the 
primary school curriculum for three reasons: 

l a natural and basically positive attitude towards 
computers can only be achieved at this level. 

l since primary school determines a student’s life- 
long attitude toward mathematics, we must use 
all possible means - and the computer is one of 
the most powerful of these - to create a positive 
attitude during primary education. 

l it is necessary that teachers planning to use com- 
puters in secondary school and even in universi- 
ties understand what was done in primary school 
and what the problems were there. 
The first major need to socialise with peer 

groups and to share them arises when children move 
out of the home into regular contact with others 
at playschool or infant school. Here, also, serious 
work starts in developing spoken and written lan- 
guage skills, learning about the world and meeting 
basic processes with patterns and numbers. Plenty 
of play and creative opportunities are provided to 
allow natural skills to flourish. 

How can technology help in this busy active 
happy environment of early childhood? Technology 

is certainly part of the world that the children will 
grow up in but one might feel it is not yet a part that 
children need to meet directly. Indeed, there are 
concerns expressed in some countries that it might 
be positively harmful to allow the use of technology 
before certain basic skills have been mastered. 

In the next section we shall look at some exam- 
ples of use under ‘content’ headings although they 
also give rise to cross-curricula work. For ease of 
illustration we shall take Language Development, 
Early Science and Basic Mathematics as our main 
categories. The decision not to limit the primary 
school part of this article to mathematics is deliber- 
ate in view of the fact that most elementary school 
teachers carry a responsibility for the major part of 
a total curriculum. It is thus important that the 
use of computers be set in this context. However, 
the Language and Science examples also have a rel- 
evance to mathematical processes although this is 
not made explicit. 

Before looking at the specific examples, it is nec- 
essary to discuss the social situation that children 
find themselves in. Basically, there is a teacher to 
whom they can turn and who organises their ac- 
tivities during the day; there is a group of children 
that they work with, those they play with plus spe- 
cial friends that they confide in. Thus children con- 
tribute to a whole range of interactions sometimes as 
part of a large class, at other times with a smaller 
group, often just to one other person and, finally, 
they must frequently work things out as an individ- 
ual. In short, the challenge that young children face 
of being a member of the classroom community is 
complex and demanding. 

Children need to develop good productive rela- 
tionships and for this they need effective verbal and 
nonverbal skills. Communication through body lan- 
guage and other nonverbal signals develop naturally 
and requires no formal intervention. With the spo- 
ken and written word the structure of the language, 
although not formally expressed, begins to be un- 
consciously absorbed and then actively used to build 
new sentences and expressions. This somewhat sur- 
prising occurance indicates the importance of under- 
lying structures as an aid to communication. The 
possible role of the computer in this process was 
mentioned above. 

We shall analyse, albeit in a rather crude fash- 
ion, the roles played out by teachers, children and 
computers in the examples that follow. 

Thus the focus of the following descriptions will 
be to consider the quality of the communication 
in the classroom community and to identify struc- 
tures and roles that enhance the interactions be- 



60 lnff uence of Computers and Informatics on Mathematics and Its Teaching 

tween members of the community. 

Illustrative Software 

1. Language Development 
We describe here an extremely simple but power- 

ful program called DEVELOPING TRAY. It allows 
teachers to type in pieces of text or poems they wish 
children to explore. The written material may be fa- 
miliar or unfamiliar; it may be related to a project 
they are studying or simply may have an interesting 
language pattern or style. At first all the children 
see on the screen is the punctuation - commas, full 
stops etc. Even this stimulates discussion - is it a 
poem or a piece of prose? They make their decision 
and go to the ‘scratchpad’- a type of notebook built 
into the program - to record their first predictions 
about the nature of the text. Now they must ‘buy’ 
letters. Every letter or letter pattern they choose to 
appear in the text costs them points. Every correct 
word they type in or correct guess they make on 
their note pad gains points. At first children tend 
to buy letters arguing about those which are ‘the 
best value’. As they see single letters and groups of 
letters dotted about the screen, a pattern starts to 
emerge. The following letters at the beginning of a 
text: 

0-ce --o- a ---e 
may suggest the familiar opening to a traditional 
story - ‘once upon a time’. The three letter word 
t-e may be guessed as ‘the’. The children can type 
in any missing letters. Correct guesses are not only 
accepted by the computer but are also placed in the 
rest of the text. Thus one ‘h’ typed in a correct 
position places all the ‘h’s’ in the passage. Incor- 
rectly placed letters simply vanish from the screen. 
Thus the piece of writing is slowly revealed to the 
class like developing film in a photographers’s dark- 
room (hence its name). There is great excitement 
as a word or phrase is identified or as the range 
of words suggests the general content being writ- 
ten about. Prawns, shells, fish for example might 
suggest a passage about the sea; it could however 
be about working on a trawler or in a fishmongers 
or part of a menu for a banquet. The children not 
only have fun watching the text develop before them 
but they also enjoy looking back at their notes on 
their scratchpad to see whether their guesses were 
right or wrong. It is not just an exercise in reading 
and comprehension; it is about collaborating and 
co-operating towards a common goal - and it is fas- 
cinating for teachers to watch all the skills and in- 
teractions generated. 

As a supporting structure into which the teacher 
or indeed the children may place any text for ex- 

ploration, this software is independent of country, 
culture or age range. It offers a stimulus to explore 
language from many different angles and from many 
different content areas. It can be used by groups of 
children just beginning to read or by groups study- 
ing an author’s style or even to consider a math- 
ematical argument. In this activity the computer 
plays the role of tasksetter and manager and pro 
vides support to a rich and enjoyable learning expe- 
rience. It may be a task that an individual tackles, 
but equally small groups and large groups can com- 
bine their talents to find the hidden text. Teachers 
and children can work together if the text is not 
known to them. Thus there is the opportunity for 
the teacher to join in the activity as a fellow pupil 
rather than to share the role of a tasksetter with 
the computer. The children find that they can use 
the structure of language and their previous expe- 
rience in language to help solve the problem. DE- 
VELOPING TRAY stimulates communication and 
supports the strengthening of the use of structure 
in language. 

2. Early science 

The following description by Anthony Paddle de- 
scribes work using EARLY SCIENCE. He considers 
a use of the computer that offers support to infor- 
mation structured in binary trees. A diagram such 
as this is shown below. 

Crcstcd 
Tll 
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Several years ago, various versions of a computer 
game based on binary trees called ANIMAL ap- 
peared in magazines, and books. A typical dialogue 
with a computer running ANIMAL looks something 
like this: 

Are you thinking of an animal? YES 
Does it live in water? NO 
Does it fly? NO 
Does it walk on four legs? NO 
Does it go “BOING”? YES 
Is it a KANGAROO? YES 

Are you thinking of an animal? 

Only the boldface answers are typed by the 
player; the questions themselves are stored in the 
computer’s memory. Things become rather inter- 
esting when you think of an animal the computer 
does not know about: 

Are you thinking of an animal? 
Does it live in water? 
Does it fly? 
Does it walk on four legs? 
Is it an elephant? (sic) 

YES 
NO 
NO 
YES 
NO 

The animal you were thinking 
of was a? MOUSE 

Please type in a question that 
would distinguish an ELEPHANT 
from a MOUSE? 

HAS IT GOT A TRUNK? 

For a mouse the answer 
would be? NO 

In fact, the program starts each time knowing 
just one question and two animals. All the oth- 
ers are added by the players in the same way as 
the mouse. ANIMAL mimics a very simple learning 
process. 

Clearly, the questions and animals are stored in 
the form of a key (or, equivalently, a binary tree), 
ANIMAL combines the functions of a key-searching 
program and key-building one. Although intended 
as a ‘try to fool the computer’ game, it could be used 
quite seriously as an identification aid. As such it 
has definite advantages over a traditional printed 
key, especially for children. 

The first advantage is that only relevant ques- 
tions are displayed on the screen. A key containing 
1000 animals needs 999 questions but, in theory, 

only ten of them need to be answered to identify 
any one of the animals. In practice, reality tri- 
umphs over logic and keys cannot be designed that 
well; nevertheless, only a small fraction of the ques- 
tions are relevant at one time. The remainder are 
distracting clutter, and it is easy to become hope- 
lessly lost in a large printed key. ANIMAL avoids 
the problem by avoiding the clutter. Secondly, AN- 
IMAL breaks down the highly abstract problem of 
designing an identification key into simple, concrete 
steps. To add the mouse to the key it is not nec- 
essary to think of all the attributes of mice or to 
search for some essence of mouseness that will dis- 
tinguish mice from anything else. You are simply 
asked to find one clear difference between a mouse 
and one other animal. The key-searching part of the 
program ensures that the other animal is the most 
similar one already in the key, so that the mouse is 
inserted in the right place. This is not the only way 
of breaking down the key-building problem nor, if 
the aim is to produce ‘elegant’ finished keys, is it 
the best, Nonetheless it is easy and foolproof: If 
the individual questions work, the whole key will. 

ANIMAL was not designed as a robust educa- 
tional tool and suffers from a number of deficiencies. 
It is not possible to correct any of the questions or 
answers once they are entered - spelling mistakes 
are permanent. Nor is there a facility for saving a 
key on tape or disk, or for printing it out on paper. 
The language used by the program itself limits the 
use (‘Are you thinking of an animal?’ is a built-in 
question). It would be awkward to use it to classify 
plants or rocks. 

There are now several elaborations of this idea, 
written for educational use, in which these problems 
have been solved. THINK is one example which, 
while keeping the outward key format of ANIMAL, 
has become a sophisticated tool for the creation, 
correction and searching of binary trees. 

A further development is offered by SEEK, 
which comes in a package with THINK, several 
ready-made keys and a program called INTREE for 
typing in whole keys quickly. SEEK uses the com- 
puter’s graphics to display the questions in binary 
tree form. The questions appear in boxes and, de- 
pending on whether you give a Y or N answer, you 
are led down a branch to the left or right into an- 
other box containing the next question or the an- 
swer. At any stage you can move back up the tree 
and down another branch, so that the whole tree 
can be explored. SEEK makes the structure of the 
information appear obvious. ANIMAL and its more 
direct descendants appear, by contrast to produce 
questions from nowhere; they seem cleverer than 

.i . . . “. _.-_. _. 
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they are. 

3. Using Key Handling Programs 

Programs such as SEEK can be used in a surpris- 
ing number of ways with children. Obviously they 
can be used to.identify things if a suitable tree of 
questions is already available. At the other extreme, 
children can build their own tree from scratch, given 
a set of rocks, twigs or kitchen powders, for instance. 

There are also strategies that fall between these 
two. If a class is planning to go pond-dipping, a key 
to the commonest animals might be created in ad- 
vance, using information from books. New animals 
can be added one at a time as they are found, pos- 
sibly over a long period. This may well be the best 
approach with large, complex groups of things. The 
initial skeleton tree can be designed so that its main 
branches represent the major groups (nymphs, lar- 
vae, snails, worms, etc.) and the research involved 
in creating it can give focus to the childrens’ prepa- 
rations for the first outing. 

In the classroom, identification exercises can 
provide very effective frameworks for practice of ob- 
servational and experimental skills. A particularly 
good example is the POWDER tree supplied with 
the SEEK/THINK package. On the surface it is 
simply an identification key for common household 
powders, such as sugar, salt, washing powder, flour 
and baking powder. The questions, though, are not 
just passive observational ones: Most of them ask 
the children to do something to the powder and 
watch its reaction. In the next column is part of 
the key as produced by SEEK on a printer. 

There is no one way of classifying things. There 
may be generally accepted ways for groups like 
plants, animals or rocks, but even these are subject 
to constant argument among scientists. If children 
are to understand why things are classified the way 
they are, they need to explore and compare differ- 
ent ways. It is here that programs like SEEK display 
their real value. By taking care of the overall organ- 
isation of the tree, they let the children concentrate 
on close observation, comparison and the logical and 
language aspects of choosing good questions. 

Imagine that a group of children are trying to 
identify some epsom salts using the POWDER tree. 
They will probably find that it is wrongly identified 
as a salt. If they decide to extend the tree they 
will be asked to find a question to distinguish the 
two. This is no small challenge, finding the best 
question may take a lot of time, experimenting and 
discussion. The first stage is to find out everything 
they can about the two substances by observing, 

QUESTION YES 

1 Feel your powder? 
Is it smooth or 
floury? 2 

2 Put some in a 
teaspoon and 
heat over a 
candle. Can you 
see lots of 
steam? 

BAKING 
POWDER 

3 Look through a 
magnifying 
glass to see 
if it is lumps 
or crystals. Is 
it crystals? 5 

4 Put a drop of 
iodine on your 
powder. Does it go 
blue/black? 

FLOUR 

5 Put some in a 
teaspoon and 
heat over a 
candle. Does it 
smell like 
toffee? 

SUGAR 

6 Put some in 
water and shake. 
Do you get lots 
of bubbles? 

SOAP 

7 Put a teaspoon 
of powder on a 
saucer and add 
vinegar. Do you 
get bubbles? 

WASH- 
ING 

SODA 

NO 

3 

4 

6 

ICING 
SUGAR 

7 

POLY- 
CELL 

SALT 

practical testing and research into their uses. The 
result may be quite a long list of differences, so the 
second stage is to decide on the best question to be 
added to the tree. 

‘Does it dissolve in water?’ is no good because 
the both do. 

‘Does it taste salty?’ may be ruled out on safety 
grounds (someone may try to identify something 
poisonous). 

‘Do you buy it at the chemist?’ requires prior 
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knowledge and would be impossible to answer if you 
really did not know what the powder was. 

‘Does it have big crystals?’ does not have a clear 
answer: It depends what you compare them with. 
Also the crystal sizes of both vary enormously. 

‘Does it have long, thin crystals?’ is better, as is 
‘Does it turn into white cake when you heat it over 
a candle?’ 

Some of these problems are quite subtle, and 
children are unlikely to spot them until they try the 
‘bad’ questions in a complete tree. Fortunately, all 
the more recent programs let you prune and repair 
a tree without having to rewrite the whole thing; 
so children can learn from their mistakes and cor- 
rect them with a minimum of frustration. A good 
way of identifying problems and sharing insights is 
to encourage groups of children to test each other’s 
trees. 

4. Mathematics 

AUTOCALC is another example of a simple 
program that promotes considerable discussion and 
sharing of processes. It enables children to articu- 
late their own methods and ideas and haa proved 
an extremely valuable way to build their confidence 
in their mathematical abilities. The children are 
challenged by the program to try out their men- 
tal arithmetic skills and to review and compare the 
range of possible processes. A large screen is needed 
at the front of the classroom. The screen presents 
the problems in the following format: 

44 

+ 29 
-- 

After a delay the computer then supplies the an- 
swer to the calculation 

44 

+ 22 
73 

The mode of the program is to generate such 
problems by selecting random numbers according to 
the parameters set at the beginning, using a chosen 
operation and displaying the answers after a chosen 
time delay. The option screen used for defining the 
type of problem to be set is shown below: 

Autocalc Options 

Type of problem Subtraction 
Difficulty Level Own 
Top number 1 to 20 
Middle number 1 to 10 
Bottom number 0 to 20 
Delay time 2 seconds 

This option setting provides simple subtraction 
problems for young students. 

Imagine a class of children working on the ways 
in which they ‘add 9’ to numbers. The computer is 
set to produce problems where the number is gener- 
ated between 0 and 99, the second number is fixed at 
9 and the time delay of 3 seconds before the answer 
is given has been set. Fifteen problems appear one 
after the other and the children attempt to calculate 
the answer before it is displayed by the computer. 
To simulate the experience complete the following 
problems as quickly as you can:- 

28 90 32 77 88 79 37 66 
~+J+s+s+s+s+9+9+ 

Probably after the first try at this task the chil- 
dren will feel that they might be able to get the 
answers in under 2 seconds so that they can have 
anoiher go with reduced time delay. Some might 
even like to go at producing an answer in 1 second! 
After this activity the children are asked to say ex- 
actly how they got the answers. The following list 
of methods was the result of a class of ten year olds 
sharing their ideas: 

1. Helen decided to add one to the ‘tens’ and then 
take one away from the ‘units’. 

2. Jonathan was happy to count on his fingers but 
didn’t always have time. 

3. Susan added 3 three times. 
4. Jo subtracted ‘1’ and added ‘10’. 
5. Anne worked out ‘how many to the next 10’s’. 

This is then subtracted from 9 and the remainder 
added 
e.g. 78 + 9 = 80 + 7 = 87 

6. Simon added 2 four times, then 1. 
7. Jane used different mathematics for different 

problems. 
8. Michael just ‘knew’ the answers! 

The children greatly enjoy sharing their methods 
and trying out each other’s ideas. They are also en- 
couraged to use calculators - various tasks are given 

_ _ . . ..___. -. . . - . .._-_-_ - -_-__ - --- .-UI 
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that begin t,o expand their understanding of num- 
ber and to encourage them to feel confident enough 
to move int,o estimating outcoming numbers as well. 
AIITOCALC can be run in a mode where the chal- 
lenge is not to do the calculation but to spot ev- 
ery time an incorrect answer is displayed. (This is 
called the ‘oops’.mode.) The skills needed to suc- 
ceed here are now dependent on having a good grasp 
of number bonds and relationships. Another excel- 
lent activity is to ask the children how many prob- 
lems they can make combining a number between 
O-99 and a number between O-9 that has the an- 
swer of 5; e.g. 13 - 8 = 5; 1 x 5 = 5 etc. After 
exploring the problem in groups, the children offer 
their solution. This brings out some fundamental 
mathematical processes - classifying sets within the 
solution set - setting the initial conditions in order 
to limit the solution set to a finite set and many 
others. The children express these ideas in their 
own language and, of course, they are not yet aware 
of the generalisation of such ideas. However it is 
at this point that we become aware that this simple 
computer program has given the children a stimulus 
that has caused them to become t,rue mathemati- 
cians. In sharing their mathematical processes and 
in valuing each other’s ideas they will build up con- 
fidence in their own abilities to offer something to 
the subject. In this way we can begin to remove the 
fear that so many people leave school with in regard 
to their mathematical abilities. A final stage 69 the 
discussion of the ‘5’s’ problem is to watch the com- 
puter doing the same problem and to write report 
to ‘it,s parent,s’ on its performance. As the comput.er 
applies an ext,remely simple algorithm (it just keeps 
randomly generating problems but only displaying 
t,hose that give the result of 5), its performance is 
certainly open to criticism. Here are some of the 
children’s reports: 

P.S. yd’ CJOH I; RV?rO.ylhhG q C- 

Critics might say that the activities promoted 
with AUTOCALC are not valuable because they 
are dealing with numbers out of context to any real 
problem. However we hope that the examples here, 
which are only a minute part of the range of possi- 
bilities, show children becoming aware of their own 
power and thought processes and also taking over a 
range of ‘teacher roles’ at various stages. Feedback 
to the teacher of the children’s reasoning and the 
way in which they articulate this is a major contri- 
bution of AUTOCALC. 

A few years ago Michael Girling (Her Majesty’s 
Inspector) suggested that a definition for numeracy 
might be ‘appropriate use of an electronic calcula- 
tor’. What number sense would one need in order 
to qualify? 

We suggest: 
1. Instant command of single digit arithmetic 
2. Command of basic multiplication facts 
3. Skill in estimation 
4. Capacity to spot errors 
5. Capacity to select which operations are appro- 

priate in any problem 
With the exception of 5 all these points are 

strengthened by the activities possible with AUTO- 
CALC. 

Concluding Remarks 
This section has taken just a few examples of 

simple software to illustrate how computers can 
have a stimulating and refreshing relationship with 
children. We are keen that the computer becomes 
an accepted assistant and friend of both teach- 
ers and children.The use of Logo, data banks and 
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word processing, have not been discussed here as 
many books and articles are available to the reader 
on these topics. Such languages and systems can 
be employed to stimulate discussion and exitement 
such as is described here. However, they can make 
considerable demands on the users and we would 
recommend that subsets of such systems are used 
to start with. Slow progress is being made with im- 
plementing a curriculum that make effective use of 
computers and calculators. This is due to the fact 
that there is not as yet a great deal of curriculum 
support materials to introduce the range of learning 
activities that simple or complex computer software 
can support. However, this material will gradually 
emerge and there is certainly enough available to 
any enterprising school to offer children the advan- 
tages of a computer in their classroom. 

Any school able to equip each classroom with 
a single microcomputer would gain experience and 
confidence within a matter of months rather than 
years. Add to this provision a small laboratory for 
word processing etc. together with a collaborative 
staff exploring possibilities together and the scene 
will be set for an exiting time for children in such a 
school. 

Secondary School 

Phenomena, Theories, 
Experimental Mathematics 

In mathematical knowledge one can differentiate 
between facts on the one hand and the insight into 
their necessity and their connections on the other 
hand, or between phenomena and theories. This 
distinction becomes clear, for example, in the do- 
main of the geometry of triangles: Examples of phe- 
nomena are the observable facts, such as that the 
three angel bisectors meet in one point and simi- 
larly for t .ie perpendicular bisectors, that the sum 
of the in] er angles equals 180 degrees, that two tri- 
angles w rich have the two sides and the enclosed 
angle eqi al have all other measurable parts equal, 
the form [la of Pythagoras, etc. Most classical the- 
orems of school geometry belong here, but so also 
do more qualitative facts such as: If two sides are 
fixed in 1 !ngth, then the third side gets longer if the 
enclosed angle is made bigger (up to 180 degrees). 
There is row special software such as The Geomet- 
ric Suppl ser or Cabri Gdometre which helps to find 
such fat s by giving assistance in the making and 
systemat c variation of geometrical constructions. 

In tl e domain of theory there is the logical or- 
dering ,f facts (local and global), the insight into 
the necessity of observed facts, the determination 

of the proper conditions under which the facts re- 
main true (the domain of validity), etc. As a con- 
crete example, let us look at the calculus (analy- 
sis). Phenomena are: The graphs of functions, say 
of f(z) = zsin l/z, the fact that sinz/t tends to 1 
as I tends to zero, the divisibility of 2” - 1 by z - 1 
and the form of the divisors, the formulas for the 
derivatives of elementary functions, the linearity of 
the integral, or the shape of solutions to a specific 
initial value problem for a differential equation. 

To the domain of theories, there belongs the def- 
inition and fundamental properties of the limit, the 
completeness of the real numbers, the definition of 
the integral, the limits of validity of theorems, and 
explanations of facts by arguments. 

It is interesting, that there may be different pos- 
sible theories, for example, Euclidean or Cartesian 
geometry, with formalist or constructivist founda- 
tions. Or, in the case of analysis there are differ- 
ent possible non-equivalent theories, the classical 
6 - h-theory, non- standard analysis and different 
constructivist approaches. But all those different 
theories explain - in different ways - the same phe- 
nomena. And all the concrete applications of geom- 
etry or calculus only rely on the phenomena, not on 
the underlying theories. In a similar way, comput- 
ers and mathematical software work exclusively in 
the realm of the phenomena; they can only exhibit 
phenomena. And they are able to show the phenom- 
ena even to students who have not yet mastered the 
theory. 

This is the point in our argument: In a mathe- 
matics class using mathematical software, students 
will get to see and know a lot of mathematical phe- 
nomena. The mathematical theory then has to ex- 
plain these phenomena; thus mathematics shifts in 
the direction of a science which orders, describes and 
makes understandable facts that are already known 
and obvious even without explanation. This is in 
sharp contr&st to classical teaching methodology, es- 
pecially in such domains where it was hard to ap- 
proach the phenomena without theory or advanced 
technology. 

Here is an example. In the study of functions 
and their transformations, traditional teaching de- 
duced behaviour mostly from theory, since the ac- 
tual plotting of function graphs by hand was far too 
expensive, in terms of time and labour, in order to 
make students see the facts, for example, the graph- 
ical translations connected with the transformation 
f(z) + f(z + u). With the help of a function plot- 
ter they may observe those transformations, first 
connected with a concrete f and a, then system- 
atically explored with free chosen examples, and in 
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between also formulated as hypothesis and verified 
by arguments. In this way, the temporal order of 
phenomena and theories reverses, and gets closer to 
the usual habits of mathematics as a research ac- 
tivity. Of course, such an approach has often been 
used with mathematical content where exploration 
of phenomena was cheaper. 

The didactical paradigm just described has of- 
ten been referred to as “experimental mathemat- 
ics”, but it has to. be stressed that theory is an in- 
dispensable part of it in order to be mathematics. 
Just playing around with a function plotter does 
not necessarily lead to insight. You normally need 
hints, ideas, hypotheses, questions in order to see 
something and get involved. (See Goldenberg, 1988 
for more specific considerations and examples.) As 
a counterexample, using fractal generating software 
may give spectacular pictures of great esthetic value 
but, if you stop at the phenomena, you won’t get at 
mathematics with such software. You need at least 
general concepts such as self-similarity or symmetry, 
which are also needed for the better understanding 
and appreciation of the beauty of the pictures in- 
volved. 

Software for Secondary School 
Mat hemat its 

We shall discuss this for thrcr content areas 
Geometry, Functions and Data Analysis. 

Geometry 
Two software packages for geometry education 

were mentioned above: The Geometric Supposer 
and Cabri Geomktre which allow constructions of 
most of the problems of Euclidean plane geome- 
try, A so-called draft mode allows the exploration of 
consequences of moving one point in a figure while 
keeping its connections to other points (see Fig. 1). 
Descriptions and examples are given in Schumann 
[1990]. Here we shall describe two other pieces of 

L 

Figure 1 

“teachware”, which allow some unconventional ac- 
tivities which are closely related to the curriculum 
for grades 7 and 8. 

The elementary didactical philosophy is that 
there should be two levels of action in geometry 
classes, when using a computer: On one level the 
pupils should learn the constructions manually with 
ruler and compass, as usual. On another level they 
improve their competence with these constructions 
by solving geometrical and applied problems with 
graphics procedures on the screen which they per- 
ceive as efficient and comfortable tools. In par- 
ticular, this use of computer graphics in the early 
years of secondary school has proved useful in three 
modes: 

Using procedures for ruler-and-compass con- 
structions which have already been understood 
as building blocks for more complex construc- 
tions without the need to repeat the elementary 
constructions again and again. 
Using procedures for constructions in ways 
which cannot be realized with ruler and com- 
pass. 
Using procedures for large and technically dif- 
ficult constructions, which demand many itera- 
tions of elementary constructions. 
The Geometric Supposer fits in mode 1. We now 

discuss two other s&ware packages, SYMMETRIC 
TURTLES and KALEIDOSCOPE, which illustrate 
modes 2 and 3. 

SYMMETRIC TURTLES (Graf, 1988) 

It is well known that Logo’s turtle graphics can 
help at the beginning of geometry education. As a 
tool which provides an extension of the ruler and 
compass a “running turtle” has been developed. 
This follows the concept of Abelson’s dynaturtle 
[Abelson and di Sessa, 19851, but without inertia. 
To some extent you can use it like a pencil, con- 
trolled with keys. 

