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Preface

The three-way interaction between mathemat-
ics, computers and mathematics education is be-
coming stronger each year. How schools and univer-
sities should respond is still an open question. This
document has been prepared to contribute to the
debate. The following quotation from the Overview
chapter states succinctly why this debate is so im-
portant:

We are facing a situation in which children
are taught to do mathematics in ways that
are very largely outmoded, with at least 80%
of curriculum time wasted on trying, more or
less successfully, to develop fluency in skills
of now limited value.

The International Comrnission on Mathemati-
cal Instruction (ICMI) undertook a study, “The In-
fluence of Computers and Informatics on Mathe-
matics and Its Teaching”, which included a