Keys 1, 2 . . 9 put it in slow or faster forward mo- 
tion on a straight line, key 0 stops it. Z or N lets the 
turtle draw or not draw when moving. A, S, D, F 
effect small (5 degrees) or larger (15 degrees) left or 
right turns of the stopped or moving turtle. Q marks 
the position of the turtle on the screen and deter- 
mines a number for this point. This point can be 
reached again via keys K or P. K turns the turtle in 
its actual position heading for another point. This 
corresponds to putting a ruler through two points. 
P puts the turtle on an already marked and named 
point. And so on. 

This running turtle allows construction of many 
figures of interest in plane geometry. Besides this 
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turtle there are two more turtles, an “axial symmet- 
ric turtle” and a “central symmetry turtle”. They 
are controlled in the same way as the standard run- 
ning turtle. But they do not only draw the figure 
controlled but also the figure’s symmetric image in 
a different colour relating to the I- or y-axis or the 
centre point of the screen. This happens simultane- 
ously and pointwise. This mode of construction for 
symmetries helps the user to recognise the proper- 
ties of the mappings immediately and more easily 

than from the final picture. You see that a straight 
line remains a straight line, you see how the direc- 
tion changes under axial symmetry and how it re- 
mains the same under central symmetry. You also 
see that a straight line and its picture are parallel 
under central symmetry, but have different direc- 
tions, etc. Figure 2 contains some examples. Unfor- 
tunately, the “dynamic” quality of the turtles can- 
not be seen from these figures. 

Figure 3 shows how the following question can 
be examined: “What happens when reflecting a tri- 
angle in different positions relative to the axis of 
symmetry or a point?” 

Figure 4 gives a systematic answer to the ques- 
tion, “How can quadrilaterals be generated by re- 
flecting triangles?” 

Figure 2 Figure 4 

Figure 3 

First, it is convenient to choose a side of a trian- 
gle as an axis of symmetry. Then with the turtle you 
get a kite. The special case of an isosceles triangle 
occurs if the angle adjacent to the axis is 90 degrees. 
If this angle is greater than 90 degrees, then you get 
a quadrilateral which is not convex. You can also 
get a rhombus and square by starting with special 
triangles. But you never get a general rectangle or 
a parallelogram or a trapezoid. The central sym- 
metry turtle, however, applied on the centre of a 
side of a triangle produces a parallelogram imme- 
diately. This is an exciting discovery. The choice 
of this special point of reflection is suggested by the 
experiments shown in Figure 3. Again, no trapezoid 
occurs. This fact can result in geometrical discus- 
sions. More details about these tools are given in 
Graf [1988]. Some reactions of teachers and student 
teachers to this kind of teachware and some experi- 
ences in classes are also reported there. 

KALEIDOSCOPE 

In a paper by Graf and Hodgson [1990] it is 
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shown that the kaleidoscope can be a window to 
some geometric concepts. These are elementary and 
rich at the same time. They are rich in the sense 
that they offer not only a mathematical model of 
the kaleidoscope but also models for other worlds 
like planes to be tiled or even like a fictional kalei- 
doscope. 

From a methodological point of view the mathe- 
matical problems connected with kaleidoscopes can 
be worked on at the following five levels: 
1. Looking through the real kaleidoscope. 
2. Reducing the kaleidoscope to a model with two 

or more real mirrors placed on a sheet of paper 
containing some figure. 

3. Abstracting the mirrors and their reflections on 
straight lines (axial reflections) constructed with 
ruler and compass. 

4. Transferring these constructions to a computer 
graphics display. 

5. Using formal methods to describe the phenom- 
ena (and PROVE theorems!!!), for example, 
those of analytic geometry and linear algebra. 
Here we can only give a few glimpses on the soft- 

ware for simulating kaleidoscopic phenomena on the 
computer and examples of patterns that can thus be 
produced. 
a) Two-mirror kaleidoscopes: The main menu of- 

fers a choice of four different types of kaleido- 
scope. Mode 1 leads into a dialogue about form- 
ing a kaleidoscope with an arbitrary angle. The 
user gives the positions of the axes and then the 
position of the object to be reflected. The com- 
puter then displays the two axes and the object. 
It then constructs and displays one reflection af- 
ter the other until the pattern is complete. This 
can be done with a pause after each image or in 
an automatic mode. Mode 2 allows one to se- 
lect a kaleidoscope with angle 45, 60, 72, 90 or 
120 degrees and then proceeds as above. Figure 
5 shows some steps in the development of a 60 
degree pattern and the same process for a 70 de- 
gree pattern. One of the many questions which 
will arise after such experiments is: How many 
reflections are there before the pattern begins to 
repeat itself? Circular symmetry can be discov- 
ered and discussed after such experiments. 

b) Polycentral kaleidoscopes: These are built from 
a greater number of mirrors and thus produce 
groups of images around several centres spread- 
ing in all directions. Forgetting about special 
objects between the mirrors and just regarding 
the reflections of the triangles or quadrilaterals 
and so on shaped by the mirrors you discover 

Figure 5 

another mathematical phenomenon: Coverings 
of the plane. In the case of three equal mirrors 
or “sides” you end up with a perfect tiling of 
the plane. Figure 6 shows the growing of such 
a tiling. Obviously a discussion will arise from 
this about good and bad tiles. 
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Figure 6 

c) Fictional kaleidoscopes: The examples given so 
far considered the transfer from real kaleid- 
scopes to mathematical models, combining ax- 
ial reflections and varying the type of kaleid- 
scope. Why not vary the mathematical model 
and forget about reality? Central reflections 
(half-turns) will give us a model of some fic- 
tional kaleidoscopes having no physical counter- 
parts. One case is to look at a triangle again, de- 
termined by three centers of reflection, and see 
what happens after repeated reflections. We can 
get a pattern extending throughout the plane 
(see Figure 7), leaving some blank spaces. 



A new situation occurs if we start reflecting a tri- 
angle not about its corners but about the midpoints 
of its sides, and go on reflecting the images about 
these midpoints. A new tiling of the plane devel- 
ops and - what is really surprising for the beginner 
- this works well with any triangle. Next you can 
turn to quadrilaterals and again you discover imme- 
diately that a perfect tiling can be completed with 
any quadrilateral, even a non-convex one (see Fig- 
ures 8 and 9). So the fictional kaleidoscope brings 
you back to a real problem and the search for its 
correct mathematical solution. 
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Figure 9 

Figure 7 

We conclude this section about geometry with 
some general remarks. There should always be a 
very careful examination of the advantages for learn- 
ing before the computer is used in some field of 
mathematical education. There is no use in trans- 
ferring manual or mental activities (like construc- 
tions with ruler and compass) to the computer un- 
less this brings about more efficiency in learning. 
Another good reason for using the computer may 
exist if the computer allows activities which the stu- 
dents cannot achieve with their hands or brains. 
Then the computer acts like an additional tool, 
increasing the traditional abilities of the students. 
SYMMETRIC TURTLES and KALEIDOSCOPE 
are good examples of such tools. They allqw 
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. 

. 

. 

l 

. 

additional help in exploring mathematical prob- 
lems. 

- 

I 

a great variety of investigations with little effort 
easy experimentation 
the viewing of a very broad spectrum of complex 
geometrical constructions which turn up when 
studying reflections of complicated figures 
doing manually impossible constructions like the 
pointwise simultaneous construction of two or 
more figures 
introducing and using simple methods of CAD 
(computer-assisted design), a technique which 
has replaced manual technical drawing to a con- 
siderable extent. 

Functions 

Function plotting software in acceptable qual- 
ity for use in schools is now available for nearly 
all modern microcomputers, and there are now sev- 
era1 sources of didactical material describing teach- 
ing units, giving hints and providing exercises which 

Figure 8 
can be used by normal mathematics teachers. The 
general idea of a function plotter, to plot the graph 
corresponding to a user given function, can also be 
inverted, namely to plot the graph and let the user 
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look for the term. This is realized in the “Funktio- 
nen raten” (looking for the formula) part in G~aphiz. 

For example, the program plots the graph of a 
function - say f(z) = 22 - 3 - but does not show 
the term (Fig. 10). The user has to make use of the 
information given in the graph to guess the func- 
tion term and put it in. The computer reacts by 
plotting (in another color, if available) the graph 
corresponding to the user’s term in the same coor- 
dinate system. If the user has not got the correct 
solution (Fig. ll), h e or she can now see the dif- 
ference between the original and the guessed graph 
and use this information to debug, that is, to cor- 
rect any mistake. As many tries as desired can be 
made. It is also possible to wipe out the screen and 
see only the original function. 

.............................. ...... P-f...:. ... . f ..:....: .... i .... . 
: : : : : : I : f : : : : 

. . . . . . . . . . . . . . . . . . . . .._. .__. 
: : : : : , ./. . . : : : : : : : 

;.4+...;.../; . . ..I . . ..I . . . . . . . . . :,.. 

. . . . . . . . . . . . . . . . . ++...: . . . . . . . . . . . . . . . . . . . . :.._ 

f cx>= CT3 

Figure 10 

f cx>=x-3 c-?-3* 

Figure 11 

The functions plotted by the program are of- 
fered in different sets, organized according to dif- 
ficulty and type of function (linear, quadratic, cu- 
bic, trigonometric, exponential, using absolute val- 
ues, etc.). The sets can be changed or augmented 
with a simple text editor by the teacher, according 

to the needs of the students. A specific option lets 
the program be used by two partners (individuals, 
groups): the first gives the term and the other has 
to guess it from its graph. 

The simple idea of the program gains its moti- 
vational and challenging character from the use of 
a sophisticated function plotter, which comes close 
to the accustomed appearance of terms and graphs, 
and from its deliberate generosity to an inexperi- 
enced user. It is simple to use. The user is not 
penalized for wrong answers. And it has adequate 
error control, not through comparing the user’s term 
with a predefined list of possible right terms, but 
by numerically comparing the graphs with a certain 
tolerance. So the software aims really to help users 
to evolve and debug their knowledge about elemen- 
tary functions and their standard transformations. 

The program is to be used mainly by individuals 
or small groups, in a wide variety of levels, grades 7 
to 12 and up. It may be used for drill and practice, 
and, of course, for remedial work. 

Data Analysis 

Statistical education - as mathematics educa- 
tion in general - often has to cope with the problem 
that, in order to solve real problems, the necessary 
techniques are taught and, in consequence, also un- 
derstood by students in isolation; their proper con- 
ditions of application, their region of validity, their 
limits are perhaps theoretically known, but seldom 
part of active knowledge. In order to overcome such 
limited understanding, one method is to confront 
students with problems connected to themselves, so 
that they don’t take the methods as neutral, but 
of real importance. One of the goals of the soft- 
ware Times is just to give students some real data, 
connected to themselves, in order to analyze and to 
draw conclusions from the data and thereby about 
themselves. 

The software allows experiments with reaction 
times: The computer produces a specific signal and 
one of the students has to react in a specific way, 
for example, by pressing a specified button, and the 
computer measures the reaction time. The process 
repeats, and the data are stored into a file bearing 
the name of the student. Another student does the 
same procedure, and the data is compared. Which 
student is better? Is the arithmetical average a fair 
arbiter or is the median better? How should one 
judge extreme values? The program offers several 
methods of comparing data, including some well 
known statistical techniques. It calculates diverse 
quantities such as averages, variances, the plot of 



one distribution of values against the other It does 
&Q-plots, displays the data as time series, etc.’ In 
defending their results, the students hopefully learn 
to judge cautiously, to see the techniques as helpful 
but normally not decisive tools, and the necessity of 
properly interpreting the data rather than automat- 
ically drawing conclusions after a routinely applied 
test. 

General Tools and Methods 

Besides studying softwarg for specific mathemat- 
ical areas like the ones just discussed, it is important 
to consider software which supports specific mathe- 
matical methods which have importance in different 
areas. Here algorithms in their original sense (think 
of Euclid’s algorithm) are most familiar and were 
integrated into mathematics education even before 
the advent of computer systems. First we shall give 
an example of an algorithmic strand, which fits the 
curriculum for the German “Gymnasium”. From 
this you will be able to see how this old mathemat- 
ical idea of algorithm can be extended to a num- 
ber of complex mathematical problems. Then we 
shall discuss the general problem of how to com- 
bine in class teaching students to understand and 
execute mathematical methods and to solve math- 
ematical problems (from multiplication to integra- 
tion) by hand or brain with the need to tell them 
that there are computers which can do these things 
easily if you just give the problem to them in the 
proper way. This is the black box/white box prob- 
lem. Finally, we discuss two more general methods 
of growing importance in mathematics education (as 
well as in mathematics research) - simulation and 
model building. 

The algorithmic strand. 

Algorithms are patterns with a certain schematic 
background; although high mathematical invention 
was necessary for their discovery, only stupid and 
exact processing is needed for their application. 
With this didactic philosophy the teaching of con- 
cepts and theories of mathematics had priorit#y at 
schools. The use of algorithms formed the center of 
exercises, homework and control of achievement and 
so pupils were educated as if they were little com- 
puters. Related to this secondary role of algorithms 
is the fact that several thousand years of history of 
mathematics have not produced a uniform language 
for the description of algorithms. Now there is a 

’ For a more detailed analysis and critical descrip- 
tion see Biehler and Winkelmann (1988). 
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continuous algorithmic strand which forms 15% of 
the curriculum in mathematics education during the 
nine years of German grammar school. (We begin 
at year five since we do not consider the four years of 
primary education.) The following list shows typical 
algorithms and also their related subjects. 

5 

6 

7 

8 

9 

10 

11 

Relations between the fundamental arithmetical 
operations 
Transformation between numbers with different 
bases: (10,2,5,16 etc.) 
Division algorithm 
Sieve of Eratosthenes 
Optimizing terms 
Summation of arithmetical series according to 
Gauss 
Fundamental operations with sets 

Calculation with fractions (handling formal 
rules) 
Greatest common divisor and least common 
multiple (algorithm of Euclid in several varia- 
tions) 
Prime numbers, twins of prime numbers, distri- 
bution of prime numbers etc., factorisation of 
numbers 
Arithmetic means, relative frequencies 
Diagrams of descriptive statistics 

Tables of proportions 
Calculation of percents and interest 
Random experiments 
Constructive geometry in two dimensions 
Geometrical mapping 

Algorithm of Heron 
Iterations for linear equations 
Symbolic processing with equations 

Solution of quadratic equations 
Graphs of quadratic functions 
Combinatorics 
Continuation of geometry (similarity) 

Several methods of integration of the circle 
Division of polynomials 
Trigonometric construction 
Descriptive statistics 

Experiments with sequences and series 
Discussions of functions 
Algorithm of Newton with variations 
Regula falsi 
Methods of optimisation 
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12 

13 

Methods of integration according to Simpson, 
Gauss, Romberg etc. 
Symbolic integration 
Algorithm of Gauss for systems of linear equa- 
tions with variations 
Operations with matrices etc. 

Stochastic simulations 
Symbolic handling of limits (l’Hospita1) 
Standard methods of inductive statistics 
Methods for numerical, graphical and symbolic 
solution of simple ordinary differential equations 

This listing refers to a basic level of higher ed- 
ucation. For the advanced level (“Leistungskurs” 
with 6 lessons in the week) a lot of possibilities can 
be added in the last three years such as: 

complex numbers, special numerical methods, 
algorithms of the theory of graphs, fitting of 
curves according to Taylor and Gauss, interpo- 
lation of functions according to Lagrange and 
Newton, cubic splines, study of nonlinear iter- 
ations, mapping and representation in three di- 
mensions, constructive non-euclidean geometry 
etc. 

Also in the content of an algorithmic strand, the 
methodological aspects need not be lost. Several 
basic formulations of computer algorithms are help- 
ful for mathematical comprehension, too. For ex- 
ample, pupils always have difficulties understanding 
the usual notations of sums, double sums, etc. The 
algorithmic notation using for-loops or nested loops 
removes many difficulties in understanding the role 
of summation index etc. The practice of program- 
ming recursions is helpful for understanding the log- 
ical basis of induction proofs, etc. 

For nearly all of the subjects listed software is 
available, some of it with more options than are 
needed in schools. Most teachers are pleased that 
they do not have to enter into the specialities of 
graphic representation and the other “higher” work 
of computer insiders. Still some of them remember 
another kind of work only a few years ago: For im- 
portant algorithms of mathematics (Euclid, Gauss, 
Newton, Simpson etc.), teachers themselves had to 
write their own programs. The advantage of this 
was that they could develop the central ideas simul- 
taneously in their classes and in the programs. The 
disadvantage was that the handling of many pro- 
grams was not easy. Still, a further advantage was 
that the teacher could modify an algorithm using 
the (sometimes unusual) suggestions of the pupils. 
As an example, in Newton’s method for the solu- 
tion of transcendental equations, you could take the 

tangent of a function instead of the function itself. 
Or you could take tangents with the same constant 
slope as the first tangent (the method converges in 
many cases). Alterations of this kind are generally 
impossible with acquired programs, which seldom 
allow such open didactical processing. Naturally, 
for these purposes the teacher needs a simple and 
transparent computer language with natural key- 
words and sufficient mathematical operators as well 
as a compiler which can understand the language 
in the same sense as humans. Teachers need as 
well a good cooperation with teachers and pupils 
of computer science, who can construct good pro- 
grams according to their desires. Some programs in 
the school market need to have a didactical dimen- 
sion so that, for example, the plotting of functions 
can be stopped and continued using the intuition of 
the pupils. During algorthmic processing intermedi- 
ate suppositions about the results should be possible 
which can be verified or falsified. 

Symbolic Processing/Symbolic 
Manipulation 

In recent years symbolic processing for personal 
computers has entered into schools (see the chap- 
ter by Hodgson and Muller). Solving linear and 
quadratic equations, equations of third and fourth 
degree, large systems of linear equations, simplifica- 
tion of rational expressions with “towers” of double 
fractions, division and simplification of polynomials 
can all be done with symbolic algebra, often inte- 
grated with the direct processing of very large in- 
tegers. Where exact methods fail, approximations 
are possible. Symbolic differentiation and integra- 
tion, symbolic vector analysis and, finally, the sym- 
bolic solution of ordinary differential equations of 
first and second order together allow the possibil- 
ity of ignoring all the rules of school mathematics 
in a traditional sense. These packages are made by 
professionals. Therefore, they often do not present 
intermediate steps and some other didactical re- 
main. Some of the symbolic packages are not pro- 
grammable by the user. Nevertheless the union of 
numerical, graphical and symbolical tools has enor- 
mous power for schools. 

Enlightenment through Black Boxes 

In a recent article, Buchberger (1990) asks, 
“Should students learn integration rules?“, given 
that now there are computer algebra software sys- 
tems available which solve any integration problem 
much more quickly and more reliably than any stu- 
dent could ever do with paper and pencil. Buch- 
berger immediately generalizes the question for all 
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those areas of mathematics which are “trivialized” 
by modern software, especially computer algebra 
systems. He answers - for mathematics and com- 
puter science majors - with his “White Box / Black 
Box - Principle”: Students should learn the theories 
and algorithms of such an area first, using the soft- 
ware only for subordinate tasks (e.g. partial fraction 
decomposition) but, after having st#udied the area, 
all calculations from this area should be left to the 
computer. 

For schools and general mathematical software 
the situation is more complicated: Numerical and 
graphical oriented software doesn’t trivialize an area 
of mathematics, but may provide profound help in 
solving problems; school mathematics does not only 
provide mathematical theories and algorithms but 
also their intended applications, their modes of use 
and the translation schemes needed in using them 
outside of pure mathematics. High school students 
are just not future mathematicians, but could be 
regarded as future users of mathematics as well, 
who obviously should have a different attitude to- 
wards mathematical tools. So here we do not give a 
recipe but rather some considerations which might 
help in coping at school level with the problem of 
using ready made software which cannot be made 
“translucent”, since the details may be too’ com- 
plex, or totally hidden from the user, or just not 
worthwhile studying for secondary school students. 

First of all, using ready-made mathematics, even 
if not fully understood, is to be seen as taking part in 
mathematics as a social enterprise. It may be looked 
on as part of teamwork: Users rely on professional 
mathematicians and programmers. But the coop- 
eration is anonymous since the user can’t t,alk to 
“coworkers”, and users have to know a lot in order 
to use the black box correctly and with beneficial 
results. But knowledge about black boxes (proce- 
dures, algorithms, etc.) can be of various kinds: 

Logical or ezternal. The user knows the math- 
ematical specification of the result the software de- 
livers, but doesn’t know the method by which it has 
been achieved. This is the classical black box and 
is usually the case with the use of computer algebra 
systems or simple calculators. A symbolic integra- 
tion can be understood (and independently checked) 
even if the internal Risch algorithm isn’t understood 
or its existence even known. The cosine of a number 
can be interpreted correctly as the best approxima- 
tion within the domain of machine numbers to the 
correct real number, etc. 

Analogous. If a complete specification of the re- 
sult of the software is not available, an analogous 
knowledge of a similar algorithm may often help. 

The graph of a function, as displayed by a function 
plotter, is different from the graph of the function 
as normally defined within mathematics. But the 
experience of doing function plotting and a reflec- 
tion on the possible pitfalls (e.g. vertical asymp- 
totes, discontinuities or the proper ‘determination 
of maxima) may help in understanding results and 
becoming aware of possible limitations. For the nor- 
mal student it is not worthwhile to learn the special 
tricks and algorithms programmers of function plot- 
ters use to give reasonable results even in difficult 
situations. Analogous knowledge is needed in gen- 
eral in the use of numerical software - possible pit- 
falls, trade-offs between step widths and obtainable 
accuracies, between reliability and speed, etc. 

Algorithmic. Here the user knows - on a cer- 
tain level - the specific algorithmic approach used 
by the software, for example, that the numerical in- 
tegration software uses Simpson’s rule, which the 
use had applied in some hand calculations. But for 
a suitable use of the software, the user has to have 
some more general knowledge, too - the approxi- 
mation character and the order of the algorithm, its 
domain of validity, in what circumstances to switch 
to other algorithms, etc. 

All three kinds of knowledge have their special 
value, and in most circumstances they should com- 
plement each other. There is no a priori best way of 
enlightening a software black box. Of course, math- 
ematics teaching has the duty to enlighten black 
boxes, to make them grey at least, but in which 
way and to what extent has to be decided in view of 
the intended use of the software, the kind of knowl- 
edge to which this new knowledge is to be added 
and connected, and to the overall goals of mathe- 
matics teaching in the specific age group and school 
system in particular, 

On the Concept and Importance of 
Simulations 

How does one simulate a dynamical process? 
Such a process is described by specifying the transi- 
tion from one state of the system to the “next” state; 
mathematically this is done by (systems of) differ- 
ence or differential equations. In order to simulate 
such a process, one first has to specify all param- 
eters, initial states and possible external influences 
numerically, and then follow the evolution of the 
states numerically, replacing all mathematical oper- 
ations which have no direct arithmetical translation 
by numerical approximations. Some ending condi- 
tions have to be efficiently specified, too, for exam- 
ple, the maximum number of states to calculate, in 
order to prevent never ending calculations. 
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The resulting numbers - normally quite a lot - 
can be given as tables or graphics. If the concrete 
choice of parameter values or initial states is not 
dictated by the situation but just ad hoc in order 
to be able to start the simulation run, the whole 
process will have to be repeated with other values 
fixed - that means defining another scenario - to 
get an overview over the behaviour of the system in 
a range of scenarios. 

From this description we have a geberal infor- 
mal definition: By simulation (in mathematics) we 
understand the effective operational translation of 
mathematical objects or processes into numerical 
operations. (Outside mathematics the concept has 
to be extended to include the building of a mathe- 
matical model first .) 

Simulation in this sense is a general mathemat- 
ical method which has always been used but has 
gained importance enormously through the avail- 
abilty of effective numerical machines, especially 
computers. As a method it is very often not dif- 
ficult to apply, and it can be a mighty instrument, 
especially if combined with other, more traditional 
mathematical methods such as proof, construction, 
algebraic calculation, analysis, etc. 

Here are some examples of simulations: 
l Function plotting. The mathematical object is 

the graph of the function, say of f(z) = sin r, which 
is a subset of R2. For the simulation one has first 
to fix boundaries, say from --7~ to 2z, then approxi- 
mate the interval [-a, 2?r] by a finite set of floating 
point numbers, calculate approximations to the sine 
of these numbers, determine screen pixels to corre- 
spond to the calculated values, connect those pixels 
by the built-in “line-drawing” routines, and display 
the result. The fixing of parameters will become 
even more apparent, if you simulate functions with 
parameters, say f(z) = sin(az), a E R. 

l Stochastic simulation. The mathematical ob- 
ject is, for example, a stochastic variable with its 
distribution, mean and variance, say a uniformly 
distributed variable transformed by some compli- 
cated process or function f. To simulate it, you take 
a finite number of uniformly distributed (pseudo 
)random numbers, transform them by (a numerical 
approximation to) f, take the resulting finite dis- 
tribution as an approximation to the distribution 
sought, and calculate its mean and variance. 

l Solution to a differential equation.2 The math- 
ematical object is the general solut,ion to the given 
differential equation. To simulate it, one chooses 

2 An indefinite integration is a special case of this, 
namely the solution of y’ = f(z). 

several different initial conditions, solves the result- 
ing initial value problems by numerical methods and 
plots the results. The emerging picture should give 
some insights into the flow-lines of the differential 
equation, its ‘overall behaviour and possible loca- 
tions of critical points. 

Simulations normally share a double experimen- 
tal character: First by the numerical approxima- 
tions whose errors can be only estimated since the 
assumptions of strict error control in most cases can- 
not be verified by numerical methods alone, and sec- 
ond by the fixing of the parameters, boundaries, etc. 
Simulations need to be complemented by some the- 
ory, however rudimentary, in order to lead to insight 
and understanding. Thus the plotting of the sine- 
function can only give a non-misleading intuition, 
if the continuity and periodicity are known or can 
be abstracted by the consideration of a well chosen 
sequence of (simulated) pictures with some zoom- 
ing or similar means. The insight does not come 
from the pictures. The intellect of the students has 
to see the connections between the pictures and the 
necessities behind them; but to see the facts given 
by the simulation may strongly help the student to 
understand the facts given by some theory. 

Model Building 

The building of mathematical models is seen 
by many people as the heart of application ori- 
ented mathematics teaching. If done properly, the 
usual restriction to linearity assumptions will soon 
be noticed as inappropriate, and the use of simula- 
tion software in order to explore the (mathematical) 
models developed becomes necessary. 

Here we describe briefly dynamic model build- 
ing of simple growth processes in the mathematics 
classroom with the program Modus, which at the 
moment is being tested in schools in a preliminary 
version. As with most dynamic modelling tools, the 
crucial concepts are the distinction of the main vari- 
ables as levels and flows. Levels can only be changed 
through flows; this property is described in formal 
mathematical language by use of difference or differ- 
ential equations, the flows being the derivatives of 
the levels. The model building is done by construct- 
ing structure diagrams, thus avoiding the necessity 
for an abstract formal language. The students eas- 
ily develop linear and exponential models of growth. 
The step from linear to exponential growth is made 
by changing the constant flow to a (linear) function 
depending on the level, thereby introducing a first 
feedback loop (see Fig. 12 and 13). 
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Figure 12 

turtle there are two more turtles, an “axial symmet- 
ric turtle” and a “central symmetry turtle”. They 
are controlled in the same way as the standard run- 
ning turtle. But they do not only draw the figure 
controlled but also the figure’s symmetric image in 
a different colour relating to the I- or y-axis or the 
centre point of the screen. This happens simultane- 
ously and pointwise. This mode of construction for 
symmetries helps the user to recognise the proper- 
ties of the mappings immediately and more easily 

,= 

i 

L 

Figure 2 Figure 4 

las for the logistic function, the growth behaviour 
can be completely understood from the model itself, 
and becomes evident by observing parts of the phase 
diagram being generated dynamically (Fig. 15). 
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than from the final picture. You see that a straight 
line remains a straight line, you see how the direc- 
tion changes under axial symmetry and how it re- 
mains the same under central symmetry. You also 
see that a straight line and its picture are parallel 
under central symmetry, but have different direc- 
tions, etc. Figure 2 contains some examples. Unfor- 
tunately, the “dynamic” quality of the turtles can- 
not be seen from these figures. 

Figure 3 shows how the following question can 
be examined: “What happens when reflecting a tri- 
angle in different positions relative to the axis of 
symmetry or a point?” 

Figure 4 gives a systematic answer to the ques- 
tion, “How can quadrilaterals be generated by re- 
flecting triangles?” 

\ / cl3 - 

First, it is convenient to choose a side of a trian- 
gle as an axis of symmetry. Then with the turtle you 
get a kite. The special case of an isosceles triangle 
occurs if the angle adjacent to the axis is 90 degrees. 
If this angle is greater than 90 degrees, then you get 
a quadrilateral which is not convex. You can also 
get a rhombus and square by starting with special 
triangles. But you never get a general rectangle or 
a parallelogram or a trapezoid. The central sym- 
metry turtle, however, applied on the centre of a 
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25 pupils in the class. Therefore, often theoretical 
questions related to algorithms (additional special 
cases, restrictions, possibilities for application etc.) 
have to substitute for the real use of the algorithms 
for problemsolving in examination periods. 

The consequences for the curriculum are very 
important. School mathematics was determined for 
centuries by the number of accessible methods for 
.solving problems - equations of no higher degree 
than 2, systems of equations with 3x3 or 4x4 ma- 
trices etc. Application problems were selected care- 
fully so that powerful computational tools were not 
needed. With the speed and the capacity of mem- 
ory of modern computers in schools (newer stan- 
dard: 80386 processors, 1.2 MB RAM), numeri- 
cal and graphical approximations for solving equa- 
tions of higher degree and handling matrices of 10 
or 20 columns and rows are no problem. Graphi- 
cal representation of large sets of higher functions 
or of complicated geometrical situations are also no 
problem as are the symbolic transformation of com- 
plicated rational terms or the symbolic solution of 
differential equations with interesting initial condi- 
tions. With these tools teachers can leave the small 
garden of traditional school problems and amplify 
enormously the orientation to modern application. 

Let us demonstrate this with two examples. 
First, from pure mathematics: After teaching curve 
fitting by Taylor approximations or Fourier approx- 
imations in the classical manner with the usual 
demonstrations you can continue with Pad& approx- 
imations using rational functions and use these for 
good approximations to functions with singularities 
(see Fig. 16). 

Our second example is from applied mathemat- 
ics: The teacher can show how to compute ap- 
proximations to curves of highways in the student’s 
neighbourhood by parametric splines with the help 
of the computers. 

Thus various new fields are opened for the cur- 
riculum. Simulations in natural science and social 
science using systems of difference equations can be 
used to solve interesting environmental or economic 
problems never before accessible in schools. The 
theory of graphs or the theory of functions with 
complex variables are other examples of new ele- 
mentary work with modern tools. 

Speculation on the Future 

During the first twenty years of computer use 
in schools, the mathematics classroom was the first 
place where most students met a computer at all. 
So math teachers had to pursue an additional goal: 

Figure 16 

Make students familiar with the basic structure and 
function of a computer system and teach them how 
to manipulate it. This situation has changed rapidly 
and will have changed totally in the near future since 
most students now get acquainted with computers 
in their daily lives, in their family and recreational 
environments, perhaps in computer science educa- 
tion, and so on. This means the computer has a 
new importance in math education, a more fruit- 
ful one, more oriented towards mathematics. This 
is described as follows in a study of mathematics 
education for the information age to be realized 
in the Japanese New Mathematics Curriculum [Fu- 
jita/Terada 19911. In upper secondary schools pri- 
ority should be 

a nnite numoer of unltormlv dl.d,rlhl:tPd fnppllrlh 
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“on giving to students opportunities to do 
mathematics rather than improving their 
techniques. Students should understand that 
computers are powerful tools for intellectual 
activities by human beings. In this connec- 
tion, studying mathematics may be the first 
as well as the best experience for students to 
use computers for properly intellectual pur- 
poses, namely, to study academic subjects 
with computers. These experiences could 
even be regarded as a prototype of scientific 
research activities with computers. Some 
good students will have chances to observe, 
to model and to analyze in a mathemati- 
cal manner various phenomena presented by 
computers. Furthermore, computer simula- 
tion is close to mathematical reality. On the 
other hand, computers are extremely help- 
ful in fostering students’ mathematical liter- 
acy. Rich mathematical experiences offered 
by computers, particularly those through op- 
erational work by students, will pave the way 
for the majority of students to grasp con- 
cepts and to understand fundamental facts 
in mathematics.” 

The New Curriculum plans three courses, Math- 
ematics I - III, in grades 11 - 13 with a total of 10 
units (1 unit requires 35 class hours of 50 minutes 
each), covering a core of mathematics to be learned 
by all students with Math III certainly to be learned 
by all science and technology students. Three more 
courses, Mathematics A, B, C, in grades 11 - 13, to- 
talling 6 units, are composed of four option modules 
from which two modules are freely chosen for in- 
struction by teachers or schools. Module 4 of Math 
A, computation and computers, offers students the 
chance to get to know and become familiar with 
computers as a tool for mathematics. Module 4 of 
Math B, algorithms and computers, deals with the 
powerful function of computers in doing algorith- 
mic computations in mathematics. Math C is char- 
acterized by the key phrases “application minded” 
and “do math with computers” in the areas of ma- 
trices and linear computation, various curves, con- 
its and polar coordinates, numerical computation 
and statistical processing. The study mentions that 
the newly introduced topics related to computers in 
Japanese high school mathematics require certain 
preparation for success, namely, purposeful text- 
books, effective teacher training, quality software 
and relevant development of teaching materials and 
methods. Indeed, the educational use of comput- 
ers in class is non-routine and should be explored 
with respective emphasis of its t,hree aspects; the 

teacher-initiated use, the student-initiated use and 
the system-initiated use. 

From the viewpoint of a computer-supported 
curriculum, teaching with computers in a classroom 
will consist of the following six components: 
1) “trial”, where learners are invited to the new 

topic with fun applications offered by the com- 
puter. 

2) “approach”, where learners have heuristic and 
operational experiences with the aid of comput- 
ers. 

3) “teaching”, where the teachers give a lecture 
and learners get supplementary review and as- 
sistance from computers. 

4) “experimental understanding”, where learners 
grasp concepts and facts through inductive and 
experimental recognition with the aid of comput- 
ers without being burdened by too much drill. 

5) “exercise”, where learners can perform adequate 
exercises at their level and using standard (but 
interactive) CAI. 

6) “survey”, where learners review the topic which 
they have learned and are given chances to view 
further developments and applications. 
The principal underlying purpose of the New 

Japanese Curriculum is to cultivate “mathematical 
intelligence” by aiming at two targets: M&hemat- 
ical Literacy and Mathematical Thinking. The as- 
pects from the curriculum mentioned above show 
that computer systems are considered to be very 
helpful for both fields. 

These two fields are also mentioned among the 
principles for the development of a new mathematics 
curriculum in the USA by 2000 [Ralston 19901. In 
this reference it is stated that “Mathematical educa- 
tion should focus on the development of mathemat- 
ical power not mathematical skills”. As to informa- 
tion technology there is this principle: “Calculators 
and Computers should be used throughout the K-12 
mathematics curriculum; moreover, new curricula 
and new curriculum materials should be designed in 
the expectation of continuous change resulting from 
further scientific and technological developments”. 
Goals from these principles follow for the elemen- 
tary grades (l-6) as well as for the secondary grades 
(7-12). So “the teaching of arithmetic in elemen- 
tary schools should be characterized by : . . . a use 
of computer software in the teaching and learning 
process, proper and efficient use of calculators 
for most multi-digit calculations as well as calcula- 
tions involving negative numbers, fractions and dec- 
imals”. One important example of computer use 
in the secondary curriculum follows from the goal 
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that this curriculum should develop students’ sym- 
bol sense. This means developing “the ability to 
represent problems in symbolic form and to use and 
interpret these symbolic representations”, and “the 
ability to identify the symbol manipulations neces- 
sary to solve problems expressed in symbolic form 
and to carry out manipulations using mental com- 
putation, pencil and paper, a symbolic or graphic 
calculator or a computer”. 

It was noted above that new mathematics cur- 
ricula should be designed in the expectation of fur- 
ther technical and scientific developments. Most 
certainly these will occur in artificial intelligence 
and telecommunications. In a survey on Technol- 
ogy and Mathematics Education, James Fey [1990] 
writes about artificial intelligence, expert systems 
and tutors: “One of the very active areas of infor- 
matics research is exploring ways that computers 
can be programmed to exhibit ‘behaviour’ that sim- 
ulates human information processing. There are a 
number of projects in mathemat,ics education that 
are attempting to capitalize on this computer capa- 
bility to design programs that act, in various ways, 
like teachers. The most interesting work along these 
lines is producing intelligent tutors for an array of 
mathematical topic areas including arithmetic, al- 
gebra, geometry and proof, and calculus. There 
are some preliminary indications that those tutors 
provide very effective adjuncts to regular teacher- 
directed instruction”. 

As for telecommunications, one might think that 
this will be important for general or social education 
only. It is likely, however, that the ability to commu- 
nicate about mathematical problems in a worldwide 
group of peers will develop new attitudes towards 
problem solving, different from the widespread “sin- 
gle attack” of scientists and students. Also, it can 
be imagined that a feeling for the benefits of inter- 
national and intercultural understanding can grow 
more intense through cooperation in a “serious” 
field like mathematics or science, in addition to the 
effects of leisure fields like music, movies, etc. 

We want to conclude this article by pointing to 
one of the greatest problems in the changing of the 
mathematics curriculum under the challenge of com- 
puter systems: We must convince the curriculum 
makers and those who put changes into effect about 
the necessity and the advantages of this change. We 
hope that this article will provide good arguments 
to everybody who wants to tackle this problem. 
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THE CURRENT MATHEMATICS 
CURRICULUM: TRADITIONS AND 
CONCERNS 

For many years, a crucial place in the mathemat- 
ics curriculum of the last year of secondary school or 
the first year of university studies has been occupied 
by the differential and integral calculus. The calcu- 
lus can be seen both as the culmination of the sec- 
ondary school mathematics curriculum and as the 
beginning of serious study of mathematics at the 
university. In some sense, the study of calculus has 
become synonymous with the serious study of math- 
ematics. The central and essential position occupied 
by calculus can be traced to at least two interrelated 
causes. 

For mathematicians, calculus represents the 
methodology and techniques needed for the study 
of functions, first defined on the real line, then on 
higher-dimensional Euclidean spaces, and finally on 
the complex plane. Thus, the study of the calculus 
allows students for the first time to acquire the for- 
mal abstract tools that are essential for the further 
study of much of higher mathematics. 

On the other hand, calculus provides the foun- 
dation for many applications of mathematics to the 
physical sciences and engineering. These applica- 
tions date back to Newton’s original development 
of the calculus in the seventeenth century, and since 
that time they have been wildly successful across a 
vast collection of disciplines, even including (in re- 
cent years), the biological sciences and economics. 
All of the calculus-based applications are based on 
mathematical models that can be regarded as being 
continuous; that is, the quantities being nlodeled 
are real numbers (or elements of some Euclidean 
space Ii?). 

Given both the central mathematical positzion of 
the calculus and its vital role in applications (not 
to speak of the interaction between these two fea- 
tures), it is easy to see why the calculus has occu- 
pied such a fundamental and unassailable posit#ion 
in mathematics curricula. During t,he past several 
decades, however, the central role of calculus has 
been seriously questioned, and the questions have 
been repeat.ed with particular emphasis during the 

last decade (Ralston 1981, 1989, Kenney and Hirsch, 
1991). Just as a major motivation for the predom- 
inance of calculus in the curriculum has been the 
wide range of applications of continuous mathemat- 
ics, the challenge to that predominance has arisen 
from the steadily increasing interest in the applica- 
tions of discr& mathematics in many disciplines. 

This increasing interest in discrete mathemati- 
cal applications can be primarily attributed to the 
widespread use of computers. Computers are essen- 
tially discrete machines, and the mathematics that 
is needed to use them is also discrete. As a conse- 
quence, the discipline of computer science is heavily 
dependent on a wide variety of discrete mathemat- 
ical ideas and techniques. Furthermore, the easy 
availability of computers has encouraged the use 
and development of discrete mathematical models in 
many disciplines. For example, operations research 
models (linear programming, integer programming, 
etc.) are widely used and are based on a discrete 
mathematical perspective. 

It is natural to expect that the rapid growth 
of interest in discrete mathematics and its appli- 
cations, fueled by the explosive developments asso- 
ciated with computers, should have an impact on 
t,he mathematics curriculum. Although this im- 
pact would have been significant under any cir- 
cumstances, its effect in the United States has 
been magnified by other questions that have been 
raised in recent years about the teaching of calcu- 
lus. Widespread dissatisfaction has been reported 
with the nature of the calculus courses and the 
knowledge of the students that have completed them 
(Lochhead 1983, Steen 1983, Douglas 1986, Steen 
1988). The computer is also directly influencing the 
Content of the calculus course itself, both by en- 
couraging the inclusion of numerical methods and 
by suggesting that symbolic manipulation software 
may make emphasis on techniques of differentiation 
and integration obsolete (Bushaw 1983, Wilf 1983, 
Nievergelt 1987). 

In summary, both the nat.ure of the calculus 
course and the fundamental position that calcu- 
lus has occupied in the mathematics curriculum for 
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more than a century have come under serious chal- 
lenge. These challenges have come both from within 
and outside the community of mathematicians, and 
they can primarily be attributed to the increasingly 
broad role that computers are playing in the various 
scholarly disciplines represented within the univer- 
sity and in the wider world. In the next section of 
this paper, we will look at the responses that have 
been proposed to these challenges. 

RESPONSES TO THE CHALLENGE OF 
DISCRETE MATHEMATICS 

When any curriculum is confronted by a. new 
topic that should be included, there are essentially 
two potential responses. The new t,opic can either 
be encapsulated in a course that is added to the cur- 
riculum, or it can be incorporated as a fundamental 
constituent of a revised course. Most topics that 
have been added to the mathematics curriculum in 
recent decades have been added as new courses (e.g. 
abstract algebra and topology). 

It was therefore natural that when mathematics 
faculties were asked to include discrete mathemat- 
ics in the curriculum, this was most commonly done 
by developing new courses in discrete mathematics. 
Such courses were designed primarily for students of 
computer science. There have been two fundamen- 
tal problems with this approach. First, the discrete 
mathematics courses were too often taken by third- 
year students, so that the material was learned too 
late to be of use in the data structures courses taken 
by first and second year students of computer sci- 
ence. Second, when students were expected to use 
their discrete and continuous mathematical skills 
in fourth-year computer science courses (for exam- 
ple, in the analysis of algorithms), most have found 
it very difficult to combine these skills effectively. 
Many students do not see any connections between 
discrete and continuous mathematics, and are un- 
able, for example, to apply calculus techniques to 
estimate growth rates of discrete functions or to es- 
timate the size of discrete sums. This inability to 
combine discrete and continuous skills is also found 
in students of probability, operations research and 
signal processing. 

Both of the above reasons suggest that discrete 
mathematics should be incorporated as a compo- 
nent of the fundamental mathematics course that 
is offered to all students in their first two years of 
university study. This suggestion was first made 
by Ralston (1981), who proposed that the study of 
discrete mathematics precede the study of calculus. 
He argued that such an organization would benefit 
virtually all students of mathematics, and not just 

those students concentrating in computer science. 
Ralston’s proposal has led to substantial discussion 
in the United States on the proper place of discrete 
mathematics in the curriculum (Ralston and Young 
1983). The debate has focused on whether discrete 
mathematics should precede or follow the calculus 
in the curriculum of the first two years. Many of 
the arguments advanced on either side are adminis- 
trative in nature, dealing either with the demands 
of other curricula (such as physics or engineering) 
or with articulation with other institutions (such 
as high schools, junior colleges or universities that 
have retained the standard curriculum). One result 
of this debate has been the publication since 1985 
of over 40 discrete mathematics texts for freshman 
or sophomore courses (e.g. Ross and Wright, 1988, 
Maurer and Ralston, 1991). 

Whether calculus is placed before or after dis- 
crete mathematics, it is by no means clear that 
students who have completed both courses will be 
able to combine their discrete and continuous math- 
ematical skills in an effective manner. This problem 
has been recognized by some designers of proposed 
curricula, and consequently their calculus propos- 
als generally include some discrete aspects, such as 
extended discussion of numerical methods and sub- 
stantial use of sequences (see, for example, Bushaw 
1983). 

Another possibility, which has been given little 
serious attention, would be to develop a new, uni- 
fied curriculum that would interweave discrete and 
continuous themes throughout its courses. While 
the first year of the curriculum would correspond 
to the calculus course, its real thrust would be the 
study of functional behavior and functional repre- 
sentation. The course would consider discrete func- 
tions (sequences) along with continuous functions, 
and would constantly emphasize analogies and par- 
allels between discrete and continuous situations. 
Thus the first year of the curriculum would be pri- 
marily continuous, but with a strong discrete flavor. 
The second year of the curriculum would focus on 
structure, and would be primarily discrete, but with 
a strong continuous flavor. 

This paper will argue that a curriculum unifying 
discrete and continuous themes is not only feasible, 
but has the potential of providing students with a 
broad, powerful perspective embracing the mathe- 
matical ideas and techniques that are needed for the 
study of computer science. This perspective would 
also yield a strong mathematical foundation for the 
study of engineering, the physical sciences, and in- 
deed for the study of higher mathematics itself. 

Furthermore, the development of such a cur- 
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riculum would force a reexamination of the top- 
ics taught in the conventional calculus course. As 
mentioned above, various recommendations have 
been made to remove or include particular top- 
ics. Although each such recommendation has been 
cogently argued, no consistent rationale has been 
given for the collection of topics that together make 
up the proposed calculus course. The first-year 
course outlined below has a consistent theme - func- 
tional behavior and representation - and each topic 
to be included in (or excluded from) the course 
should be judged on the degree that it matches the 
course’s perspective. 

In the following section, a detailed outline and 
discussion will be given only for the first year of the 
proposed two-year curriculum. At the conclusion of 
the paper, we shall return to the second year of the 
curriculum, as well as to the larger issues raised by 
the question of articulation with other curricula. 

A FIRST-YEAR CURRICULUM INCOR- 
PORATING DISCRETE AND CONTINU- 
OUS THEMES 

The fundamental thrust of the proposed first- 
year curriculum is the behavior and representation 
of functions. Roughly, the first semester is devoted 
to tools for the description and analysis of functional 
behavior, with the focus shifting to representation of 
functions in the second semester. Before presenting 
a more extended discussion of the benefits to be 
achieved by including both discrete and continuous 
topics, it will be useful to give an annotated outline 
of the first semester curriculum. 

A. Functions 
1. Number and Relations 

A knowledge of set concepts and notation is as- 
sumed. Inequalities will be emphasized. 

2. Functions and Operations 
The function concept and functional notation 
will be introduced, stressing the algorithmic in- 
terpretation of the function symbol f. Discus- 
sion will include domain and range, operations 
on functions (arithmetic operations, composi- 
tion, translation), and graphs of functions. Use- 
ful functions will be introduced [polynomials, 
rational functions, exponential functions (de- 
fined on the integers), absolute value, floor, ceil- 
ing]. 

3. Models 
Algorithms and elementary complexity analy- 
sis will be introduced (including binary search). 
This will allow discussion of the function [lg(n)J . 

1. 

2. 

3. 

4. 

1. 

2. 

3. 

4. 

5. 

6. 

Models’ demonstrating the need to construct 
functions and to perform curve fitting will be 
included. 

B. Behavior of discrete functions 
Sequences: Iteration and Recursion 
This section will discuss a variety of sequences 
including geometric squares, the Fibonacci se- 
quence and the sequence generated by the Eu- 
clidean algorithm. 
Difference Operators 
The difference operation A will be introduced as 
a function on sequences. The recursion scheme 

Uk+l - tik = Auk 

will be treated in order to emphasize special 
functions defined on the integers. Formulas for 
higher differences will be discussed. 
Summation 
The primary topic here will be the binomial the- 
orem, both in its standard form and in the ex- 
pression for (1 +A)“. The second form will allow 
various formulas for finite sums to be presented. 

Order Notation (0, o) and Limits of Sequences 

C. Behavior of continuous functions 
Limit Heuristics 
Limits of functions will be discussed only in 
terms of limits of sequences. The continuity con- 
cept will be introduced. The operator 

A,f = f(z + h) - f(x) h 

will be introduced. Analogies to the discrete 
difference operator discussed above will be pur- 
sued. 
First Derivative 
The derivative will be defined, and interpreted 
using tangent lines. It will be shown that differ- 
entiable functions are continuous. 
Differentiation Rules 
Powers and roots; product, quotient rules. 
Monotone Functions and Local Extrema 
A rigorous treatment will be postponed. Curve 
sketching will be introduced here and the use of 
graphing calculators will be stressed. 
Second Derivative 
Concavity will be discussed and applied to 
curve sketching again using graphing calcula- 
tors. 
Extreme Values 
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Maximum-minimum problems will be solved. 
Examples will also demonstrate the use of piece- 
wise linear functions. 

7. Related Rates 
The chain rule will be presented, and related rate 
problems will be solved. 

D. Estimation and error 
1. Mean Value Theorem 

Monotone functions will be discussed more rig- 
orously, and the MVT will be applied to global 
estimation of functions. 

2. Solution of Equations 
Newton’s method will be discussed from both ge- 
ometric and iterative perspectives. An elemen- 
tary treatment of error estimation will be given, 
and critical values will be estimated. 

3. Interpolation 
Interpolation of functions by straight lines and 
parabolas will be discussed using the difference 
operators developed above. 

4. Approximation 
Second-order Taylor polynomials will be used to 
approximate functions, and the estimated error 
will be computed. Analogies will be drawn be- 
tween interpolation and approximation and be- 
tween differences and derivatives. 

E. Integration 
1. Introduction 

The summation operator for sequences will be 
introduced. Its relation to the difference oper- 
ator will be discussed. It will be treated as an 
aggregation operator, and used to motivate the 
discussion of area. 

2. The Definite Integral 
This will first be introduced using a piecewise 
linear definition. This definition will then be 
applied to step functions. The area definition 
will then be presented, and applied to parabolas 
using the results on finite sums obtained above. 
Some elementary properties of the definite inte- 
gral will be presented, including the mean value 
theorem for definite integrals. 

3. The Indefinite Integral 
This will be explicitly computed for step func- 
tions, piecewise linear functions and parabo- 
las. 

4. The Fundamental Theorem of Calculus 
This will be derived from the mean value the- 
orem for definite integrals. The chain rule will 
be applied to investigate some properties of the 
integral of l/2. 

5. Evaluation of Integrals: Analytic Techniques 

Substitution techniques will be discussed, as well 
as the use of integral tables and symbolic calcu- 
lators. 

6. Evaluation of Integrals: Numerical Techniques 
The trapezoidal rule and Simpson’s rule will be 
discussed. It will also be shown how integrals 
can be estimated using inequalities, and how 
sums can be estimated using integrals. 

7. Applications of Integration: Aggregation 
The applications to be treated include work and 
volume. 

8. Applications of Integration: Modeling 
The primary theme here will be the recognition 
of Riemann sums in differing situations. Exam- 
ples will be taken from arc length and fluid flow. 
The basic point will be that when a model gen- 
erates a discrete (Riemann) sum, it can then be 
approximated by a definite integral. 

Although this annotated outline gives a good 
overview of the first semester of the proposed course, 
it is too brief to show how the interweaving of dis- 
crete and continuous themes can lead to major bene- 
fits. The following examples are meant to be typical 
of the perspective that will be possible within this 
course structure. 

Example 1: At the beginning of the course, the 
discrete exponential function, f(n) = 2”, will be in- 
troduced, along with its one-sided inverse, g(n) = 
max{lc12k < n} = [lg(n)J. The function g(n) is vi- 
tally important in computer science; for example, 
g(n) + 1 is the worst-case number of comparisons in 
a binary search of a list of length n. The growth rate 
of g(n) is important, and is usually treated (via cal- 
culus) using L’Hospital’s rule. We suggest a discrete 
approach, based on the binomial theorem. Clearly 
Zg(“) < n, so that g(n)/n < g(n)/2g(“). To de- 
termine the behavior of g(n)/2g(“) as n -+ 00 it 
is sufficient to consider powers of 2 since g(n) is 
constant between successive powers of 2. Since for 
12 = 2k,g(n)/2 g(n) = Jz/~~, it is only necessary to 
look at the behavior of k/2k as k: + 00. By the bino- 
mial theorem 2k = (1 + 1)” 2 Ic(B - 1)/2, and hence 
lc/2k < PL/k(k - 1) = 2/k(k - l), which gives the 
result that g(n)/2g(“) ---* 0 and, therefore, so does 
s(n>ln. The simplicity of the discrete argument 
should aid the student in learning, understanding 
an assimilating the growth rate of the continuous 
logarithm. 

Example 2: The syllabus outline has referred to 
analogies between the discrete difference and sum- 
mation operators on the one .hand, and differen- 
tiation and integration on the other. For exam- 
ple, the difference operator is defined on the se- 
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quence {un} by Au,, = u,+r - u,. If we de- 
fine the falling factorial function on the integers by 
x(m) = z(t - 1). . .(z - m + 1) then it is easy to see 
that AZ(~) = mx(m-l), A2x(“‘) = m(m- 1)~(“‘-2), 
and finally that Amz(m) = m! and Am+lz(m) = 0. 
Thus the behavior of the difference operator (and its 
iterates) on the polynomials z:(m) is strongly analo- 
gous to the behavior of the differentiation operator 
(and its iterates) on the polynomials {z”}. Further- 
more, since each collection of polynomials provides 
a basis for the vector space of polynomials of degree 
at most n, an example has been introduced which 
will be useful in a later course in linear algebra. 

One further benefit of the use of difference oper- 
ators is the natural observation that A2” = 2”, or 
more generally that Akn = (k- 1)k”. This suggests 
that exponential functions, whether discrete or con- 
tinuous, may have a special role to play with respect 
to difference or derivative operators, and serves to 
motivate the later observation that d/dx(ez) = e”. 

Example 3: The first two examples used dis- 
crete ideas to motivate continuous concepts that are 
to be introduced later. In this example, continuous 
techniques are used to obtain a discrete result. The 
identity giving the sum of a geometric progression, 

n-1 

c 
xk - xn - ’ 

k=O x-l 

can be differentiated using the quotient rule to ob- 
tain the identity 

n-1 

c 

kxk= (n-1)x”+‘-nx:“+z 

k=l 
(x-1)2 

Using this identity, it is immediate that 
n-1 

c k2k = (n - 2)2” + 2 
k=l 

and that 
n-1 

c 
k2-k = 2 - !%! 

k=l 
‘p-l 

The last result yields 

2 k2-k = 2 
k=l 

since k/2” + 0 as k -+ 00 (see Example 1). This 
example serves to remind students that continuous 
techniques can be important in discrete situations. 

These examples demonstrate that the proposed 
course does not merely insert a collection of im- 
portant discrete topics into the calculus course, but 
rather expresses a consistent approach to all of the 
subject matter. The fundamental perspective is the 

study of functional behavior, and both discrete and 
continuous functions are treated throughout. Each 
class of functions is used to develop tools and sug- 
gest analogies that will be useful for the study of 
functions of the other class. 

The second semester of the course further elab- 
orates the functional perspective. Rather than give 
a detailed, annotated outline, we shall discuss the 
topics to be covered and describe how they relate 
to the themes developed during the first semester. 
The second semester is primarily devoted to mate- 
rial taken from two broad categories, special func- 
tions and representation of functions. 

Exponential and logarithmic functions will be 
treated in depth. The natural logarithm will be 
introduced using the definite integral, and its prop- 
erties will be investigated. The inverse of the log- 
arithm will be motivated using growth models and 
the differential equation dy/dx = ky and the rela- 
tionship of this inverse to the exponential function 
will be motivated using difference equations and the 
discrete logarithm. Finally, the properties of the 
function e” will be developed. Numerical estimates 
for exponential and logarithmic functions will be 
used throughout the discussion. 

The next major topic will be trigonometric func- 
tions. Here the primary motivation will come from 
the geometry of the circle and from models of cir- 
cular and harmonic motion, although discrete pe- 
riodic functions, such as mod n, will also be used. 
The properties of the trigonometric functions will be 
developed. Integration by parts will be introduced 
and applied to the special functions. The special 
integrals leading to the inverse trigonometric func- 
tions will be introduced here. Mathematical models 
suggesting the use of trigonometric polynomials will 
also be used. 

Once the standard functions have been treated, 
it will be natural to discuss various forms of in- 
finitary behavior. The discussion will begin with 
a reconsideration of infinite sequences, including a 
presentation of indeterminate forms and their ap- 
plications to order notation. The remainder of this 
section will be devoted to improper integrals and 
infinite series, emphasizing the analogies between 
these two forms of infinite summation. 

At this point, the focus will shift somewhat from 
functional behavior to functional approximation and 
representation. Thus the next major topic will be 
power series, with particular emphasis on the use 
of Taylor series to represent functions. Generat- 
ing functions for simple recursions will be discussed, 
and a certain amount of attention will be devoted 
to computational issues and the estimation of er- 
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ror terms. The constant theme will be the use of 
Taylor series as function approximations to obtain 
information about functional behavior that would 
otherwise be difficult to obtain. 

The final topic will be trigonometric series, with 
particular emphasis on the representation of func- 
tions using Fourier series. The treatment of Fourier 
series at this early point will require the introduc- 
tion of complex numbers, which will reinforce the 
students’ geometric understanding of trigonometric 
functions. Furthermore, the availability of Taylor 
series will permit an analytic as well as a geomet- 
ric discussion of the identity eiZ = cosx + isin x. 
Finally, the early introduction of Fourier series will 
make it possible to discuss discrete Fourier series 
and their acplications at a far earlier point in the 
curriculum than is presently possible. 

Clearly, the focus on functional behavior and 
representation has produced a first-year course that 
is quite different from what is currently taught. The 
essential core of the current calculus course has been 
retained, but it is always made clear that it is there 
because it throws a powerful spotlight on functional 
behavior and representation. 

Conversely, many traditionally taught topics 
have been removed. This pruning was only possible 
because the developers approached each topic with 
the same question: How does this topic impact on 
the main theme of the course? 

Now that the course has been outlined, it re- 
mains to show how it will fit into the curriculum. We 
will also have to pay some attention to the second- 
year course that will follow this course, and also 
to the political and institutional problems that its 
adoption would pose. 

IMPLICATIONS FOR THE CURRIC- 
ULUM 

The first question to be addressed is the audi- 
ence to be served by the proposed course. It is 
clearly ideally suited for students of computer sci- 
ence, since it merges themes from continuous and 
discrete mathematics in a synergistic manner. Stu- 
dents who have successfully completed the course 
can be expected to handle the mathematics arising 
(for example) in the analysis of algorithms. It can 
also be argued that this course would be well suited 
as a first course for students of mathematics, the 
physical sciences and engineering. For these disci- 
plines the major omission has been vector geometry 
and multivariate calculus. In many universities, a 
large proportion of this material is treated in the 
second year, and it is not unreasonable to suppose 
that even more could be shifted to a third-semester 

course designed for those students. 
Although much vitally important mathematics 

can be subsumed under the general heading of 
“functions”, an equally important heading is that of 
“structure”. While the proposed course is intended 
to give students the most important tools that come 
under the former heading, it does not address the 
latter. For students of computer science, both head- 
ings are equally important, and thus an important 
place in their education must be found for “struc- 
ture”. Much of the debate summarized above on the 
place of discrete mathematics in the curriculum can 
be seen as a debate on the place of “structure” in the 
curriculum. Following on the first-year course that 
has been outlined above, it is reasonable to develop 
a second-year course focusing on “structure”. 

Such a course will not be described in detail here, 
but it is possible to discuss briefly what general top- 
ics might be included. The primary strands might 
be discrete mathematics, linear algebra and proba- 
bility theory. Discrete mathematical topics could in- 
clude relations, graphs, Boolean algebras and formal 
languages. The discussion of linear algebra could in- 
clude some multivariate calculus, which could then 
be applied in the probability portion of the course. 
Just as with the first-year course, the topics in- 
cluded in the second-year course should be chosen 
because they illustrate vital structural themes or be- 
cause they are motivated by or permit the develop- 
ment of important applications. 

The introduction of courses designed along these 
lines will not be a simple matter. The obstacles that 
will be found range from the need for new textual 
materials to the difficulty of articulating the new 
courses with other courses and institutions on all 
levels. It would be an unfortunate mistake, how- 
ever, to conclude that because of the certainty of 
encountering what seem to be insuperable obstacles 
to the introduction of a truly new curriculum, the 
only possible strategy is one of incremental change. 
The development and introduction of a curriculum 
integrating discrete and continuous ideas is an ex- 
citing challenge, and one that should be taken up in 
several places. What is really needed is a collection 
of design and development experiments, performed 
in out-of-the-way “protected” environments. Once 
a new curriculum has proven its viability and worth 
in one or more of these experimental environments, 
it will be time to address the structural and institu- 
tional issues involved in transplanting the successful 
curriculum to less protected situations. 
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TEACHER EDUCATION AND TRAINING 

Bernard Cornu 
Institut Universitaire de Formation de Maitres, Grenoble, France 

Introduction 
During the ten last years, considerable progress 

has been made in the development of computer 
hardware and software, and many valuable educa- 
tional experiments have been carried on. However, 
computers are not so commonly used as one might 
have expected. In many schools the computers are 
locked in a special room, and it is not easy for teach- 
ers to use them. They must plan in advance, be sure 
the room is available, get the key and check and pre- 
pare the computers. Then they go to the computer 
room with the pupils, and the time spent there is 
generally not totally “integrated” into the course. 

Thus even when the computer is used, the im- 
pact on the learning is not clear. For some pupils, 
it is clearly useful and fruitful, but do we know why 
and how? We all know very good and enthusias- 
tic teachers using computers, and they generally do 
it with success. But it is time consuming, it needs 
a great personal investment, and the conditions of 
success are not easy to reproduce or to transfer to 
another situation. 

However, computers are now very common in so- 
ciety; they are used in many domains of daily life. In 
many countries national plans for computer equip- 
ment in schools have been achieved, and so a lot 
of computers are available in schools. Much educa- 
tional software has been produced, and it is often 
of high quality. The use of computers does indeed 
become easier. 

Five or ten years ago, the focus was on the devel- 
opment of hardware and software, and on original 
experiments in using computers in education. Now 
it appears that teacher training is the next major 
and unavoidable step but, one which has not been 
sufficiently studied. Most countries are now asking 
how to train all current and future teachers in the 
use of new technologies for education. 

Of course, training plans have already been 
tried. The first ones were generally training in com- 
puter science. Teachers from various subjects were 
trained in computer science, and one thought that 
they would then be able to use computers in their 
teaching in an efficient way. It did happen but only 
in some cases! And it did not solve the pedagogical 
problems of the use of computers, which increasingly 
appear to be essential. 

The use of computers in educat,ion has relied 
mainly on some enthusiastic teachers who spend 
nights and weekends writing programs and prepar- 
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ing activities for their pupils. These teachers some- 
how got the training they wished (even if they learnt 
a lot by themselves!). But we now need to go fur- 
ther, and the way the use of computers was devel- 
oped with some teachers is certainly not applicable 
to the teachers. We need to imagine new ways such 
that all teachers will be able to use computers. 

In most countries computer science is not yet a 
school subject. Therefore, except in some particu- 
lar cases, we do not need to train computer science 
teachers, but we need to train teachers in all sub- 
jects in the use of computers and new technologies 
in the teaching of their subject. Thus we need to 
reflect on the contents of such training. 

The main problem, as noted, is the of general- 
isation. We know how to train some teachers but 
we now need to train all teachers. We have done 
some very specific and sophisticated training; we 
now need training which can be easily generalised 
and delivered to all. We must take into account 
the willingness and the abilities of the “standard” 
teacher, and design adequate training. The usual 
training for good and enthusiastic teachers is cer- 
tainly not directly reusable. 

This is both a pre-service and an in-service mat- 
ter. In the next ten years in most countries, one 
third of the teachers will be changed (because of re- 
tirements and the increasing numbers of teachers). 
So pre-service training will be efficient for this third. 
The other two thirds will need in-service training 
during the same ten years. 

In the long term, one must think about the 
link between pre- and in-service training. In an 
ever changing world, it is impossible to give future 
teachers the abilities and knowledge they will need 
throughout their careers. They will have to learn, to 
think and to reflect continuously. Pre-service train- 
ing is not intended to avoid in-service training, but, 
on the contrary, to prepare for it! Increasingly in- 
service training should be considered a normal part 
of the job of a teacher. It should not be only for 
volunteers, but for all! 

The evolution of teaching 

For several different reasons, teaching is going 
to evolve: 

l Technology is evolving quite quickly. Hardware 
is becoming smaller and cheaper and more and 
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easier to use. Software is also evolving, becoming sometimes individually with pupils. Activities with 
more user-friendly, and it is becoming possible to the pupils may occur not only in the classroom, but 
use computers with good software which requires also in other rooms of the school such as a resource 
little preparation. center, laboratory, a room for small groups etc. 

l Pedagogy is evolving. One reason is because re- 
search in education provides better knowledge of 
teaching and learning. And new tools are begin- 
ning to be available for teaching. But pedagogy 
is also evolving because of the democratisation of 
education. More and more children have access 
to education, and so pupils are increasingly di- 
verse, and need pedagogy adapted to their needs. 
In short, teaching needs to be more individu- 
alised. 

Altogether the teacher has to be a counselor, ad- 
visor, organizer, leader and a manager. The task is 
not only mastering of teaching, but also mastering 
the management of learning. 

Current and future teachers must be prepared 
for this evolution. It is not enough to master 
the knowledge and some pedagogical strategies and 
tools. Teachers must be able to deal with all the 
evolution which will happen, and to adapt to many 
different kinds of pupils. 

The school of tomorrow may be quite different. 
It will be organized according to a variety of peda- 
gogical styles. There will be large rooms for large 
audiences; standard classrooms; rooms for group 
work; rooms for individual work; rooms for practi- 
cal work or workshops; resource rooms etc. Not only 
will the pupils be provided with a variety of rooms, 
but so also will the teachers. Teachers now have 
a rather standard way of working. They come to 
school to give their lessons, and they stay at home to 
prepare the lessons or to mark homework. One can 
imagine that teachers will increasingly work with 
their colleagues and that they will need to have 
special tools and materials available for their work. 
Certainly offices must be provided for teachers, and 
rooms for group work. They will also need labora- 
tories to prepare lessons using technology. 

The way teachers work every day is evolving. 
They will probably be in the school all day and all 
week long and will use various tools in preparing 
lessons and in teaching. They will work together 
with colleagues, and even teach together with col- 
leagues. Their personal work will also evolve and be 
more diverse. The evaluation of pupils is going to be 
more and more complex, and the role of the teacher 
in evaluation will be more important. Evaluation 
itself is becoming more precise and more technical; 
the use of evaluation in training and in individu- 
alization of education will be a major role for the 
teacher. 

Teachers will also have to be involved in the elab- 
oration of pedagogical tools. The evolution of teach- 
ing needs new tools, but also new ways in designing 
the tools. Textbooks, software, video and audio doc- 
uments and resources for pupils will all have to be 
better adapted to specific pupils or groups of pupils. 
Their elaboration will need more techniques, more 
technology and more professionalism. 

Team or group teaching will become more fre- 
quent. Teachers will work and reflect together and 
this will soon be considered as a normal component 
of the job of a teacher. As intellectuals, teachers 
must continue training and reflection throughout 
their professional life. 

The school of tomorrow will be equipped with 
advanced technology - computers, multi-media re- 
sources, easily available in each room (perhaps with 
permanent equipment, or possibly by plugging in 
portable machines); Resource centers will also be 
necessary in schools. Libraries with books, soft)ware, 
audio, video, and multi-media products. As is the 
case already with other subjects , one can imagine 
that in the near future, mathematics laboratories 
will be available in most schools. 

Thus teaching can no longer be considered only 
as an art; it is a profession with all the components 
of the professionalism. And this has consequences 
for the education and training of teachers. We must 
train professionals! 

A good professional must have access to the best 
and most efficient tools and must be prepared to 
use these tools, to choose the tools to be used and 
to adapt to new tools. Once again we note that 
continuous training is a natura.1 part of the job of a 
teacher. 

The role of the teacher is also changing. Since 
pupils are more and more diverse, the teacher has to 
intervene in many different ways, not. only as a lec- 
turer, giving lessons and delivering knowledge to the 
pupils. In the classroom teachers must use different 
pedagogical styles and different kinds of activities. 
They must also work with small groups of pupils and 

Will the computer be able to replace the teacher? 
The answer seems to be no. Teaching and learn- 
ing are very complex processes, and, although tech- 
nology brings new tools, the main didactic actor is 
the teacher who manages the learning process and 
adapts it to each pupil and who insures the social- 
ization of the knowledge and its compatibility with 
the “external world”. Among the productions of the 
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pupils in the class, those must be identified which 
deserve status of knowledge. Thus the teacher in- 
stitutionalizes knowledge. 

Of course, personal and individual moments are 
possible and necessary in learning, and the com- 
puter can make them more efficient As well, some 
particular topics can be learned “automatically” 
with a computer (for example, typing; training in 
repetitive skills such as computation, learning “by 
heart”, etc.). But teaching and learning need in- 
teraction between the teacher and the pupils, and 
among the pupils; the computer must be used in a 
way that facilitates this interaction. 

Teacher training 

Which competencies? 

In talking about teacher training we need first to 
determine the competencies which are necessary for 
a teacher. Which teachers do we need for tomorrow? 
Which kinds of teachers do we want, to prepare? 

First, we certainly need teachers who have mas- 
tered perfectly the knowledge they will have to 
teach; teachers must be competent in their subject. 
But this is not enough. They must not only be good 
“in” their subject; they must also be good “about” 
their subject. They need to know about the origins 
and evolution of their subject, about its history and 
epistemology. They need to know about the role of 
their subject in society and about its applications. 
They need to know about the “philosophy” of their 
subject. 

We need teachers who are able to communicate 
knowledge and to make pupils construct their own 
knowledge. Teachers must be educated in the peda- 
gogy and didactics of their discipline. They must 
know about the obstacles to learning, they must 
know about the errors students may make and their 
role in dealing with these errors. They must know 
about the conditions which facilitate learning and 
they must know about evaluation. 

We need teachers able to manage and lead their 
classes. They must know about groups and individ- 
uals. They must have some knowledge of psychol- 
ogy. 

We need teachers able to advise and orient their 
pupils. Thus they must know the educational sys- 
tem, its place and its role in society so they need 
some knowledge of sociology. 

We also need teachers trained in the technical 
aspects of their job, able to speak loudly and clearly 
enough and able to use technical tools etc. 

In general then, teachers have many different 
roles and must be competent in each of them 

But what about new technologies and comput- 
ers? They are linked with each of the aforemen- 
tioned competencies. One must think about the role 
of the computer with respect to the subject itself. 
What is the influence of the computer on mathe- 
matics, on the way mathematicians work and on 
the mathematics which is taught in schools? What 
is the place of computers in the way mathematics is 
used in society? What is the influence of computers 
on the pedagogy and didactics of mathematics? On 
evaluation? What is the role and the use of the com- 
puter in class management, in individualization, in 
the organization of the teaching? How does it affect 
the psychology of the pupil? What technical help 
can the computer bring to the teacher? 

Of course, there are no definite answers to these 
questions; the education of teachers must make 
them able to ask these questions and reflect about 
them. Education cannot give definite competencies, 
but it must give an aptitude to evolve; it must give 
the basic tools necessary to be able to build one’s 
own strategies, one’s own answers. 

We now try to list some of the competencies a 
teacher needs in computers and computer science, 
remembering that our purpose is not to train com- 
puter science teachers, but mathematics teachers. 

l Basic tools: such as word processing, spread- 
sheets, data processing, and also other techno- 
logical tools such as video and the overhead pro- 
jector. This is certainly a very important point: 
If we want ALL teachers use new technologies, 
they must be totally familiar with the most com- 
mon and easy to use; it is an absolute necessity 
that teachers be able to use computers for ele- 
mentary applications. This is the way to make 
the computer part of the “daily life” for teachers. 

l Technical elements: to be able to use the hard- 
ware, to manipulate the main accessories, to 
identify elementary troubles, and to deal with 
the technology in the school; teachers need a ba- 
sic level of “familiarity” with technique. 

l Elements of computer science. But to what 
extent? Teachers certainly need to know just 
enough in order to “understand what happens”; 
but the links between mathematics and com- 
puter science are so strong that it is certainly 
useful to know about some fundamental con- 
cepts (as well as some concepts of algorithmics - 
see the chapter by Maurer). 

l Mathematics and informatics. Mathematics is 
evolving and changing under the influence of 
computers and informatics. ‘Therefore, teachers 
need to maintain their mathematics knowledge 
and to practice mathematics from an informatics 
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viewpoint. Mathematics is becoming more ex- 
perimental, more algorithmic, more numerical; 
teachers must be able to follow the evolution of 
mathematics, and to acquire new competencies 
and new attitudes and to be able to carry out 
new activities in mathematics. 

l Using existing resources. Teachers must be able 
to know what exists - different software, differ- 
ent tools, different strategies for teaching. They 
must be aware. of new products which appear. 
They must be able to choose among existing re- 
sources according to the needs of their pupils 
and according to their pedagogical choices. They 
must be able to advise pupils which products 
they should use. 

l Pedagogy, didactics and the computer. One of 
the main problems of the use of computers for 
mathematics teaching is the integration of the 
computer activities into the pedagogical strat- 
egy. Too often, computer activities are just 
added to the usual lessons. An optimal use of 
the computer needs not only good knowledge 
of the hardware and software to be used, but 
also mastering of the problems of learning. A 
teacher should be aware of what we now know 
about how pupils learn; the computer should be 
just a tool to implement new strategies and new 
solutions to learning problems. It can be an ef- 
ficient tool, for example for individualization of 
the learning and for evaluation, but only if indi- 
vidualization or evaluation problems are solved 
in pedagogical and didactical terms. Technology 
does not replace pedagogy. So, training in new’ 
technologies cannot be independent of training 
about pedagogy and didactics. 
Didactical engineering. Teachers have to elabo- 
rate the situations needed for pupils. Since they 
have a large number of tools at their disposal 
and a large number of choices in terms of strat- 
egy, a teacher needs to have the characteristics of 
a “didactical engineer”, i.e. they must have the 
ability to use the results of research or theoret- 
ical statements and transform them into usable 
products. 

. 

Which methodology for training? 

The methods used in teachers training are at 
least as important as the contents of the training. 
It is well known that teachers usually teach, not as 
they were taught to do, but by reproducing the way 
they were taught. If you only use lectures to train 
teachers (even if you lecture about active methods 
for teaching), they will then mainly give lectures to 
their pupils. 

So the most important thing in educating teach- 
ers how to use computers in teaching is not to give 
lectures on “how to use computers”, but to actually 
use the computer in the training. This is true for 
all new technologies. You should use the overhead 
projector in the training, rather than give a lecture 
on “how to use the overhead-projector”. 

If you want to convince teachers that pupils can 
learn better with the computer, just make these 
teachers or future teachers actually learn something 
with the use of computers. 

This means that the training should include ac- 
tive parts, even if some theoretical aspects are also 
necessary. One often says that problem solving is a 
good way to learn mathematics; similarly, the solv- 
ing of teaching or learning problems is a good way 
to learn about pedagogy, and the solving of teach- 
ing or learning problems using new technologies is 
certainly a good way to learn about the use of new 
technologies in education. 

Teacher training should not be only an accu- 
mulation of knowledge. As already noted, teach- 
ers should be prepared to evolve and adapt to new 
situations. 

Among the different methods which can be used 
for training teachers, “training by research” is prob- 
ably one of the best. It does not mean that all teach- 
ers should be researchers. But they should be able 
to use the methodology of research, and this can 
be learnt through group activities - reflection, inno- 
vation, preparation of documents and of situations, 
etc. Teachers will need to learn to work in teams 
with colleagues. To be prepared for such activities, 
they need team activities in their training! 

Teachers should also be trained to communicate, 
to read, to write (for their pupils; for their col- 
leagues; for publication) since this will also be a 
component of their job. 

Teachers should be prepared for a diversity of 
pedagogy. There exist many different pedagogical 
strategies, many different pedagogical styles. Too 
often, one is convinced that one of these methods 
is the best. But it is better to be able to deter- 
mine, in given conditions, at a given moment, with 
given pupils what is the appropriate method to en- 
able them to learn a specific topic. This implies 
that in the training itself many different methods 
and strategies will be used - lecturing with one 
computer in the room, used mainly by the teacher 
(“blackboard computer”); collective activities in a 
room with one computer for each student or group 
of students; individual activities on computers; self- 
evaluation using computers etc. 

Diverse software must also be used in teacher 
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training - utilities, basic tools such as word- 
processors, languages, tutorials, open-ended soft- 
ware, multi-media tools etc. Giving teachers access 
to the maximum of diversity increases their freedom 
in their own professional activities. 

Which contents? 

This is again a question without a definite an- 
swer. Of course, the answer should not be the same 
in pre- and in-service training. But, in fact, the 
topic of computers is new for most in-service teach- 
ers, and they need training which is close to that in 
pre-service. 

We can hope that in the future students will have 
acquired the necessary elements about new tech- 
nologies in their previous studies, for example using 
computers for word-processing. 

The first question to be asked is: Do the teachers 
I train need computer science? Will they consider 
computer science as a subject in itself? Should they 
only learn informatics as it impinges on their main 
subject, and through its use in their subject? 

Many different answers to these questions have 
been attempted. Some countries have tried to train 
teachers by giving them a full year of training in 
computer science. This produces “specialists”, but 
the reinvestment for other teachers was not easy. 
Many countries organize sessions for teachers. Here 
again the diversity of what is offered to the teachers 
is certainly a good thing - lectures on specific topics; 
one week or two weeks sessions; a course over one 
term or one year etc. 

In pre-service training, there should certainly be 
specific modules in order to prepare future teachers 
for the use of computers. As a possible example, 
here is the contents of a course we have given for 
many years at Grenoble University, both to future 
teachers and to in- service ones. This course lasts 
for 150 hours (5 hours a week during 30 weeks). 
The title is: “Informatics for mathematics teach- 
ing”. Each week, 2 hours are devoted to lectures 
and 3 hours to practical work. The course is di- 
vided into three parts: 

l Informatics and algorithmics. Students learn the 
basic use of a computer; they also learn elements 
of algorithmics, including recursion, proof of pro- 
grams, evaluation of algorithms and data pro- 
cessing. They use three different languages for 
programming: Pascal, Logo, and Prolog. 

l Mathematics from an informatics viewpoint. In 
order to use the computer in mathematics t.each- 
ing, it is necessary to use it for mathemati- 
cal activities, and therefore to reconsider some 

mathematics concepts with the help of comput- 
ers. Every year in the course we choose different 
mathematics topics in the curriculum of univer- 
sity studies (not in the curriculum of secondary 
schools because we want the students to be able 
to accomplish by themselves the transfer of these 
activities to the field of secondary school math- 
ematics). 

l Pedagogical and didactical viewpoint. In this 
part, we use and analyse various existing tools 
(software, textbooks with computer studies in- 
tegrated into them etc.). We try to combine 
the fundamental notions of pedagogy and didac- 
tics of mathematics together with technology. 
We also try to make the students solve teach- 
ing problems using computers. (For example: I 
must prepare a lesson about linear equations for 
tomorrow. What will the content of the lesson 
be? What software will I use? What will be the 
activities of the pupils? Here is another example: 
I must prepare a course about linear equations, 
but I have six months to prepare it. How will I 
do it?). 
During the year the students have to produce a 

personal project which takes the form of a piece of 
software they design and experiment with. 

Research, innovation and training 

The development of the use of new technologies 
in mathematics teaching makes it necessary that re- 
search be carried on in several domains - research 
about mathematics learning; research about com- 
puters in mathematics teaching; research leading to 
appropriate software; research about teacher train- 
ing. This research may take several forms - funda- 
mental research, applied and experimental research, 
innovation. Too often, there is a gap between the 
fundamental results of educational research, and 
products which are usable in teaching and in train- 
ing. We need to develop applications and implemen- 
tations of the results of the research and we need 
pedagogical products based on research. 

Innovation and research can contribute to teach- 
er training. Indeed, the participation of teachers or 
future teachers in innovative activities is a good way 
for training them. 

The participation of teachers in elaborating and 
experimenting with pedagogical products is neces- 
sary, but not sufficient. Designing good software 
needs computer scientists and software specialists as 
well as specialists of pedagogy’and teachers (prac- 
titioners). It is a professional matter which needs 
professionals. 
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Two other tracks need to be explored: 
Teacher training is becoming more complex, and 
we need courses and training activities adapted 
for this purpose. Courses for teachers and future 
teachers must be developed. We also need to 
reflect about the specific competencies which a 
teachers trainer must have. In fact, in many 
countries the first problem to be solved before 
we are able to train ALL the teachers is to train 
teacher trainers. 
In order to diversify the tools usable in teacher 
training, it would certainly be interesting to de- 
velop computer tools and software for teacher 
training. 

Conclusion 

We have done a lot of experimenting with new 
products and new strategies, and the most enthusi- 
astic teachers have shown both their efficiency and 
their limits. The problem now is to generalise the 
use of new technologies, so that ALL teachers are 
able to use them as they wish, or to know why they 
do not want to use them. 

Two conditions seem to be essential in order to 
help all teachers and future teachers use computers: 

l Make the computer actually available and us- 
able; make it a “daily life” tool; make it really 
user-friendly. This means that it is necessary 
that schools be well equipped. The aim should 
be that each teacher or future teacher has a com- 
puter (either one the teacher owns (special plans 
may need to be set up for purchasing comput- 
ers at reasonable prices; loans may need to be 
obtained for future teachers) or the institution 
must own computers and make them available 
for teachers and future teachers). 

l Actually use the new technologies in teacher 
training, and not just train about “how to use” 
them. 
In no case can the technology replace the peda- 

gogy. A bad teacher using computers will certainly 
still be bad! So training and education are neces- 
sary, but not only from the viewpoint of technology. 
We need coherent training, integrating both techno- 
logical and pedagogical approaches. Teachers must 
be ready to evolve and adapt, and must retain the 
ability to ask questions. At each instant they should 
ask whether education or technology is the driving 
force. 

Teacher training is a continuous process. Pre- 
service and in-service training are strongly linked, 
and both are necessary. No longer can a teacher be 
provided with all the abilities and knowledge needed 

at the beginning of a career; training never ends, 
reflection never ends; in-service training should be 
considered as a natural component of the teacher’s 
job. We must never forget that teachers are profes- 
sionals, and need professional training. 

Many countries use a “cascade model” for 
teacher training. The education ministry organises 
a course for a number of selected trainers; after- 
wards, each of them trains a number of other train- 
ers, who then train teachers (or trainers who train 
. . . ). Such a model can be efficient, but may also 
not be! The main characteristics of good training 
- motivation, activities, understanding - must be 
present at each stage of the “cascade”. And this 
model can apply only to very specific, precise, and 
limited training. 

“Training plans” have been set up and imple- 
mented in many countries for training teachers in 
the use of computers. They have only partly suc- 
ceeded. One reason for this is that they are gen- 
erally too restricted as to technology. A training 
plan should be more global, aiming not only at solv- 
ing new technology problems, but aiming at solving 
teaching and learning problems. New technology 
problems should not be treated in too isolated a 
context. 
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Symbolic manipulators, that is, computer pro- 
grammes with the capability of carrying out sym- 
bolic computations, for example, in calculus or lin- 
ear algebra, are now widely available. While these 
are well-established tools in many areas of math- 
ematics, science and engineering, it must be recog- 
nized that they are still in their infancy with respect 
to their use in mathematics education. They repre- 
sent an ineluctable challenge to current approaches 
to the teaching of mathematics and there is a belief 
among some members of the mathematical commu- 
nity that electronic information technology, through 
these symbolic capabilities, will exert a deep influ- 
ence on how and what mathematics is taught and 
learned (for example see Page (1990)). However no 
clear pattern has yet emerged on how such an influ- 
ence is to be articulated. 

This paper will discuss certain aspects of the im- 
pact of symbolic manipulators on mathematica,l ed- 
ucation in the upper secondary years and the first 
few years of university. It is by no means intended to 
give the final word on such a vast field as much work 
is in progress and the technical environment (com- 
puter hardware/software and calculators) is con- 
stantly improving. The aim of this paper is rather 
to examine some of the major issues and to indi- 
cate general trends which have developed since the 
1985 ICMI Study on “The Influence of Computers 
and Informatics on Mathematics and its Teaching”. 
The influence of symbolic manipulators on more ad- 
vanced (senior) mathematics courses will not be ex- 
plored. This is not intended to belittle their impact 
at this level but rather to concentrate on those years 
where these systems must be implemented in order 
to benefit the largest possible number of students 
in mathematics courses. The influence of these sys- 
tems and their mathematical foundations (see for 
example Davenport, Siret and Tournier (1988)) will 
be thrust into the upper level courses by more capa- 
ble and interested students as they progress through 
the system. 

Section 1 defines Symbolic Mathematical Sys- 
tems in broad terms and present.s an example of 
their potential use in mathematics education. Sec- 
tion 2 raises some general concerns related to the 
impact of these systems on mathematics education 
while Section 3 discusses implementation of some 
of the required changes in secondary and university 

mathematics education. The Appendices provide 
the following additional information: (1) references 
dealing with the technical aspects of some of the 
better known Symbolic Mathematical Systems, (2) 
further illustrations of the capabilities of these sys- 
tems, and (3) references to current projects aimed 
at the integration of such systems into mathematics 
education. 

1. Symbolic Mathematical Systems 

The term Symbolic Mathematical Systems is 
used to define calculator and microcomputer sys- 
tems which provide integrated (1) numeric, (2) 
graphic, and (3) symbolic manipulation capabili- 
ties’. Numerical computations have always been 
included in the domain of both the calculator and 
the computer. This capability is usually thought 
of as the ability of doing decimal arithmetic. For 
example, if l/3 + l/9 is input, then the approxi- 
mate solution 0.444444 (to some prespecified num- 
ber of digits) is provided. Symbolic Mathematical 
Systems have the ability to perform rational arith- 
metic, that is, to give the exact answer 4/9 if the 
input is l/3 + l/9. The user must request the dec- 
imal approximation if it is desired. Graphing is a 
more complicated numerical activity. Calculators 
with graphic capabilities (for example the Casio 
fx-7000G, Hewlett-Packard HP-48SX or Texas In- 

’ It should be noted that in a much more gen- 
eral context, the expression “symbolic computa- 
tion” could be construed as referring to various 
types of symbolic objects, for example as described 
by Aspetsberger and Kutzler (1988): geometric ob- 
jects (computational geometry), logic objects (auto- 
matic reasoning), programmes (automatic program- 
ming). The concerns of this paper are limited 
to computations involving algebraic expressions, so 
that typical topics of the field are symbolic differ- 
entiation and integration, calculation of sums and 
limits in closed form, symbolic solution of syst,ems 
of equations and of differential equations, polyno- 
mial factorization, manipulation of matrices with or 
without numeric entries, arbitrary precision rational 
arithmetic computations, etc. These are sometimes 
misleadingly called “Computer Algebra Systems” - 
but they can do much more than algebra as will be 
illustrated by the examples in this article. 
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struments TI-81) as well as microcomputer graph- 
ing programmes are available. To many mathe- 
maticians and mathematics educators symbol ma- 
nipulation by calculators (for example the Hewlett- 
Packard HP-28s or HP-48SX) and microcomputer 
programmes (for example Maple, Mathematics, De- 
rive to name a few) was a most unexpected de- 
velopment. It is the one capability which has the 
potential of producing the most radical changes in 
the teaching of mathematics at the secondary school 
and university levels. 

To convey a feeling for some of the capabilities 
of Symbolic Mathematical Systems and how they 
could be used in a calculus class, consider the fol- 
lowing example of a session with a specific system 
(namely Maple but this particular choice is not cru- 
cial). Such an example could be done in class, or 
could be structured as part of a laboratory exer- 
cise. The example illustrates the numeric, graphic 
and symbolic manipulation capabilities of the sys- 
tem and shows the system can be used in a mode 
which requires no programming by the user, but 
only the knowledge of a few command words. For 
ease of understanding lines starting with a # (and 
in italics) are external comments, lines starting with 
a ::: are the user’s input and the lines in bold are 
the (Maple) system’s response. 

#The task is to explore the derivative of in(x) using 
#the definition of the derivative. First the limit of 
# (In(t)-ln(4))/(t-4), called y, as t approaches the 
# integer value 4 is explored from a numerical 
#point of view, by computing the value of y around 
#t = 4. Clearly the value at t = 4 does not exist. 

::: y:= (In(t)-ln(4))/(t-4); 

y := In(t) - 144) 
t-4 

#At t = 3.99 
::: subs(t=3.99,y); 

-100 ln(3.99)+100 ln(4) 

#Evaluation using floating-point arithmetic of this 
#last displayed expression then gives 

::: evalf(“); 
.250313 

#At t = 3.999 
::: evalf(subs(t=3,999,y)); 

.250031 

#At t = 4.01 
::: evalf(subs(t=4.0l,y)); 

.249688 

#At t = 4.001 

::: evalf(subs(t=4.0OI,y)); 

.249969 

#Looks as though the function is approaching 0.25 
#as t approaches 4. Does the graph support this? 
#A plot of y for 3.5 < t < 4.5 is obtained. 

::: plot(y,3.5..4.5); 

#Yes it does and the graph indicates by a hole that 
#the function is not defined at t = 4, where y is 
#approximately equal to 0.25. One repeats this 
#experimentation with a few more integer and 
#rational cases, for example 5, 3/Z, ‘Y/3. Then the 
#symbol manipulation capabilities can be used to 
#evaluate the limit directly, 

::: limit((ln(t)-ln(3/2))/(t-3/2),t=3/2); 

#suggesting that the limit of 

#(In(t)-ln(a))/(t-a) as t approaches a is l/a 
#for all a>O. This is confirmed by the system. 

::: limit((ln(t)-ln(a))/(t-a),t=a); 

1 - 
a 

‘#Which 1 zs a so confirmed by the diflerentiation 
#capability of the system. 

::: diff(ln(a),a); 
1 - 
a 

#Does the derivative have the properties expected? 
#Plot the function and its derivative on the same 
#graph (in some judiciously chosen ‘interval !). 
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::: plot({ln(t), l/t}, 0.5..10.5); 

#Yes in(t) is a monotonically increasing 
#function and the derivative is shown to be 
#positive in the chosen range. Measurements along 
#the axes appear to confirm the previously 
#computed points (4,1/4) etc. The formal 
#definition of the limit can also be explored, namely, 
#L is the limit of y as t tends to a if for every 
#eps > 0 there is a de1 > 0 such that if 
#0 < It-al < de1 then Iy- LI < eps. 
#Consider the case explored earlier where it was 
#conjectured that the limit of y as t tends to 4 is 
#l/4. Select eps = 0.01 > 0; is there a de1 such 
#that for 0 < It - 4 1 < del, then Iy - l/41 < 
#O.Ol? The condition ly- l/41 < 0.01 can be 
#rewritten as l/4-0.01 < y < l/4+0.01. 
#This is solved using the system. (Maple solves 
#dinerent types of equations: algebraic, numeric, 
#diflerential, etc.) In this case we are 
#interested in the numerical solution of an 
#equation in one variable. Numerical procedures 
#for the solution of such equations often require 
#the user to specify an interval within which one 
#expects to locate the root. In this particular case 
#Maple does not require such a prompt and 
#provides the following: 

::: fsolve(y=0.24,t); 

4.33789986 

::: fsolve(y=0.26,t); 

3.696303966 

#From these two values it zs concluded (based on 
#the continuity of the log function) that there is a 
#del, for example 0.2, such that when 
#0 < It - 41 < 0.2, then. y is zn the specified 

#range. This is visualited with the following plot, 
#where we notice that the graph of y is 
#completely contained in the specified window. 

::: plot({y,0.24,0.26},3.6963..4.3379); 

#To demonstrate how incredibly sensitive and 
#accurate the limit procedure is, one can consider 
#the following. 

::: limit((ln(t)-ln(3.2))/(t-3.2),t=3.2); 

undefined 

#What happened? To resolve this apparent 
#anomaly the user must realize that elementary 
#functions involving numbers other than integers 
#or rationals are approximated (the calculator 
#mode), that is ln(s.2) is evaluated as shown by 
#the following output 

::: y:=(ln(t)-ln(3.2))/(t-3.2); 

y := 
In(t) - 1.163150810 

t - 3.2 
#and, because of the numerical approximation, the 
#limit of y as t approaches 3.2 does not exist. 

For those who are not familiar with Symbolic 
Mathematical Systems Appendix 2 provides further 
examples of their capabilities. While special pur- 
pose packages have been created to cover specific 
aspects or topics within the mathematics curricu- 
lum, this paper is concerned with “full service” Sym- 
bolic Mathematical Systems which can become part 
of mathematics education across different courses 
and at different levels. The more powerful systems 
were originally created to help individuals perform 
complicated yet algebraically routine mathematics. 
There is no evidence that the introduction of inex- 
perienced students to more dedicated (smaller spe- 
cially developed systems addressing one part of the 
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syllabus) has been more successful than introducing 
them to the larger more sophisticated systems. 

2. Mathematics Education Concerns 

Mathematics educators must continually make 
decisions about what mathematics is to be taught, 
how it is to be presented and what student activi- 
ties are to be required or encouraged. To this de- 
cision making must now be added the role of Sym- 
bolic Mathematical Systems. These systems are a 
fact of life and can no longer be ignored. Mathe- 
matics educators have the responsibility to decide 
consciously whether this environment is to be in- 
cluded within the student’s educational experience 
and what should be the exact role of the Sym- 
bolic Mathematical System. This decision cannot 
be taken lightly for these systems can perform all the 
mathematical techniques presently included in sec- 
ondary school mathematics programmes and most 
of those included in the first two years of university 
mathematics. The decision to include or exclude the 
experience of a Symbolic Mathematical System has 
far reaching implications to the student, the teacher 
and to the curriculum. These are now considered in 
turn. 

a) Implications to the student 

The magnitude of the experiences promised to 
the student by Symbolic Mathematical Systems is 
illustrated by the following allegory: 

A person explores her surroundings by walk- 
ing (pencil and paper) - many interesting things 
are discovered, but situations in the neighbouring 
province are too far away to be experienced, so the 
use of a car (standard scientific calculator) is al- 
lowed. As she drives along, local attractions are 
overlooked in order to get to her destination. How- 
ever, even with this mode of transport, she can- 
not explore distant lands, so an airplane (Symbolic 
Mathematical System) is provided. She lands in a 
country where the language is not her own, customs 
are different - as educators we would try to pre- 
pare her for this shock - but there is nothing that 
is quite like being there. What potential benefit 
awaits her! - she can now explore concepts which 
were unknown before and she can contrast, corn-- 

pare and have a different view and appreciation of 
her own culture and home environment. In this new 
land she continues to use the other modes of trans- 
portation, namely, walking and driving to enhance 
her experience. 

Mathematics education has many of the proper- 
ties of this allegory. Individuals develop their math- 
ematical understanding in various ways. Due to the 

different roles played by the left and right hemi- 
spheres of the brain, it is most likely that the repre- 
sentation of mathematical concepts in complemen- 
tary modes such as numeric, graphic, and symbolic 
will enhance the learning process. For the first time 
in the history of mathematics education Symbolic 
Mathematical Systems offer the ability to move ea.+ 
ily and rapidly between these different representa- 
tions. It is expected that the use of paper and pen- 
cil will be retained by most students; however, one 
should not be surprised to find students who can op- 
erate completely within the computer environment 
since most systems now provide for easy interplay 
between word processing and Symbolic Mathemat- 
ical Systems. 

b) Implications to the teacher 

For the teacher Symbolic Mathematical Systems 
are remarkable not only because they can be used to 
directly perform rational, symbolic or graphic com- 
putations but, more importantly, because of what 
they suggest about mathematics itself and about 
mathematics teaching. As Young (1986) puts it, 
“(...) we are participating in a revolution in math- 
ematics as profound as the introduction of Arabic 
numerals into Europe, or the invention of the cal- 
culus. Those earlier revolutions had common fea- 
tures: hard problems became easy, and solvable not 
only by an intellectual elite but by a multitude of 
people without special mathematical talents; prob- 
lems arose that had not been previously visualized, 
and their solutions changed the entire level of the 
field.” Symbolic Mathematical Systems are part 
of this revolution. They can serve to help concept 
development and, by permitting easy and efficient 
processing of non-trivial examples, they can stim- 
ulate exploration and search for patterns2, general- 
izations or counter-examples. The teacher must now 
question the whole of mathematics education. For 
example, it is increasingly difficult to justify want- 
ing students to become good symbol manipulators 
unless it can be shown that, such procedural skills 
are essential to an understanding of the underly- 
ing mathematical concepts - but no one has yet so 
shown. However this does not imply that students 

” “The rapid growth of computing and applica- 
tions has helped cross-fertilize the mathematical sci- 
ences, yielding an unprecedented abundance of new 
methods, theories and models. (. ) No longer just 
the study of number and space, mathematical sci- 
ence has become the science of patterns, with the- 
ory built on relations among patterns and on ap- 
plications derived from the fit between pattern and 
observation.” Steen (1988). 
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no longer need develop “symbol sense” -just as the 
arithmetic calculator has not reduced the need for 
“number sense”. Suddenly the teacher is brought 
to question both the content of the mathematics 
courses and their presentation. As the former re- 
lates to curriculum more directly, the latter concern 
is addressed first. 

The teacher must consider many factors which 
affect the learning of mathematics. An important 
factor is the social environment. Some students find 
it easier and more enjoyable to work on their own 
while others prefer to work in groups. Some de- 
pend on the verbal or written or visual presenta- 
tion of mathematical concepts by those who under- 
stand them. Others find this distracting and prefer 
to work directly from books. Computers provide 
opportunities to enhance these social environments. 
They also introduce a new factor -- the computer 
- which may, for some individuals, erect new bar- 
riers and difficulties. It is therefore important for 
mathematics educators to provide alternative en- 
vironments for students to experience. Individuals 
will then be in a position to evaluate them and de- 
cide which provide the most opportunities for the 
development of their mathematical knowledge. 

Symbolic Mathematical Systems can be inte- 
grated into mathematics education in a number of 
different ways. The three most obvious ones a.re: 

(1) The teacher can use it as part of a lecture or 
class presentation. This requires some projection 
facilities to allow the students to see what appears 
on the computer screen. For the mathematics in- 
structor the use of such a system in the classroom 
provides very different class dynamics. Attention 
has to be paid to typing, errors, unexpected forms of 
expressions, graphs which appear different from the 
traditional book presentation (cf. Muller (1992)), 
multiple answers, etc. Many mathematics instruc- 
tors find this situation difficult to handle. Perhaps 
the central aspect in the successful integration of a 
Symbolic Mathematical System in the classroom is 
a necessary evolution of the role of the teacher where 
intervention is no longer restricted t,o exposition. In- 
stead the teacher must become a “facilitator” cre- 
ating a context appropriate for a fruitful interaction 
between the student, the machine and the mathe- 
matical concept. The lecture-examples format must 
be replaced by a more open-ended approach. Al- 
though such a point of view is desirable even in a 
computer-free classroom, it becomes essential when 
computers come into play. One of the reasons why 
films and videos have played such a small role in the 
mathematics classroom may be the mathematician’s 
belief that you understand mathematics by doing it 

and not by viewing it. Unlike film, Symbolic Math- 
ematical Systems provide an active environment re- 
quiring constant intervention and change of direc- 
tion. Nevertheless it would be naive not to realize 
that many teachers will find the sacrifice of tradi- 
tional security quite threatening. This will be es- 
pecially true of mathematics teachers who see their 
role as one of “professing” well-polished mathemati- 
cal knowledge. White (1989) has suggested that the 
use of Symbolic Mathematical Systems “can be as- 
similated most easily in traditional teaching meth- 
ods and curricula.” However, in practice, finding 
an appropriate role for the teacher may prove to 
be a major barrier for the universal introduction of 
Symbolic Mathematical Systems into the traditional 
lecture presentation and teachers should seriously 
look at alternative and/or complementary modes of 
implementation. Even though introducing an occa- 
sional Symbolic Mathematical System demonstra- 
tion into a traditional set of lectures is a start, what 
is needed is a complete rethinking of the objectives 
of those lectures. 

(2) The technology can also be used in scheduled 
laboratory sessions. This is probably the least 
threatening mode of introduction for the teacher. 
Laboratory activities can be developed and tested 
before the students try them. Students can be given 
materials to prepare for the laboratory sessions and 
support can be provided for the students during 
their scheduled laboratories. The physical labora- 
tory setup can vary. There are advantages to having 
students working with their own system and advan- 
tages to having four to six students working together 
with a single system. Activities appropriate for lab- 
oratory work with a Symbolic Mathematical Sys- 
tem should not be a simple duplication of activities 
which can be achieved just as easily with pencil and 
paper. What are appropriate activities? Clearly 
the lack of sustained experience limits one’s vision. 
Nevertheless it is suggested (cf. Muller (1991)) that 
laboratory activities should meet one or more of the 
following general attributes: 

(a) they encourage exploration of mathematical con- 
cepts; 

(h) they probe inductive reasoning and/or pattern 
recognition; 

(c) they investigate interrelationships between dif- 
ferent representations - algebraic, graphical, nu- 
merical, etc.; 

(d) they involve problems which would be very diffi- 
cult and/or too time consuming to solve without 
the technology. 

One can visualize a situation where the lecture and 
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laboratory activities are merged and the lecture pre- 
sentation takes place in an area where students have 
access to systems. Because students work at differ- 
ent rates with systems it is quite a challenge to lec- 
ture in the traditional way and have students work- 
ing independently or in groups. The lecture dynam- 
ics parallels the situation where one allows time for 
students to work independently on problems. De- 
vitt (1990) and others have used this method. 

(3) It is important to prepare for the time when stu- 
dents will have easy individual access to Symbolic 
Mathematical Systems. A consequence of techne 
logical improvements is that a calculator with inte- 
grated numeric, symbolic and graphic capabilities is 
no longer a dream and that such devices can only 
become progressively more powerful and cheaper. 
Furthermore, one can expect that the difference be- 
tween portable computers and calculators will be- 
come less apparent. Denying the use of such calcula- 
tors/computers in structured mathematics instruc- 
tion does not solve the problem of their existence, 
and their access by a few more fortunate students. 
Every society believes that its students should be 
exposed to all environments which promise a richer 
educational experience. Of course many situations 
arise where that society cannot afford to provide a 
particular environment. Nevertheless this does not 
relieve teachers from their responsibility to make ev- 
ery possible effort to provide them. 

c) Implications to the curriculum 

There is no doubt that Symbolic Mathematical 
Systems will have impact on the curriculum. What 
is in question is the magnitude of this impact. There 
is already evidence that traditional courses will have 
to change if these systems are to be integrated in any 
meaningful way. Even with relation to elementary 
concepts such as graphing, Dick and Musser (1990) 
observe: “This change in approach made possible 
by these calculators marks a significant shift in how 
graphing could be perceived by students. Instead of 
as a final task to be completed, graphing can assume 
the role as a problem-solving heuristic and a tool 
for exploration.” Thus the traditional calculus ap- 
proach of finding what the graph looks like is turned 
around to using calculus and numerical methods for 
locating more accurately the properties which are 
known to exist. Students rapidly come to appreci- 
ate both the exactness of non-numerical algebra and 
the approximation techniques underlying numerical 
analysis. 

The decision as to what extent Symbolic Math- 
ematical Systems are to be included in the mathe- 
matics curriculum will vary according to the groups 

of students being considered and their level. For in- 
stance, one could have requirements for a student in 
a university mathematics programme different from 
those for a student registered in a mathematics ser- 
vice course. In this respect there is much evidence 
that shows that scientists from other disciplines (see 
for example Lance et al. (1986)) serviced by math- 
ematics departments are interested that their stu- 
dents not be denied the use of Symbolic Mathe- 
matical Systems. Such scientists, often more open- 
minded than pure mathematicians with respect to 
technological developments, simply perceive Sym- 
bolic Mathematical Systems as tools that can help 
them in their work and so are eager to use them. It 
is therefore necessary to reassess the proper balance 
in the requirement of basic symbolic manipulation 
skills and in the choice of topics covered in the var- 
ious mathematics curricula. 

Mathematics educators must make sure that in 
connection with domains where Symbolic Mathe- 
matical Systems can play a role, their courses help 
students acquire the appropriate intellectual skills. 
The required skills, while not really “new”, are very 
often given little place in most traditional teaching: 
these are interpretive skills, needed to make math- 
ematical judgements, to appreciate the validity and 
limitations of the tool being used, to assess the rea- 
sonableness of the computed “answer” (cf. Hodgson 
(1990)). Such skills, being much more demanding 
than traditional algorithmic ones, will require the 
student to be confronted with a substantial number 
of theoretical notions. Thorough understanding of 
mathematical concepts is thus now surely as - or 
even more - necessary in mathematics education 
as it has ever been (cf. Hodgson (1987)). 

Another issue which is important in a pedagogi- 
cal context is the extent to which the symbolic pack- 
age will act in a “black box” mode or on the contrary 
give indications about how the “answer” to a partic- 
ular problem can be obtained. A White-Box/Black- 
Box Principle has been advocated by Buchberger 
(1990) in relation to the question: Should students 
learn integration rules? Buchberger’s point of view 
is essentially that in a stage where a certain math- 
ematical topic is being learned by the student, the 
use of a Symbolic Mathematical System realizing 
the pertinent algorithms as “black boxes” would be 
a disaster. So he calls for systems that would fea- 
ture the possibility to use an algorithm both as a 
“black box” (as is most often the case with exist- 
ing systems) and as a “white box”, i.e. in a step- 
by-step mode in which the reduction of the prob- 
lem to subproblems is exhibited and in which the 
user could eventually interfere. A similar view is 
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taken by Mascarello and Winkelmann (1992) in this 
volume. They claim that even if all the details of 
the internal functioning of a Symbolic Mathematical 
System are not usually essential to users, they must 
not remain totally hidden: understanding of main 
ideas and fundamental restrictions are necessary for 
proper use of (what they now call) the “grey” boxes. 

Once these systems have been introduced into 
the mathematics courses then the student evalua- 
tion must change to reflect this new environment. 
As less emphasis is placed on certain techniques and 
more time is spent on concepts, the testing proce- 
dures must also change. Osborne (1990), Beckmann 
(1991) and others have started to address this issue. 

It is clear that much experimentation and re- 
search are needed to establish how best to use Sym- 
bolic Mathematical Systems in the different courses, 
with the wide-ranging mathematical capabilities of 
students, and with the various attitudes of teachers. 
Appendix 3 provides a list of ongoing projects which 
are addressing some of these concerns. 

3. Effecting curriculum changes 

Generally curriculum changes in the secondary 
school system require much time to be implemented 
but when they happen, they are universally imple- 
mented: this is a direct consequence of the highly 
centralized administration of secondary school pro- 
grammes in almost all educational systems. On 
the other hand curriculum changes in university 
courses can be far more spontaneous, but they tend 
to be localized to a particular course or section of 
a course, usually under the commitment of one or 
a few highly motivated individuals. Therefore the 
introduction of Symbolic Mathematical Systems in 
secondary school and university mathematics edu- 
cation poses problems of a different nature. In the 
former, to affect curriculum change one must con- 
vince a small group of influential curriculum mak- 
ers. For the latter, to ensure that the use of Sym- 
bolic Mathematics Systems becomes integrated in 
courses, it is necessary to expose the majority of fac- 
ulty members of the department to these syst,ems. 
Kozma’s (1985) study on instructional innovation 
in higher education supports this view. He con- 
trasted projects which were collaboratively devel- 
oped with those developed by individuals and found 
that the former were much more likely to be institu- 
tionalized. This section discusses some of the time 
and effort consuming activities which are required 
when introducing Symbolic Mathematical Systems 
in both upper secondary and university mathemat- 
ics education. 

The number of different Symbolic Mathemati- 

cal Systems is expanding rapidly. Some of them 
have even been developed specifically for education 
at secondary school or at the beginning of univer- 
sity education. In most systems, especially the more 
recent ones, attention is being paid to make them 
more user friendly, that is, easier to use. A list of ref- 
erences which review some of the better known sys- 
tems is provided in Appendix 1. While the choice of 
a specific Symbolic Mathematical System appropri- 
ate for use in a given classroom context might rest 
on various criteria (e.g. hardware facilities, level of 
instruction, topics to be covered, etc.), it is clear 
that some basic requirements must be met by those 
systems. For instance the use of the software should 
be transparent, that is students should spend their 
time thinking about the mathematics, and not how 
to operate the computer. Documentation should 
be essentially unnecessary for users, so that what 
needs to be done at any point should be apparent 
(some on-line “help” facility might however be use- 
ful in this respect). The software should be robust so 
that students’ (sometimes unpredictable) behaviour 
should not cause it to crash or hang up too easily. It 
should interact easily with some word-processor, ei- 
ther internally to allow preparation of “notebooks” 
integrating word-processed text inserted in the mid- 
dle of active symbolic software code, or externally 
to facilitate preparation of reports by students. But 
most important of all the program, whether used in 
a tutorial or interactive mode, should be devised so 
as not to foster the myth of computer omniscience 
and infallibility too often rooted in students’ minds: 
while the computer brings in speed and reliability, 
it is the human being who has the intelligence and 
the ability to reason and make decisions. 

As the cost of basic microcomputer technology 
continues to drop, one would hope for an analo- 
gous reduction in the price of hardware necessary for 
supporting Symbolic Mathematical Systems. While 
this has happened in some cases, this is not the 
general rule. Indeed, one should be aware that 
the general software development trend has been 
to demand more and more memory and disk space, 
thereby requiring more powerful and more expensive 
microcomputer units. Software developers tend to 
think in terms of the latest available (or forthcom- 
ing) hardware facilities, and experienced users call 
for more integration, namely word-processing, sym- 
bol and graphic manipulation, spreadsheets, etc., 
all of which push up the requirements of the com- 
puter system. Thus the implementation of curricu- 
lum change involving Symbolic, Mathematical Sys- 
tems requires financial planning for the purchase of 
equipment and software. Budgets must also be al- 
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located to the maintenance of both hardware and 
software. Mathematics departments generally have 
little experience in requesting monies. This has 
tended to be the prerogative of Science, Physical 
Education, Fine Arts and other departments, In 
secondary schools funds are sometimes allocated for 
implementation of curriculum changes, but these are 
unlikely to be sufficient. In a university setting it 
may be worthwhile to run experimental sections to 
.accumulate evidence of improvements in traditional 
indicators and to obtain faculty and student atti- 
tudes and responses to these systems. 

In a context where a lot of importance is given 
in the literature to various symbolic software run- 
ning on microcomputers, it might be tempting to 
overlook calculator technology. But the calculator 
is not restricted to school applications or to compu- 
tations on numbers in so-called “scientific” notation! 
There are a number of calculator projects reported 
in the literature (see for example Nievergelt (1987) 
and Demana and Waits (1990)). It is true though 
that present calculators only have limited graphic 
and symbolic manipulation capabilities. But devel- 
opments in electronic technology strongly suggest 
that such more powerful and user-friendly calcula- 
tors will most certainly be a reality in a not too dis- 
tant future. To equip a class or for individual use, 
calculator technology should thus be seriously con- 
sidered. This is especially true in situations where, 
for instance, electricity supplies tend to be unreli- 
able. 

Once the equipment (hardware/software) has 
been purchased, meaningful mat,hematics activities 
for the students must be developed. Few such ac- 
tivities are available, although some recent publica- 
tions provide examples in calculus: see for example 
the Mathematical Association of America Notes Se- 
ries (P8) and the Maple Workbook (Geddes et al. 
(1988)) referenced in the Bibliography. But redefin- 
ing objectives for a course or building pertinent ac- 
tivities is a daunting task. And for such a quest to 
have a lasting effect, it should be undertaken not 
by one individual (with eventual loss of the effect, 
should that individual be away for a while), but 
rather by a group, for instance by a majority of 
the faculty members within a mathematics depart- 
ment. This raises the difficult question of how to 
react to a possible lack of interest by some of those 
faculty members. After all, most are busy people 
and are not willing to invest large amounts of their 
limited time unless there is some evidence that the 
result will be worthwhile. This is even more true 
when students’ attitudes towards the use of Sym- 
bolic Mathematical Systems in the classroom are 

not as positive as what could have been expected 
(see for instance Muller (1991) for an attitudinal 
survey of some teaching experience with a Symbolic 
Mathematical System). 

The principal word of warning is certainly that 
implementing the necessary curriculum changes 
takes a lot of human resources in the form of time 
and dedication. It takes time to conceive the “new 
course”, to develop meaningful students activities, 
to prepare new materials, to devise tools for assess- 
ment. And this must be done in contexts where of- 
ten no (or little) credit is given to those who embark 
on such a task! Furthermore released time, super- 
vision, hardware and software all require financial 
resources in an area where administrators have not 
been used to allocating funds. Mathematics educa- 
tors must convince school or university administra- 
tions and funding bodies that such an investment is 
essential and is worth its value! And what is needed 
to support the argument is a critical analysis of con- 
trolled experiments, rather than anecdotal reporting 
of experiences. 

4. Conclusion 

The introduction of Symbolic Mathematical Sys- 
tems into mathematics programmes should be con- 
sidered within the broader context of the impact of 
technology on mathematics education. Mathemat- 
ics teachers who have successfully integrated other 
software into their teaching of geometry, statistics 
etc. as well as computer scientists can offer useful 
insights and pedagogical points of view. Most of the 
projects aimed at the integration of Symbolic Math- 
ematical Systems into mathematics teaching are ei- 
ther still under way or, if concluded, have results 
which are difficult to interpret. For example, how 
does one separate the effects of a Symbolic Math- 
ematical System from other effects, such as those 
generated by the enthusiam of those involved with 
the experiment or the effects produced by the avail- 
ability of additional resources? It is most proba- 
bly too early to look for a significant impact on the 
curriculum (measured by the proportion of students 
in mathematics courses affected by the existence of 
Symbolic Mathematical Systems). It appears to be 
the consensus of those who are using these systems 
in their teaching that the course is taught differently 
but that it retains a fairly traditional content. 

Thus there are few proposals of changes in 
the curriculum narrowly defined by course content, 
Some examples of proposals for change are: Tall 
(1985,1991) proposes a much greater visual com- 
ponent to calculus teaching; Miiller (1990) sug- 
gests that the conceptual approach to caiculus using 
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“Lipschitz-restricted” concepts of limit, continuity, 
differentiation and integration is a much more nat- 
ural one for students and one in which Symbolic 
Mathematical Systems are easily integrated; Heid 
(1988) reports experiments in the resequencing of 
skills in introductory algebra and calculus where at- 
tention to hand manipulation skills was drastically 
reduced; Artigue et al. (1988) traces the influence 
of computers on the evolution of the teaching of dif- 
ferential equations; the texts of Hubbard and West 
(1991) and of Kocak (1989) support this evolution 
and emphasize the importance of visualization in 
the study of differential equations. 

It is anticipated that many more such experi- 
ments will be reported in the near future as there 
are many brojects on the way. Appendix 3 lists 
some of these projects for which information could 
be found. Ralston has constantly advocated cur- 
riculum reform at all levels of Mathematics Educa- 
tion in order to reflect the reality of today’s tech- 
nology and prepare individuals for future technol- 
ogy; in Ralston (1990), he proposes a framework for 
the school mathematics curriculum in 2000 which 
is highly dependent on the use of technology. Yet 
teachers receive their mathematics education from 
university mathematics courses in which they make 
very little use (if any!) of technology. How then 
can they be expected to realize the importance of 
technology in Mathematics Education? The reform 
must be spearheaded by the universities where t,here 
exists a greater latitude for experimentation. 

There is as yet little evidence that Symbolic 
Mathematical Systems have had a significant im- 
pact on the mathematics curriculum of secondary 
schools and universities. It appears that the domi- 
nant reason for this lack of impetus on the curricu- 
lum is the education of teachers and faculty, that 
is, the lack of experience in these systems by a large 
proportion of mathematicians. In the university set- 
ting there is no evidence to suggest that changes im- 
plemented by an individual in one section of a course 
will have any impact on the course as a whole un- 
less special effort is directed toward involving the 
majority of the faculty in a department. There are 
too many interests riding on the required introduc- 
tory mathematics courses to expect that innova,tive 
changes made by one individual will be able to per- 
meate the programme without the support from the 
majority of individuals in that department. 

In spite of the human and financial costs in- 
volved, there is no doubt that Symbolic Mathemati- 
cal Systems must be introduced into t,he mathemat- 
ics curriculum. They probably constitute the single 
most powerful force compelling change in secondary 

and university mathematics education in the near 
future. They offer unprecedented opportunities to 
deepen and revitalize mathematics courses, focus- 
ing more on concepts and ideas than on mechan- 
ical calculations. While it is true that Symbolic 
Mathematical Systems, whether on microcomput- 
ers or on hand-held calculators, can only become 
more powerful, more user-friendly and more widely 
available, they offer right now an exceptional po- 
tential for progress in the teaching of mathematics 
and there is no reason for mathematics educators to 
delay becoming seriously involved with them. For 
such an evolution to happen, experiments must be 
performed on a very large scale and results must be 
evaluated and widely disseminated. 

Appendix 3 contains a (partial) list of projects 
presently underway, in which Symbolic Mathemat- 
ical Systems are being used in the classroom both 
at university and secondary school level. Hopefully 
these projects can stimulate more mathematics ed- 
ucators to involve Symbolic Mathematical Systems 
in their daily teaching. 
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APPENDIX 1 

This appendix provides a list of some Symbolic 
Mathematical Systems software reviews. It is im- 
portant to realize that it is extremely difficult to 
evaluate and benchmark this softwa.re. Furthermore 

many of the evaluations do not take into account 
possible classroom use and the use by neophytes. 

a) The Notices of the American Mathematical Soci- 
ety (see reference P9 above) have recently included 
an individual review of most Symbolic Mathemati- 
cal Systems: 

Vol. 35, 1988 

The HP-Z’8S brings computations and theory back 
together in the classroom, Y. Nievergelt, 799- 
804. 

Supercalculators on the PC., B. Simon and R.M. 
Wilson, 978-1001. 

Mathematics - A review, E.A. Herman, 1334- 
1344. (Also: Other comments on Mathemat- 
ica, 1344-1349.) 

Vol. 36, 1989 

MicroCalc 4.0, G. Gripenberg, 680. 

The menu with the college education (A review of 
Derive), E.L. Grinberg, 838-842. 

Milo: The math processor for the Macintosh, R.F. 
Smith, 987-991. 

Milo, Sha Xin Wei, 991-995. 

PowerMath II, Y. Nagel, 1204-1206. 

More on PowerMath II, P. Miles, 1206-1207. 

Vol. 37, 1990 

Review of PC-Macsyma, Y. Nagel, 11-14. 

Review of True Basic, Inc. Calculus 3.0, J.R. 
Moschovakis, Y. Matsubara, G.B. White, 129- 
131. 

Derive as a precalculus assistant, P. Miles, 275-276. 

The right stuff, K. Devlin, 417-425. 

Almost no stu# in, wrong stuff out, J.D. Child, 425- 
426. 

Four computer mathematical environments, B. Si- 
mon, 861-868. 

Vol. 38, 1991 

Crimes and misdemeanors in the computer algebra 
trade, D.R. Stoutemyer, 778-785. 

Periodic knots and Maple, C. Livingston, 785-788. 

b) Other reviews are: 

Symbolic manipulation programs for the personal 
computer, K.R. Foster and H.H. Bau, Science, 
243, 679-684 (1989). 

Derive: A mathematical assistant, E.A. Herman, 
Amer. Malh. Monthly, 96, 948-958 (1989). 
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Mathematics: A system for doing mathematics by 
computer, L.S. Kroll, Amer. Math. Monthly, 
96, 855-861 (1989). 

Math without tears, C. Seiter, Mat World 8 (l), 159- 
165 (1990). 

Theorist, J. Rizzo, MacUser, 6 (6), 57-59 (1990). 

Mathematics: A system for doing mathematics by 
computer, A. Hoenig, Math. Intelligencer, 12 
(2), 69-74 (1990). 

Theorist, F. Wattenberg, Amer. Math. Monthly, 
98, 455-460 (1991). 

Review of Maple in the teaching of calculus, E.R. 
Muller, College Math. J., (to appear). 

c) Reviews of software and comments on experi- 
ments on their use in teaching can also be found 
in specialized newsletters. Some examples are: 

Computer Algebra Systems in Education Newsletter 
published by the Department of Mathematics, 
Colby College, Waterville, ME 04901, USA. 

Maths & Stats published by the CT1 Centre 
for Mathematics and Statistics (Computer in 
Teaching Initiative), Faculty of Education, 
University of Birmingham, Birmingham, B15 
2TT, UK. 

Computer-Algebra Rundbrief published by Fach- 
gruppe 2.2.1 Computer-Algebra der GI, c/o 
Dr. F. Schwarz, GMD, Institut Fl, Postfach 
1240, 5205 St. Augustin, Germany. 

APPENDIX 2 

This appendix provides a limited number of ex- 
amples to illustrate some of the capabilities of Sym- 
bolic Mathematical Systems (the system used here 
is Maple but this particular choice is not crucial). 
These systems are so powerful that it is impossible 
to provide a complete overview of their capabilities 
in a brief text. 

#The system can be used to do some elementary 
#number theory. For instance the command ifactor 
#returns the prime factorisation of an integer. 

::: ifactor( 123456780); 

w w2 (5) (47) (14593) 

#With such a toolavailable, it might be tempting to 
#venture into some calculations that are not 
#trivial to do either by hand or in a standard 
#computer environment. For example the prime 
#factors of the Mersenne number 267 - 1 were 
#given in 1903 by F. Cole. It reportedly took him 
#“three years of Sundays” to complete the 

#calculations. What can Maple do with that 
#number? 

::: ifactor(2”67-1); 

(761838257287)(193707721) 

#Done in just a fraction of a minute!! (But 
#needless to say it is very easy to give as an 
#input a number that would take “three years of 
#Sundays” for the system to do.) 
#Roots of equations can be found directly. 

::: y:= x-3-4*x-2-7*x+10; 

y:=x3-4x2 -7x+10 

::: solve(y=O,x); 

l,-2,5 

#Even with symbolic coefficients. 
::: z:= a*x^2-2*b*x+c; 

z:=ax'-2bx+c 

::: solve(z=O,x); 

112 
2 b+2 (b2 -a c)li2 

, a 

112 
2 b - 2 (b2 -a c)li2 

a 
#The example in Section 1 demonstrated that 
#these systems are able to compute limits and to 
#differentiate. They can also find Taylor’s Series, 
#sum jnite and infinite series and integrate 
#and solve differential equations. 

::: taylor(ln(x^2),~=1,4); 

2(x-l)- (x- 1)2 + 2/3 (x -1)3 + O((x - 1)4) 

::: sum(j^2, j=l..m); 

l/3 (m+1)3-l/2 (m+1)2+1/6 m+1/6 

::: int(x*3*sqrt(x^2-9),x); 

-3/5.(x2 - 9p2x2-54/5 (x2 - 9p2 

+1/5 (x2 - 9p2x4 

::: deq:= diff(x(t),t)*t^3+x=O; 

deq:=(ix(t)) t3 +x = 0 

::: dsolve(deq,x(t)); 

x(t)= exp(l/2 $)C 

#The next few examples are taken from linear 
#algebra, namely, the solution of linear 
#equations and some properties of matrices and 
#vectors. 

::: eqns:= a*x+b*y=e,c*x+d*y=f; vars:= x,y; 
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eqns:={ax+by=e,cx+dy=f} 
vars:= {x,y} 

::: solve(eqns,vars); 

{x = - 
bf-ed af-ce 
ad-cb' Y= ad-cb 1 

::: A:= array([[l ,a,a^2l,[l,b,b^2l,[l,c,c^211); 
A := array(1..3,1..3, 

11, a, a"1 

[l, b, b2] 

11, c, c”I> 
::: det(A); 

bc 2-b2c-ac2+a2c+ab2-a2b 

::: factor(“); 

-(- c+ b)(a- c)(a - b) 

#(The symbol ” refers to the previously 
#displayed expression.) 

::: al:= array([xl,yl,zl]); a2:= array([x2,y2,z2]); 
a3:= array([x3,y3,z3]); 

al := array(l..3, 

[xl, Yl, zll) 
a2 := array(l..3, 

[x2,Y2,4) 
a3 := array(l..3, 

[x3,Y3,z31) 

::: vol:= abs(dotprod(al,crossprod(a2,a3))); 

vol:=abs(xl(y2 23 -22 y3) 

+ yl(z2 x3-x2 23) 
+ zl(x2 y3-y2 x3)) 

::: a:= array([[l3,5],[5,2]]); 

a := array(l..2,1..2, 

[13,51 

PI 21) 
::: c:= eigenvals(a); 

c :=15/2+1/2 2211j2, 15/2-l/2 2211j2 

#The decimal approximation to these two 
#eigenvalues gives 

::: evalf(c[l]); evalf(c[2]); 

14.93303438 

.066965625 

APPENDIX3 

There is as yet no single source which can 
provide a comprehensive international listing of 
projects in the area of Symbolic Mathematical Sys- 
tems in Mathematics Education. Therefore, the fol- 
lowing list cannot be regarded aa comprehensive: 
1: The Swedish ADM project (Analysis of the role of 
the Computer in Mathematics Teaching); see Bjijrk 
(1987). 
2: The Research Institute for Symbolic Computa- 
tion at the Johannes Kepler University, Linz, Aus- 
tria. 
3: The Computers in Teaching Initiative Centre for 
Mathematics and Statistics (Development of class 
work sheets to be used with Derive), see the Maths 
& Stats newsletter published by the CT1 Centre, 
University of Birmingham, UK. 
4: A European Cooperation on the use of Computers 
in Mathematics; see Dechamps (1988). 
5: The National Science Foundation (U.S.A.) is 
funding a number of different university projects 
specifically directed at integrating Symbolic Math- 
ematical Systems into the calculus curriculum. The 
following is a selection providing a one line state- 
ment together with the university and the principal 
investigator. 

Developing a user friendly interface to Maple 
and incorporating use of system into teaching cal- 
culus, Rollins College, Winter Park, FL; Douglas 
Child. 

Developing new calculus curriculum using Maple 
on a VAX, Rensselear Polytechnic Institute, ‘Troy, 
NY; William Boyce. 

Developing a computerired tutor and computa- 
tional aid based on Maple, University of Rhode Is- 
land, Kingston, RI; Edmund Lamagna. 

Developing an electronically delivered course us- 
ing the Notebooks feature of Mathematics, Univer- 
sity of Illinois, Urbana, IL; Jerry Uhl. 

Developing a new calculus course emphasing ap- 
plications and using Mathematics, University of 
Iowa, Iowa City, IA; Keith Stroyan. 

Developing a laboratory based calculus course us- 
ing Mathematics, Iowa State University, Ames, IA; 
Elgin Johnston. 

Developing a new calculus course for liberal 
arts colleges using Mathematics, Nazareth College, 
Rochester, NY; Ronald Jorgensen. 

Developing calculus as a laboratory course us- 
ing MathCad and Derive, Duke University, Durham, 
NC; David Smith. 

Emphasizing computer graphics using Maple and 
emphasizing concepts via programming. in ISETL, 
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Purdue University, West Lafayette, IN; Ed Dubin- 
sky. 

Porting the laboratory calculus developed at Duke 
over to Mathematics, Bowdoin College, Brunswick, 
ME; William Barker. 

Collecting, teiting, and desktop publishing the 
best materials being developed using Mathematics, 
University of Michigan at Dearborn, Dearborn, MI; 
David James. 

More detailed informations about projects in the 
U.S.A. integrating Symbolic Mathematical Systems 
in the calculus curriculum can be. found in the re- 
ports contained in reference P8b above: Tucker, 
T.W. (ed.), P riming the Calculus Pump: Innova- 
tions and Resources. Mathematical Association of 
America (MAA Notes Number 17), 1990. 
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1. NEW POSSIBILITIES 
The computer is a mighty mathematical tool, 

not only for mathematical research, but even more 
in the process of applying mathematics and in the 
process of teaching and learning mathematics. In 
the following, we shall concentrate mainly on the 
new possibilities which the computer presents in the 
realm of calculus for users and future users of math- 
ematics. By a user we mean somebody who is in- 
terested in mathematics merely (or mainly) through 
the use of mathematical models (in particular calcu- 
lus models) to solve (extra-mathematical) problems. 
Future users of mathematics are, for example, en- 
gineering students, but even those learning calculus 
in schools as part of a general education may be 
included under this rubric. 

1.1 New possibilities for the user 
We describe first the changes in the mathemati- 

cal knowledge and habits of the user of mathematics 
induced by the availability of sophisticated math- 
ematical software to all who have to rely heavily 
on mathematical problem-solving such as engineers, 
natural scientists, etc. During the past decade we 
have seen the proliferation of mathematical software 
systems for personal computers which have become 
more powerful and/or more user friendly’. By rais- 
ing the standards in these two domains, such sys- 
tems are now in the hands of a rapidly growing num- 
ber of users, even if until now (1991) they have not 
yet reached the majority of the teachers of mathe- 
matics, at least at the secondary level. But, if the 
trend continues, not only professional users of math- 
ematics, but also most students and teachers will 
soon have regular access to such systems, However, 

1 A typical example might be the realm of com- 
puter algebra systems: In the progress from MU- 
MATH to Derive there has been a big gain in user 
friendliness, allowing the use of the system even by 
users reluctant to program, but - at the same time - 
with a certain loss in functionality, e.g. in the solv- 
ing of differential equations. On the other hand, the 
progress from MUMATH to Mathematics is mostly 
in power, much less in user friendliness. See also the 
chapter by Hodgson and Muller in this book. 

the integration into regular classroom teaching will 
still be a problem. 

The classic situation of the user of mathemat- 
ics could be described - in a somewhat oversimpli- 
fied manner - as a huge amount of passive mathe- 
matical knowledge contained in monographs, hand- 
books, recipes. Traditionally, this knowledge could 
only be used by being activated through the active 
mathematical knowledge of the user himself or by 
direct cooperation between the user and a mathe- 
matically more knowledgeable person. In contrast 
to this, the mathematical knowledge contained in 
mathematical software can have a far more active 
character, e.g. in giving advice and help interac- 
tively, offering possibilities for exploratory experi- 
ments or answering questions, acting like a mathe- 
matical expert system. Even more common numer- 
ical software, which exists in the form of sophisti- 
cated procedures, is far more active than the recipes 
of the old-fashioned handbooks, since in many cases 
these procedures are in fact polyalgorithms: They 
decide with considerable expertise which particu- 
lar algorithm should be invoked, depending on the 
circumstances2. So the demand for mathematical 
knowledge on the part of the user has changed. The 
emphasis has shifted from detailed knowledge of the 
advantages and disadvantages of specific numerical 
methods and of the algorithms themselves to some 
meta-knowledge of the possibilities of numerical al- 
gorithms in general and their interaction with the 
concrete application situation. 

As an example let us look at the process of the 
solution of ordinary differential equations3. This is 
indeed an example of great importance since such 
equations appear in many applications and are at 
the heart of applicable elementary calculus. So if 
it is possible to master them at a more elementary 
level than hitherto was possible, this could even be 
regarded as the most appropriate goal for the teach- 
ing of elementary calculus at schools and colleges. In 
the education of engineers at technical universities 

’ cf. Rice [1983], e.g. p.291f. 
3 cf. Winkelmann [1984] and the chapter by Tall 

and West in this book. 

108 
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or similar institutions, where differential equations 
have always been part of the calculus sequence, even 
beginning calculus could concentrate more on appli- 
cations and so give the student a more realistic and, 
one hopes, a more motivating start. 

In the pre-computer age an engineer or scientist 
who had to handle differential equations was sup- 
posed to have detailed knowledge of diverse meth- 
ods for the analytic solution of various elementary 
types, to be able to master complicated analytic- 
algebraic formulas and to carry out lengthy error- 
free symbolic and numerical calculations. Now he or 
she can use software which has this knowledge and 
ability built in, since it can solve more elementary 
differential equations than a non-specialist mathe- 
maticiari cati do4. But in building up the model 
the user still has to understand fully the meaning 
and significance of the diverse quantities (variables) 
and of their derivatives and to be able to relate 
these to each other in order to set up the differential 
equation. And to give the details to the computer 
program, a thorough intuitive understanding of t#he 
mathematical meaning of the identifiers which ap- 
pear in the modeling equations is needed, be it as 
variables, parameters, initial values, names for (yet 
unknown) functions (dependent variables) and so 
on. If an analytic solution exists, the program will 
normally present it as a somewhat confusing lengthy 
expression which must be qualitatively interpret,ed 
to be understood, namely through looking for sim- 
pler special cases, for settings of specific parame- 
ters or initial values, for asymptotic patterns of be- 
haviour, etc. This process is guided by the intended 
interpretation of the solution in the context of t,he 
application model. If no analytic solution exists, t,he 
user may give his equation to some ready-made nu- 
merical software. In this case he needs some knowl- 
edge to make reasonable explorative choices of t,he 
values of parameters and initial values; there should 
be some experience with numerical phenomena (pit- 
falls of computations) and the ability to interpret 
the numerical and graphical output of t,he computer 
and to use this interpretation interactively for new 
choices of starting points for the next calculation. 

In total, there can be observed a specific shift 
in the spectrum of abilities, from precise algorith- 
mic abilities to more complex interpretations, so to 
speak from calculation to meaning, which in a cer- 
tain sense is a reversal of the historical evolution. In 
this process the mathematics to be mastered tends 
to become intellectually more challenging, but tech- 
nically simpler. 

4 cf. Watanabe [1984]. 

What does this mean for the mathematical ed- 
ucation of the future user? Of course, there is no 
direct way from the mathematical activities of the 
user to the teaching process; the goal must not be 
confused with the means. Understanding and abili- 
ties for complex interpretations can only be built up 
by personal involvement of the student; she has to 
do full (but simpler) examples in all the main steps 
herself, be it by hand-calculating, by using interac- 
tive symbolic systems or calculators or by program- 
ming in some suitable programming language. This 
seems necessary in order to get an awareness of the 
mathematical situations, even if such activities are 
no longer part of the final application process. And 
even if today’s sophisticated mathematical software 
need not and cannot generally be fully understood 
by the normal user, there must not be totally black 
boxes; a principal understanding of simple cases, of 
main ideas or of fundamental restrictions can be 
gained and seems necessary for proper use of the 
now ‘grey’ boxes5. 

On the other hand it is quite clear that extensive 
drill in formal calculations, in fluent structured pro- 
gramming or even in the handling of some software 
package cannot be justified in view of the changed 
qualifications needed by the user. 

1.2 New possibilities in the teaching- 
learning process I 

In the field of teaching methods the computer, 
if it has been loaded with the appropriate software, 
will function as a simplifying aid, almost as a su- 
per hand-held calculator which permits the pupil to 
overcome computational obstacles in the treatment 
of more complex problems and to handle more re- 
alistic applications, e.g. in dealing with larger ma- 
trices, in the numerical solution of differential equa- 
tions, or in the symbolic treatment of more com- 
plicated formulas; this will serve to widen the po- 
tential scope of mathematics education in terms of 
content. On the other hand, a computer equipped 
with appropriate languages and environments can 
become an instrument for solving problems in the 

5 Buchberger [1990] gives an argument for a much 
more strict procedure: first, the algorithms of the 
software have to be completely understood by the 
student; afterwards he may use the software for all 
calculations. But Buchberger has the algorithms 
of Computer Algebra and mathematical majors or 
computer science majors in mind; his arguments do 
not extend to numerical software and typical future 
users of mathematics. See also the somewhat more 
detailed discussion in the chapter by Fraser, Klingen 
and Winkelmann in this book. 
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hands of the student (interactive calculating or pro- 
gramming); in this case, the student tends to under- 
stand techniques more at the cognitive level, and no 
longer mainly at the level of skill. Beyond that, the 
computer, with its possibilities for illustration and 
symbolization, will provide opportunities for more 
comprehensive and rapid mathematical experiences. 

This presents problems and tasks as well as op- 
portunities for educators mainly on two levels. On a 
more technical level, there is the necessity to provide 
more suitable software with strong mathematical 
functionality, educationally sound help functions, 
user interfaces for the inexperienced user, and ac- 
companying explanations, hints and worked-out ex- 
amples for teachers. On a more fundamental level, 
the problem is to achieve a balance between the 
quantitative and qualitative relation of new and old 
goals and methods as well as to set up the right 
trends for future developments. 

The computer creates new opportunities for in- 
struction in analysis, e.g. 

l numerical and graphical illustration@, 
l more complex and more realistic applications, 
l a language in which to describe traditional cal- 

culus, 
l CAL (computer-aided learning) in its various 

forms. 
Some traditional motivations for treating con- 

ceptually exacting analysis in school can, however, 
no longer be maintained. For instance: 

l calculations such as finding extreme values or 
areas can be easily done without analysis, 

l practical applications in physics or technology 
which used to rely on analytic methods now are rou- 
tinely done numerically on a computer by discrete 
calculations. 

This results in a crisis: The legitimacy of tra- 
ditional analysis in school is challenged; educators 
will have to make clear to the general public, and 
the teacher will have to explain to his pupils how 
and why the treatment of continuous analysis still 
makes sense nowadays. 

In Section 3 we shall report on some experiments 
concerning the use of informatic tools in teaching 
basic mathematical courses at the Politecnico (Poly- 
technics) of Torino, Faculty of Engineering Sciences. 
We emphasize that the choice here has been to 
keep the teaching of calculus reasonably traditional, 
while at the same time giving some basic notions of 

6 See Tall [1986], the article by D. Tall in John- 
son/Levis [1987] and the chapter by Tall and West 
in this book. 

informatics in the main course of lectures and de- 
voting special laboratory sections to “calculus at the 
computer”. 

2. THE DISCRETE - CONTINUOUS 
INTERPLAY 

2.1 General considerations 
Although the role of applications of analysis has 

been changed both by the growing number of disci- 
plines using mathematical models and by new meth- 
ods, particularly the extensive use of computers, 
an understanding of fundamental concepts in which 
mathematizations take place remains indispensable. 
Examples are: 

l variable quantity, change 
l functional dependency 
l local rate of change 
0 average value 
0 accumulation. 
We shall refrain from discussing here how far tra- 

ditional mathematics education was able to attain 
the goal of teaching these. 

Now it is evident that these central concepts 
of mathematical applications can be implemented 
both by discrete and by continuous conceptual- 
izations. Corresponding to such continuous con- 
cepts as function, differential equation, derivative, 
weighted integral, and integral, are the correspond- 
ing conceptualizations in discrete analysis, namely: 
sequence and time series, difference equation, dif- 
ference, arithmetical mean value, and sum. These 
discrete concepts are often technically and almost 
always intellectually much simpler than their con- 
tinuous counterparts. 

In the following we will give some justifications, 
which are, in our opinion, crucial in answering the 
question now raised inevitably: “Why use the con- 
cepts of continuous analysis in teaching at all?” In 
(a) and (b), we state the problem, conceived as an 
epistemological question regarding the role of anal- 
ysis in applications and model building, and in (c) 
and (d) we introduce the argument which solves the 
dilemma. 

(a) Insuficiency of continuous analysis for ob- 
taining concrete numerical results. Let us recall 
some of the facts: Most integrations cannot be ex- 
ecuted analytically, but only numerically; this is 
all the more true for solving differential equations. 
Even tasks as simple as determining the extremes 
of a familiar function like 2 sin 2 require numerical 
methods. School mathematics has hitherto confined 
itself in a rather unnatural way to problems involv- 
ing classes of functions which were solvable by ana- 
lytic methods. It has paid dearly for this with heavy 
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losses in orientation to problems of reality, content 
and relevance. This is particularly true for classi- 
cal university courses in, for example, elementary 
differential equations7. 

(b) Most concrete models using analysis have a 
discrete basis. This is first evident in the social sci- 
ences or in population biology, where the quantities 
to be modelled are numbers of items or individuals, 
or monetary units, which cannot be subdivided at 
will. But in physics, too, for instance, most models 
start discretely: even disregarding the fact that the 
universe is finite in principle and structured in parti- 
cles, and that there are quanta (i.e. smallest unit#s), 
it is a fact for quantities which are usually conceived 
of as being continuous, and mathematized accord- 
ingly, that concrete models based, say, on results of 
measurements, will start as discrete models simply 
because continuous functions cannot be obtained as 
the results of a series of measurements which yield 
only discrete sequences or time series. (This does 
not hold, of course, for modeling based on theoreti- 
cal approaches.) 

(c) The continuous character of models using 
analysis is the result of the intended domain of valid- 
ity.8 Most mathematical models have a specific in- 
tended domain of validity, especially a certain scale 
level, even if this is not explicitly stated. A Ku- 
clidean line serves as a model for edges of solid bod- 
ies, e.g. of a shelf, only at a macroscopic scale. If 
we look at such an edge through an electron mi- 
croscope, the edge doesn’t look straight any more, 
and on the atomic scale, it loses its one-dimensional 
character too. Therefore, although the edge is well 
modelled by a line, we should not draw conclusions 
from this model outside its intended domain of va- 
lidity. In an analogue sense, calculus models of dis- 
crete real phenomena typically are only intended for 
phenomena at scales where the discreteness doesn’t 

7 This is properly described in Artigue [1989]. 
’ We have taken this argument from Rice [1988] 

who writes under the sub-heading ‘Verifiable Hy- 
potheses: Does Mathematics Model Reality?” : “. . 
we can argue that the real world is inherently dis- 
continous everywhere, its ‘microscopic’ structure is 
either discrete or random or both. In any case, 
the mathematical definition of continuity, deriva- 
tion, etc., do not apply because, at some fine scale 
of examination, the functions are undefined or dis- 
crete or something intractable. The implication of 
this view is that the concepts of smoothness and be- 
haviors of functions are related to a scale and that 
an adequate mathematical model must take this into 
account.” (p. 37). 

enter. Calculus concepts such as limit, derivative, 
integral are not to be interpreted in the strict math- 
ematical sense, but they express certain invariances: 
The corresponding discrete concepts do not depend 
on the step size, provided it is sufficiently small (but 
yet in the intended scaling domain). This consider- 
ation gives sense to the use of calculus models in 
such typically discrete domains as population dy- 
namics or economics. But of course, there are also 
models, which do not show such invariances in their 
intended scaling domain. These should not be mod- 
elled by calculus. Such situations arise in consid- 
erations about fractal phenomena: the length of a 
coastline (as a quantity of integral type) is typically 
not invariant with the measuring unit, but of course 
the assumed statistical self-similarity also holds only 
in a sensible scale, which certainly does not extend 
to the microscopic level. 

(d) The transition from models to concrete nu- 
merical results cannot be accomplished in general 
without continuous analysis. This is true, for one 
thing, because of the rounding errors which in- 
evitably occur in numerical computing, and have 
to be controlled by a more abstract model which 
does not include the discretization error. A second, 
deeper reason follows from a closer look at the dis- 
crete aspects mentioned in points (a) and (b): It is 
the case that the step widths used in (a) and(b) are 
basically independent of each other, as is to be ex- 
pected from the argument in (c). The density of the 
values measured in the measuring process is gener- 
ally determined by practical considerations such aa 
information content and “cost”. One of the most 
fundamental hypotheses for determining the step 
width is that a diminution of the step width may 
yield more exact results, but basically not results 
which differ in principle. The phenomena which are 
to be observed and/or described are considered to be 
invariant with respect to the step width used in the 
observations provided it is sufficiently small. This 
fits in with the assumption that the corresponding 
limits exist. It is only on the basis of this assump- 
tion that the measuring process can be carried out 
in a discrete way chosen by practical considerations. 
In this case, however, the phenomena concerned are 
basically invariant with respect to the step width, 
and are thus best described in mathematical models 
which do not explicitly contain a step width. The 
fact that the step width with which the measured 
data were obtained is only of marginal importance 
for the model explains why step widths used, say, 
to solve numerically the corresponding differential 
equations, will generally be completely independent 
of the step width used in measurement. Both are 

__---_ll_- -II---u-- ~-t”lt..l- ..I .-.- --I  ̂ ._ _-_ ...” __I__(_.__ ._.^ ._ l-l_l-.-__- 
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independently determined by practical criteria such 
as cost and the precision required. 

This fundamental consideration has been refor- 
mulated here for the special case where the results of 
discrete measurement are used as a starting point. 
It is true, in an analogous way, pointed out in (c), 
for all the other cases in which mathematizing and 
modeling is done by analysis. 

This behaviour is of course not valid for all math- 
ematical models in the sciences or other domains. 
But it is in a sense typical for calculus models: If 
this behaviour is not observed in a specific situa- 
tion, then normally we should really use discrete 
models, and if we - for technical reasons - neverthe- 
less use some calculus models, we should be aware 
of the improper use and of possible difficulties in in- 
terpreting results. This may happen for example if 
we try to consider “fractal” phenomena in nature, 
such as natural borders (of islands, leaves of trees, 
etc.). Here, for example, the application of formulas 
for the length of a curve does not make much sense. 

2.2 The context of dynamical systems 
Dynamical systems (systems of time-indepen- 

dent explicit first order ordinary differential equa- 
tions) appear as rather natural mathematical mod- 
els for many situations in a variety of disciplines 
such as the physical, biological or economic sciences. 
Here typically we have to distinguish between situa- 
tions where a natural step width exists whose value 
influences the phenomena, and situations in which 
this is not the case. In both cases, modeling with 
(discrete) difference equations is possible and ad- 
equate; but whereas in the former case, the step 
width of the difference equation has to be equal to 
that of the underlying situation, in the latter it may 
be chosen as a free parameter which suggests that 
the use of differential equations might be more nat- 
ural. 

As an example, consider the logistic growth of 
a (biological) population. If the generations of the 
population are distinct, as with certain bugs, there 
may be observed oscillations and fluctuations of the 
population, which are easily modelled and explained 
in the context of a difference equation, but would 
disappear in the transition to the corresponding dif- 
ferential equation (if it were not explicitly mod- 
elled by including a time lag which would induce 
similar fluctuations but would exclude the result- 
ing equation from what is normally considered a 
differential equation in mathematics). But if gen- 
erations are not distinct and population oscillations 
are slow compared to normal reproduction times, 
modeling with (logistic) differential equations seems 
adequate, even if there were only discrete points in 

time where new offspring could be noticed. 
2.3 Symbolical, numerical and qualitative 

solutions 
Linear differential equations, and some others 

which may be transformed to those, can be solved 
explicitly by closed formulas. From such formu- 
las one can - at least in principle - answer almost 
any question about the underlying dynamical sys- 
tem: asymptotic behaviour, stability and depen- 
dence on initial values and parameters. But this 
is the exception, not the rule, since most dynamical 
systems arising from model building are essentially 
nonlinear9 and do not admit any closed-form solu- 
tions. Numerical solution algorithms on the other 
hand are generally not sensitive to nonlinearity, but 
they share a double experimental character: in most 
cases, the degree to which they approximate the 
true solution can only be estimated, not proven”; 
and - more seriously - a numerical solution has a 
strict local empirical character. It does not by it- 
self allow any conclusions about other initial val- 
ues or parameters, which is catastrophic in applica- 
tions where such values are only estimated. So they 
necessarily need to be complemented by theoretical, 
usually qualitative considerations about possible be- 
haviours of this or a slightly modified dynamical sys- 
tem, be it continous or discrete. So this describes 
another complementarity between discrete numeri- 
cal and theoretical methods. 

3. EXPERIMENTS IN USING INFOR- 
MATIC TOOLS 

In this section we report on some experiments 
concerning the use of informatic tools in teach- 
ing basic mathematical courses at the Politecnico 
of Torino (Italy), F acuity of Engineering Sciences. 
These experiments refer in particular to the courses 
Mathematical Analysis 1 and Mathematical Anal- 
ysis 2 given to students of Mechanical Engineering 
in the years 1980 to 1983, using pocket computers. 
This activity was continued in 1984 and 1985, in 
the same courses, using such micro computers as the 
Sharp MZ803 and IBM PC. At this second stage, the 
experiment was concerned with a restricted number 
of students, selected on the basis of a test. 

The experiment was sufficiently successful so 
that since 1986 all the students of the course (about 
300) have been taught in the computer enhanced 
style. At the Politecnico of Torino an introductory 

’ For an interesting account of nonlinear model 
building see West [1985]. 
lo An exception is the so-called EEE-methods, see 
Kaucher/Miranker [1984], but use of these methods 
is not yet widespread. 
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computer laboratory is available for students; engi- 
neering students in the first two years have access 
to the lab after the completion of a specific course 
which prepares them for meaningful utilization of 
the available calculating devices and also supplies 
them with adequate knowledge of a programming 
language. 

Several instructors of the Engineering Faculty 
have experimented with the use of the lab as an aid 
to the basic first two years mathematics courses, and 
from the resulting experience two didactic strate- 
gies have emerged. One was for the students them- 
selves to perform the actual writing of the software. 
The other was to use existing software. It was ob- 
served that the preparation of software is, even from 
a mathematical standpoint, an occasion for investi- 
gation of the topic at hand. However, a certain risk 
was noted in the tendency toward interest in the 
computer itself to the detriment of time intended 
for dedication to mathematical reflection. 

As far as concerns the use of already available 
software packages, the possibilities are many. We 
have readily available software written by colleagues 
instructing in analogous courses, that produced by 
students in previous courses, and, of course, soft- 
ware offered by the companies producing calculating 
devices. 

While we refer to Boieri et al.[1984], to Mascar- 
ello-Scarafiotti [1987], [1988] and to Mascarello- 
Scarafiotti-Teppati [1989] for the general aims, the 
list of the themes and the results obtained, we 
should like to detail here some of the topics and con- 
tent, and to add some final comments, as a ‘proof’ 
of what we asserted in Section 2. 

Let us begin by observing that, to carry out, the 
experiment in a useful way, it has been necessary to 
rely on basic informatic arguments. To this end, in 
the main course of lectures, the teacher, after giv- 
ing some notions of the theory of formal languages, 
then introduced machine-numbers and algorit,hms 
for floating-point arithmetic computations. At the 
same time, in this first part of the course, some 
proofs of classical analysis results were presented in 
computational form. 

One of the most important experiments con- 
cerned the study of dynamical systems using micro- 
computers. More specifically, we began in Mathe- 
matical Analysis 1 with the study of discrete dynam- 
ical systems, which was introduced after the study 
of sequences defined by recurrence formulas. As a 
natural continuation, in Mathematical Analysis 2 
we considered continuous dynamical systems, giv- 
ing a formal expression of the qualitative results. 
Finallv. we returned to the use of microcomm1ters 

to find numerical results; this was done in order to 
check the known results of the theory, and also to 
conjecture new results concerning open problems. 

To be specific, we briefly list the contents of 
the exercise sessions concerning dynamical systems 
(Mathematical Analysis 2): 

l Cauchy problem for first order ordinary dif- 
ferential equations; solutions at the microcomputer, 
comparing the methods of Euler and Runge-Kutta. 

l First order systems of ordinary differential 
equations, and in particular autonomous systems; 
visualization of the trajectories in the phase plane. 

l Second order ordinary differential equations; 
solutions on the microcomputer of some nonlinear 
equations of particular significance in applications, 
such as the pendulum and other equations of math- 
ematical physics. 

l A numerical approach and simulation on the 
microcomputer of the trajectories for some problems 
which are still open in their qualitative aspects, as 
for example the mathematical model of the Lorenz 
attractor. 

Now we present some further details of some of 
the above, which appear to us particularly signifi- 
cant from the didactic point of view. i) The stu- 
dent, knowing the classical analytic theory of lin- 
ear equations with constant coefficients, and having 
some basic notions of the stability theory, is invited 
to “solve” the equation 5 + I& + t = 0 on a mi- 
crocomputer and to visualize the trajectories in the 
phase plane (without any direct assistance from the 
teacher). Figures 1 and 2 show some drawings of 
the kind obtained by a student. 

Figure 1: For the equation i + 2 = 0, z(0) = 
3, i(0) = 0 the E u er 1 method converts what should 
be a circle to an outward spiraling curve. 
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Figure 2: The true solution to i + Z + 0.22 = 
0, x(0) = 3, i(0) = 0 is an inwards spiraling curve. 
The outward spiraling which results with the Euler 
method exactly compensates resulting in no spiral- 
ing effect. 

A discussion with the students followed concern- 
ing the validity of the results obtained in this way; 
particularly surprising is the second picture, where 
closed trajectories appear for k # 0. ii) The stu- 
dents “solve” on the microcomputer the pendulum 
equation &‘+sin z = 0 by the Runge-Kutta method. 
Figure 3 shows the drawing obtained by one student. 

Figure 3: Phase portrait of the undamped pen- 
dulum, 3 + sin x = 0 obtained by a student using a 
Runge-Kutta method. 

We can observe that the picture seems satisfac- 
tory from a numerical point of view. Some qualita- 
tive aspects of the solutions are underlined by the 
teacher, as a check of the known results from the 
theory. iii) The student is invited to simulate on 
the screen the trajectories of the equation of the 
Lorenz attractor: 
dx/dt = --sx + sy 

dy/dt = rx - y - zz with s= lO,r=28,b=8/3 
dz/dt = -b.z -I- xy. 

= A 

Figure 4: Plot of a curve approaching the 
Lorentz attractor as obtained by a student using the 
modified Euler method with x(0) = 0.00001, y(0) = 
0.00001 and r(O) = 0.00001. 

In Figure 4 there is a picture obtained by a 
student (the completion of the program required 
a certain informatic ability, due to the complica- 
tions arising from the 3-dimensional represent?tion 
of the trajectories in (x, y, z)-space). No compari- 
son was attempted with known qualitative results 
since the existing literature on the subject seems 
to be too far advanced for a second year engineer- 
ing student. However, a comparison was possible 
with what might be expected from the physical 
phenomenon (such as fluid turbulence phenomena). 
What it is very important to emphasize is that at 
this stage (end of Mathematical Analysis 2) students 
were able to evaluate correctly the results obtained 
from the computer, namely, to take into account 
the discrepancies which may occur between numeri- 
cal solutions and analytic solutions, keeping in mind 
that the final objective is the interpretation of the 
physical phenomenon. 

4. CONCLUSIONS 
Our considerations have shown that even today 

when internally discrete digital computers are used 
for hlndling calculus models (so far as applications 
are concerned), continuous analysis cannot be dis- 
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pensed with when describing problems for which 
analysis has been classically used. This, however, 
need not lead to the conclusion that analysis educa- 
tion at school or universities should go on as before. 
Our discussion has shown the function of continuous 
analysis in applications, and teaching must be done 
in such a way that this function is fulfilled. This 
requires that the transition from the discrete to the 
continuous model and vice versa be experienced by 
the students and that the respective particular pos- 
sibilities and limitations of the model be perceived. 
To us, it would seem dishonest to try to explain 
to the student the importance of analysis for appli- 
cations by means of unrealistic and oversimplified 
minimum-maximum tasks. Rather, it seems crucial 
to have the student at least begin to assess the use- 
fulness of the various components of the system of 
analysis, i.e. concepts, approaches, calculi, trans- 
lation schemes in practical applications. This goal 
should be attained by appropriate problem solving 
in the classroom; and formal explication should play 
a subordinate part. It remains to be seen how a 
balance between the individual components can be 
achieved. The following aspects, however, should be 
included in any case: 

a) The teaching of analysis should include the 
treatment and study of discrete models. This leads 
to numerical computations. It does not necessar- 
ily imply explicit teaching of numerical mathemat- 
ics, but requires including important basic numeri- 
cal facts such as propagation of errors. 

b) Building models is an important activity 
which must not be neglectsed in favour of just in- 
terpreting models. In particular, this means that 
the techniques of finding suitable functions are as 
important as discussing functions. 

c) The role and function of (continuous) calculus 
must be developed in an appropriate way. It cannot 
be used to obtain numerical results, save in excep- 
tional cases: it can, however, guide and direct the 
use of numerical methods. 

d) The recent development of computer science 
has established techniques, in part,icular program- 
ming languages, which permit the precise descrip- 
tion even of complicated processes such as, for in- 
stance, the algorithms necessary for symbolic dif- 
ferentiation. Mathematics teaching should increas- 
ingly make use of these results. 
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The human brain is powerfully equipped to pro- 
cess visual information. By using computer graph- 
ics it is possible to tap this power to help students 
gain a greater understanding of many mathematical 
concepts. Furthermore, dynamic representations of 
mathematical processes furnish a degree of psycho- 
logical reality that enables the mind to manipulate 
them in a far more fruitful way than could ever be 
achieved starting from a static text and pictures in 
a book or roughly drawn pictures on a chalk board 
or overhead projector. Add to this the possibility of 
student exploration using prepared software and the 
sum total is a potent new force in the mathematics 
curriculum. 

In this paper we report on the development of in- 
teractive high resolution graphics approaches to var- 
ious areas in mathematics. The first author has con- 
centrated initially on the calculus in the UK (Tall, 
1986, Tall et al, 1990) and the second is working 
in the USA on differential equations with John H. 
Hubbard (Hubbard and West, 1990). 

An interactive visual approach is proving suc- 
cessful in other areas, for example, in geometry (The 
Geometric Supposer, Cabri Ge’omttre), in data ma- 
nipulation (e.g. Macspin, Mouse Plotter), in prob- 
ability and statistics (e.g. Robinson and Bowman, 
1987) and, more generally, in a wide variety of top- 
ics (such as the publications in the Computer Illus- 
trated Text series, which use computer programs to 
provide dynamic illustrations of mathematical con- 
cepts). 

New approaches to mathematics 

The existence of interactive visual software leads 
to the possibility of an exploratory approach to 
mathematics which enables the user to gain intuitive 
insight into concepts, providing a cognitive founda- 
tion on which meaningful mathematical theories can 
be built. For example, the notion of a limit has tra- 
ditionally caused students problems (e.g. Cornu, 
1981, Tall and Vinner, 1981). The computer brings 
new possibilities to the fore; we may begin by con- 
sidering the gradient not of the tangent, or of a 
chord as it approaches a tangential position, but 
simply the gradient (or slope) of the graph itself. 
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Although a graph may be curved, under high mag- 
nification a small part may well look almost straight. 
In such a case we may speak of the gradient of the 
graph as being the gradient of this magnified (ap- 
proximately straight) portion. For instance, a tiny 
part of the graph y = x2 near x = 1 magnifies to a 
line segment of gradient 2 (figure 1). 

2 
f <x)=x 

L 

1 yl;. X128 7 
1.81 

LA!L 
A-.:, 

0.99 

0. 8 1 1.81 

X=1 

y=l 

Figure 1: Magnifying a small part of a graph to 
show its local straightness. 

To represent the changing gradient of a graph, 
it is a simple matter to calculate the expression 
(f(x + c> - f(x))/ c f or a small fixed value of c as 
c varies. As the chord clicks along the graph for 
increasing values of z, the numerical value of the 
gradient for each successive chord can be plotted 
as a point and the points outline the graph of the 
gradient function (figure 2). In this case the chord 
gradient function of sin z for small c approximates 
to cos 2, which may be checked by superimposing 
the graph of the latter for comparison. Thus the 
gradient of the graph may be investigated experi- 
mentally before any of the traditional formalities of 
limiting processes are introduced. 

Such moving graphics also enable the student to 
get a dynamic idea of the changing gradient. Stu- 
dents following this approach can see the gradient as 
a global function, not simply something calculated 
at each individual point. 

The symbols dx, dy can also be given a meaning 
as the increments in 2, y to the tangent. Better 
still, (dz,dy) may be viewed u the tangent vector, 
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a valuable idea when we come to the meaning of 
differential equations. 

f <x)=sinx 

from x=-n to ?I 

gradient function 

~f~r+c~-fCx~~/c 
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c=1/1e 
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Figure 2: Building up the gradient function of a 
graph. 

Conceptualizing non-differentiable functions 

In a traditional calculus course, non-differenti- 
able functions would not be considered until a very 
late stage, if at all. However, if one views a differen- 
tiable function as one which is “locally straight”, 
then a non-differentiable function is simply one 
which is not locally straight. For instance, the graph 
of Ix - 11 at z = 1, or Isinxl at x = 7r, has a “cor- 
ner” at the point concerned with different, gradients 
to the left and right. More generally, it is possible 
to draw a function that is so wrinkled that it never 
looks straight anywhere under high magnification. 

An example is the blancmange function bl(x), 
first constructed by Takagi in 1903. First a saw- 
tooth S(Z) is constructed for a real number x by 
taking its decimal part d = L - IX?(x) and defining 

s(x) = d ifd< $ 
1 - d otherwise. 

The sequence of functions 

h(x) = 4x1 
b2(x) = s(x) + 5(2x)/2 

b,(x) = s(x) + + s(2”-‘x)/2”-’ 

Figure 3: Building up the blancmange function 
adding successive half-size sawtooth graphs. 

The process may be shown dynamically on a vi- 
sual display unit; we regret that it cannot be pic- 
tured satisfactorily in a book. But higher magni- 
fication of the blancmange function using prepared 
software shows it can nowhere be magnified to look 
straight, so it is nowhere differentiable. This in- 
tuitive approach can easily be transformed into a 
formal proof of disarming simplicity (Tall 1982). 

Visualizing solutions of first order differential 
equations 

In graphical terms, a first order differential equa- 
tion dy/dx = f(x,y) simply states the gradient of 
a solution curve at any point (x, y) and a solution 
is simply a curve which has the required gradient 
everywhere. The Solution Sketcher (Tall 1991) or 
MacMath (Hubbard and West 1991) allows the user 
to point at any position in the plane and draws 
a small line segment of the appropriate direction. 
This line-segment may be marked on-screen and 
successive line segments fitted together to build up 
an approximate solution curve. More broadly, it is 
possible to draw a direction diagram with an array 
of such segments and to trace a solution by following 
the given directions (figure 4). 

dy/dx=-x/y 

d ,,/, --/-- -...-.-.,\, i mPr*owed 
step by step 

step 8.2 
x=-2.6107 

r=3.8315 

dy/dx 
=a.8612 

step “0. 188 

tends to the blancmange function (figure 3) 
Figure 4: Drawing a numerical solution of a first 

order differential equation 
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The differential equation 

has implicit solutions of the form x2+y2 = k, rather 
than an explicit global solution of the form y = f(x). 
At points where the flow-lines meet the x-axis, the 
tangents are vertical and the interpretation of dy/dx 
as a function fails, but the vector direction (dx, dy) 
is valid with dx = 0 and dy # 0. Thus a first-order 
differential equation is sometimes better viewed in 
terms of the direction of the tangent to a solution 
curve rather than specifying the derivative. 

Existence of solutions 

There comes a time in every university course 
on differential equations when honesty should com- 
pel the teacher to admit that cookbook methods for 
solving differential equations are inadequate. Such 
innocent looking equations as 

dy/dx = y2 - x, dy/dx = sin(xy), dy/dx = exy 

do not have solutions that can be written in terms 
of elementary functions. Students often mistakenly 
confuse this with the idea that the equations have no 
solutions at all. However, if they are able to inter- 
act with a computer program that plots a direction 
field and then draws solutions numerically following 
the direction lines, the notion of a solution takes on 
a genuine meaning: “Of course the equations have 
solutions: we can see them!” From this cognitive 
base it is possible to use the computer to analyse 
solutions in an entirely new way. 

Qualitative analysis of differential equations 

New forms of analysis emerge now that we can 
see as many solutions as we wish all at the same 
time. In figure 5, notice how the solutions tend to 
“funnel” together moving to the lower right-hand 
side; in the upper right they spray apart (an “an- 
tifunnel”). Qualitatively descriptive terms such as 
“funnel” and “antifunnel” can be defined precisely 
to give powerful theorems with accurate quantita- 
tive results (Hubbard and West 1991). For exam- 
ple, the equation dy/dt = y2 - t in figure 5 has two 
overall behaviours: solutions either approach verti- 
cal asymptotes for finite t or fall into the funnel and 
approach y = -I/? as t -+ +co. In the antifun- 
nel there is a unique solution approaching y = +& 
which separates the two usual behaviours. Further- 
more, the qualitative techniques enable us to esti- 
mate the vertical asymptote for a solution through 
any given point with any desired precision. 

Figure 5: A family of solutions of a differential 
equation, showing funnel and antifunnel behaviour. 

3 
PI I 1 !31Q 

(b) 
Figure 6: A numerical approximation to the 

many-body problem. (a) Masses in initial position 
with velocity vectors. (b) A little later under the 
action of Newton’s Laws. 
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Newton’s Laws 

The classical three body problem defies elemen- 
tary analysis, yet a computer program can cope with 
relative ease. The program Planets (Hubbard and 
West 1990) t k a es a configuration of up to ten bodies 
with specified mass, initial position and velocity and 
displays the movement under Newton’s laws (figure 
6). The data can be input either graphically with 
the cursor, or numerically in a table. The program 
allows exploration of possible planetary configura- 
tions and it soon becomes plain that stability is the 
exception rather than the rule. One may wonder 
under what circumstances stability occurs. Other 
questions arise, such as the reason for the braided 
rings of Saturn that were a great surprise when first 
observed by the Voyager space flight. Nobody had 
imagined such a behaviour beforehand, yet braided 
behaviour showed up in the very first experiments 
with the Planets program. 

Figure 7 shows a model of a possible orbit, of a 
tiny satellite around two larger bodies, alternately 
oscillating between revolving round one then mov- 
ing into a position of superior gravitational pull of 
the other and moving, for a time, to revolve round 
the other (Kocak 1986). Once again, computer ex- 
ploration shows vividly how three bodies move in a 
complex pattern. 

The theory of dynamical syst,ems and chaos 
is a paradigmatic example of a new branch of 
mathematics in which the complementary roles of 
computer-generated experiments to suggest theo- 
rems and formal mathemat,ical proofs to establish 
them with logical precision go hand in hand. 

Chaos has become not just a theory but also 
a method, not just a canon of beliefs but 
also a way of doing science. To chaos re- 
searchers, mathematics has become an exper- 
imental science, with the comput(er replac- 
ing laboratories full of test tubes and micro- 

scopes. Graphic images are the key. “It’s 
masochism for a mathematician to do with- 
out pictures” one chaos specialist would say. 
“How can they see the relationship between 
that motion and this, how can they develop 
intuition?“. (Gleick 1987, pp. 38-39) 

Systems of differential equations 

The MacMath software of Hubbard and West 
(1991) draws solutions of systems of differential 
equations dx/dt = f(x,y),dy/dt = g(x,y) in the 
I, y- plane and also locates singular points using 
Newton’s method, drawing separatrices for saddle 
points (figure 8). 

Figure 8: Locating singular points and separa- 
trices for saddle points. 

In this way the computer may be used to draw 
solutions of systems of differential equations that are 
far too complicated to draw by hand. As a further 
example, Artigue and Gautheron (1983) draw the 
solutions of the polar differential equations 

dr d0 
-=sinr,-=cos~ 
dt dt 

which exhibit limit cycles for T = kw (figure 9). 

Figure 7: A numerical plot represent,ing a tiny 
satellite orbiting two larger bodies. 

Figure 9: Limit cycles of simultaneous polar dif- 
ferent,ial equations. 
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Generalizing the concept of visual solutions 

A second order differential equation such as 

d2x -t z= 

no longer has a simple direction field in (t, x) space, 
because through each point, (t, x) there is a differ- 
ent solution for each starting direction u = dxjdt. 
However, this differential equation is equivalent to 
the simultaneous linear equations: 

dx 
dt=v 

dv -t ’ 
z= 

and in three dimensions, with coordinates (t, t, u), 
these equations determine a unique tangent vector 
(dt, dx, dv) in th e d irection (1, v, -t). Hence the idea 
of a direction field does generalize, but it must be vi- 
sualized in three-dimensional (t, x, V) space. Figure 
10 shows two solutions of the simultaneous differ- 
ential equation spiralling through (t, x, v) space and 
their projections onto the t-x and t-u planes, with 
the t - z projection giving solutions to the original 
second order differential equation. 

Visual exploration in geometry 

Euclidean geometry traditionally served to in- 
troduce students to a deductive system. In many 
countries (such as the United Kingdom) it has all 
but disappeared from the mathematics curriculum. 
Computers now give the opportunity to manipulate 
geometrical figures to build up intuitions for pos- 
sible theorems (the Geometric Supposer, Schwartz 
and Yerushalmy, 1985, Cabri Ge’omktre, 1987). The 
initial phase of study of geometry can now be an 
experimental science, in which the student can use 
the computer to construct a figure and experiment 
with it. 

Visual Data Processing 

It is now possible to explore data visually, for 
example, to see a line of best fit for data in two or 
three dimensions. MacSpin allows up to ten cate- 
gories of data, from which any three can be selected 

dx/dt=u 
dufdt =-x 

Figure 10: Two nearby solution curves for a pair 
of simultaneous differential equations. 

Figure 11: Cabri GCom&tre software for manip- 
ulating geometric figures. 

and displayed. Though only represented as a projec- 
tion of three dimensions onto the two-dimensional 
screen, the data may be rotated and viewed dynam- 
ically from any angle to give a sense of depth that is 
not visible in a static picture (figure 12). Individual 
points may be selected and inspected to see where 
the data originates to identify interesting informa- 
tion, such as outlying values. Rotating the data in 
the figure suggests that it clusters together in a way 
which intimates that the three components are cor- 
related. 

Modern spreadsheets, statistical packages and 
data handling packages now include visual repre- 
sentation of data which encourages the user to ex- 
plore and communicate complex information in vi- 
sual ways. 
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Figure 12: Manipulating data with three com- 
ponents to look for a visual correlation. 

The ability to present and manipulate informa- 
tion visually is becoming widely available in many 
different areas in mathematics. For example, Robin- 
son and Bowman (1986) introduce probability and 
statistics using computer graphics with the inten- 
tion of giving a ‘feel’ for probability distributions 
rather than elaborating mathematical detail. More 
generally, the Computer Illustrated Texts (starting 
with Harding 1985) are designed to use simple com- 
puter programs to provide interactive illustrations 
of mathematical ideas which can be explored by the 
student in place of static pictures in a book. 

Is programming essential? 

We have not explicitly mentioned programming 
for the purpose of gaining insight into mathematical 
processes. A body of expertise is growing in which 
students are expected to write or adapt short pro- 
grams (usually in structured Basic, Pascal, or Logo) 
to carry out mathematical algorithms. From here it 
is often intended that they move on to prepared soft- 
ware that uses the underlying algorithms in a more 
interactive manner. The early computer-illustrated 
texts assumed that the programming would be suf- 
ficiently simple that it would allow the student to 
modify the programs, but this became an impossible 
ideal in later texts as more sophisticated programs 
were written that were too complex for the user to 
modify. Programming requires a serious investment 
in time and effort. However, it can pay vast divi- 
dends in gaining insight into the underlying math- 
ematical processes if the investment is sufficiently 
generous. 

Dubinsky has evidence that having students 
make certain programming constructions (in the 
computer language ISETL) can lead to their making 
parallel mathematical constructions in their minds 

and thereby come to understand various mathe- 
matical concepts (see, for example, Dubinsky and 
Schwingendorf 1991). Clearly a spectrum of ap- 
proaches may be possible with varying amounts of 
programming, depending on the time and commit- 
ment available. 

New Styles of Learning 

Software is becoming widely available to give 
graphical representations in calculus, differential 
equations, geometry, data handling, numerical anal- 
ysis, and many other areas of mathematics. This is 
usually predicated on a new kind of learning ex- 
perience & one in which the student may explore 
and manipulate ideas, investigate patterns, conjec- 
tnre theorems and test theories experimentally be- 
fore going on to prove them in a more formal con- 
text. 

For instance, beginning calculus students may 
investigate the gradients of functions such as sine, 
cosine, tangent, exponential and logarithm, and 
conjecture their formulas before they are derived 
formally (Tall 1986, 1987). In differential equations 
they may explore problems at the boundaries of re- 
search (such as the rings of Saturn) and make the 
mental link between the friendly world of (mostly 
linear) equations that can be solved by formulas and 
the strange world of those (usually nonlinear) that 
can not (Hubbard and West 1991). 

This form of learning is not a replacement for 
formal deduction, but a precursor and a comple- 
ment to it. It enables the less able student to grasp 
essential ideas that would previously be too diffi- 
cult when framed in a purely formal theory and for 
the more able student to build a cognitive base for 
the formal theory to follow. It enables a wide range 
of students to integrate their knowledge structure 
through their powers of visualization. 
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ered as a source for information and references 
and not as a basic textbook. Although the 
title may sound as if the book is mainly for 
programmers concerned with preparing sort- 
ing routines, it virtually covers all theoretical 
aspects of programming. 

Kocak, H. [1986]: Phaser: Diflerential and Dif- 
ference Equations through Computer Exper- 
iments (for IBM computers), New York: 
Springer-Verlag. 

The classic entry into the field of experi- 
menting with differential equations. 

Koerner, J.D. (Ed.) [1981]: The New Liberal Arts: 
An Exchange of Views, New York: Alfred P. 
Sloan Foundation. 

A position paper followed by ten responses 
in which it is argued that analytic skills (e.g., 
statistics, computation, applied mathematics) 
are as crucial for liberal education as are tradi- 
tional literary, historical, and artistic studies. 
The computer “has altered the world in which 
the student will live as well as the manner in 
which he will think about the world.” 

Krivine, J.L. and M. Parigot [1990]: Programming 
with proofs, J. Inf. Process. Cybern. EIK 26, 
149-167. 

This is one of the recent articles which de- 
velop the idea that proofs and programs are 
basically the same object. Even though it is 
mainly written for readers with a strong back- 
ground in logic and computer science, it has 
deep insight on the subject. 

LSW [1990]: L an d esinstitut fiir Schule und Weiter- 
bildung (LSW), Soest (Hrsg.): Neue Medien 
im Unterricht - Funktionenplotter im Math- 
ematikunterricht. Soest: Soester Verlagskon- 
tor. ISBN 3-8165-1732-3. 

This issue on the use of function plotters 
in mathematics teaching at schools gives gen- 
eral considerations on the didactical criteria, 
possibilities and limits of such tools, some con- 
crete examples for the use at various places in 
the mathematical curriculum, and critical de- 
scriptions of some function plotters available 
in Germany. 

Malkevitch, J. et al., [1988]: For All Practical Pur- 
pose, San Francisco: W. H. Freeman. Also 
available as 26 videotaped TV programs. 

An innovative “general studies” secondary- 
tertiary course which shows students many 
current applications of elementary mathemat- 
ics and shows faculty how many new topics 
(often algorithmic) can be included in the cur- 
riculum. 

Mathematical Sciences Education Board [1990]: Re- 
shaping School Mathematics: A Philosophy 
and Framework for Curriculum, Washington, 
DC: National Academy Press. 

A detailed rationa1.e for changing school 
mathematics, building on research related to 
the role of technology and to the prpcess of 
teaching and learning. Summarizes (with ex- 
tensive references) the relevant research litera- 
ture; poses open questions; and outlines goals 
for curriculum reform. 

Maurer, S. [1984]: T wo meanings of algorithmic 
mathematics, Math. Teacher, 77, 430-435. 

Explains at length the difference between 
the traditional and contemporary meanings of 
algorithmic mathematics. The two main ex- 
amples are polynomial evaluation (mentioned 
briefly in Maurer’s article here) and Gaussian 
elimination for solving systems of linear equa- 
tions. 

Maurer, S. [1985] The algorithmic way of life is best, 
College Math. J., 16, 2-18 (Forum article and 
reply to responses). 

The author presents a deliberately force- 
ful argument for abandoning the traditional 
theory/computation schism in favor of an al- 
gorithmics synthesis. The article is followed 
by numerous thoughtful responses, some quite 
critical, and then a summary reply by the au- 
thor. 
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Maurer, S. B. and Ralston, A. [1991]: Discrete Algo- 
rithmic Mathematics, Reading, MA: Addison- 
Wesley. 

One of the most recent discrete mathemat- 
ics texts. It is intended for well-prepared first- 
year university students and stresses the algo- 
rithmic approach to discrete mathematics. 

Mines, B., Richman, F. and Ruitenberg, W. [1988]: 
A Course in Constructive Algebra, New York: 
Springer-Verlag. 

An example of what classical pure mathe- 
matics may look like if researchers take the al- 
gorithmic viewpoint to heart. Topics such as 
factorization in polynomial rings are treated 
by defining algorithms and proving them cor- 
rect. The review by Beeson (see references 
in Maurer, this volume) gives a thorough 
overview. 

Muller, E.R. [1991]: Maple Laboratory in a Ser- 
vice Calculus Course in L.C. Leinbach et al 
(eds.) The Laboratory Approach to Teaching 
Calculus, MAA Notes Number 20, 111-117, 
Washington, DC: Mathematical Association of 
America. 

Presents the development and implementa- 
tion of compulsory laboratories. Includes ex- 
amples of laboratory activities and provides 
data on traditional indicators (failure rates, 
etc.) and student attitudes. 

National Council of Teachers of Mathematics [1989]: 
Curriculum and Evaluation Standards for 
School Mathematics, Reston, VA: National 
Council of Teachers of Mathematics. 

A key document in America’s attempt to 
come from way behind in mathematics educa- 
tion. Contains a detailed set of standards for 
school mathematics, arranged in four groups 
(K-4, 5-8, g-12) g iving expectations and ex- 
amples in each curricular area. Builds on 
assumption of educating students for an in- 
formation society; advocates extensive use of 
calculators and computers t,hroughout school 
mathematics. 

National Research Council [1989]: Everybody 
Counts: A Report to the Nation on the Fu- 
ture of Matkematics Education, Washington, 
DC: National Academy Press. 

A call for action issued by the National 
Academy of Sciences to improve mathemat- 
ics education in the United States. Highlights 
human resource needs, learning through in- 
volvement, and curriculum priorities. Stresses, 
among other things, the way computers have 
changed priorities for mathematics education. 

Nievergelt, Y. [1987]: The Chip with the Col- 
lege Education: the HP-28C, Amer. Math. 
Monthly, 94, 895-902. 

Details the power of the HP-28C by pro- 
viding examples of its capabilities. Con- 
cludes that it “introduces one new element 
into the teaching of mathematics, namely aw- 
some computing power at both modest price 
and size”. (Which is even more true of the 
more recent HP-48SX.) 

Okamori, H. [1989]: Mathematics Education and 
Personal Computers, Tokyo: Daiichi-Hoki 
Shuppan. 

This volume is an excellent survey of com- 
puter use in mathematics education in Japan 
from kindergarten to university. It covers re- 
search and practice and includes a number of 
examples of problem solving in the real world 
(e.g. mathematics of a lake, road mathemat- 
its). 

Page, W. [1990]: Computer Algebra Systems: Issues 
and Inquiries, Computers Math. Applic., 19, 
51-69. 

An educational-philosophical survey arti- 
cle on issues of special importance to all who 
are involved with the instructional uses of 
computers in the mathematical sciences. 

Peressini, A. et al [1992]: Precalculus and Discrete 
Mathematics, University of Chicago School 
Mathematics Project, Glenview, IL: Scott, 
Foresman. 

The Chicago project has developed a high- 
ly innovative mathematics curriculum for av- 
erage students in grades 7-12. This book is 
the 12th year text. It includes algorithmics. 
There are several other innovative projects un- 
der way in America which will also result in 
texts. 

R.alston, A. [1981]: Computer Science, Mathemat- 
ics, and the Undergraduate Curricula in Both, 
Amer. Math. Monthly, 88, 472-485. 



An urgent appeal to mathematicians to 
recognize the fundamental mathematical re- 
quirements of computer science by giving dis- 
crete mathematics greater priority in early 
years of mathematical preparation. The be- 
ginning of a decade-long effort to establish dis- 
crete mathematics on an equal footing with 
calculus as an important foundation not only 
for computing but also for mathematics itself. 

Ralston, A. and Young, G.S. (Eds.) [1983]: The 
Future of College Mathematics, New York: 
Springer-Verlag. 

A report of the first conference at which 
discrete mathematics as a possible alternative 
to or coequal with calculus was considered. 
The papers discuss a wide variety of the rele- 
vant issues. 

Rice, J.R. [1988]: Math ematical Aspects of Scien- 
tific Software in J.R. Rice (Ed.): Mathemati- 
cal Aspects of Scientific Software, New York: 
Springer-Verlag and in The IMA Volumes in 
Mathematics and Its Applications, 14, 1 - 39. 

Fundamental but concrete aspects of math- 
ematics, applications and the new role these 
are taking when the users rely on ready-made 
mathematical methods. 

Robinson, J.A. [1965]: A machine-oriented logic 
based on the resolution principle, J. ACM 12, 
23-41. 

This book gives an account of the impres- 
sive breakthrough achieved by its author to- 
wards performing deductive reasoning by a 
machine. It includes the presentation of the 
formalism of predicate logic, a thorough expo 
sition of the resolution principle as well as a 
detailed account of a working computer pro- 
gram for showing “what follows from what”. 

Schmidt, Giinter (Ed.) [1988]: Computer im Math- 
ematikunterricht, Der Mathematikunterricht 
34, Heft 4. ISBN 3-617-24022-4, 19-42. 

A special issue of a German journal aimed 
mainly at high school teachers. This issue con- 
tains three articles discussing the impact of 
computers on mathematics learning, analysing 
software for mathematics teaching, and de- 
scribing a possible use of recursion in teaching 
calculus. 
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Steen, L.A. (Ed.) [1988]: Calculus for a New Cen- 
tury, MAA Notes No. 8, Washington, DC: 
Mathematical Association of America. 

A report of a conference whose papers look 
at the role of calculus and the teaching of cal- 
culus as we approach the 21st century. 

Stern, J. [1990]: Fondements Mathe’matiques de 

Tall, 

Tall, 

l’lnformatique, Paris: McGraw-Hill. 

This is an undergraduate textbook which 
covers computability, complexity, logic and the 
theory of regular and algebraic sets. It is a 
readable introduction to the main tools and 
concepts of theoretical computer science. 

D.O. [1986]: Building and Testing a Cognitive 
Approach to the Calculus Using Interactive 
Computer Graphics, Ph.D. Thesis in Mathe- 
matics Education, The University of Warwick, 
Faculty of Education. 

Combining mathematical, psychological 
and epistemological studies with the develop- 
ment of suitable software, important insights 
into the nature of the learning of the calcu- 
lus are gained. The work is not application 
oriented, but the attempt to build up a true 
understanding using discrete and continuous 
aspects serves the user of mathematics, too. 

D.O. [1986, 19901: Graphic Calculus I-III (for 
BBC compatible computers), London: Glen- 
top Press and, with P. Blokland and D. Kok, 
A Geometric Approach to the Calculus (for 
I.B.M. compatible computers), Sunburst, Inc., 
USA. 

Interactive, extremely well designed, and 
easy-to-use graphics programs for all sorts of 
calculus topics, including multivariable, with 
excellent manuals for students and teachers. 

Tall, D.O. [1987]: Readings in Mathematical Edu- 
cation: Understanding the Calculus, collected 
articles from Mathematics Teaching, 1985- 
1987, Association of Teachers of Mathematics, 
UK. 

These are among the earliest writings on 
the subject worldwide; they include many ex- 
cellent insights and suggestions. 

Tinsley, J.D. and van Weert, T.J. (Eds.) [1989]: 
Educational Software at the Secondary Level, 
Amsterdam: Elsevier. 
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Proceedings of a 1989 IFIP working confer- 
ence with many examples of educational soft- 
ware and discussions of the trends of software 
development and evolution. 

Wagon, S. [1991]: Mathemafica in Action, San Fran- 
cisco: Freeman. 

An example-based introduction to tech- 
niques, both elementary and advanced, of us- 
ing Mathematics for mathematical computa- 
tion and exploration. “An underlying theme 
of this book is that a computational way of 
looking at a mathematical problem or result 
yields many benefits.” 

West, B.J. [1985]: An Essay on the Importance of 
Being Nonlinear, Lecture Notes in Biomathe- 
matics 62, Berlin: Springer-Verlag. ISBN 3- 
540-16038-8. 

Fundamental aspects of nonlinearity, most- 
ly in the context of dynamical systems. A bit 
technical in some parts. 

Wilf, H.S. [1982]: The Disk with the College Edu- 
cation, Amer. Math. Monthly, 89, 4-8. 

An early effort to alert mathematicians to 
the power of symbolic computing systems- 
which are now much more powerful than those 
of a decade ago-and to the threat they pose 
for those who might continue the status quo 
in teaching undergraduate mathematics. 

Zimmerman, W. and Cunningham, D. [1990]: Visu- 
alization in Teaching and Learning Mathemat- 
Zcs, MAA Notes Number 19, Washington,DC: 
Mathematical Association of America. 

An authoritative collection from many ex- 
perts; topics include geometry, calculus, dif- 
ferential equations, differential geometry, com- 
plex analysis, linear algebra, iteration and 
stochastic processes. 

Zorn, P. [1987]: Computing in Undergraduate 
Mathematics, Notices of the American Math- 
ematical Society, 34, 917-923 (October). 

A careful analysis of issues-philosophical, 
pedagogical, practical-associated wit,h the 
introduction of computers and computer 
labs into undergraduate mathematics courses. 
Based on issues raised at a workshop of project 
leaders who are seeking to make these changes 
on different campuses. 
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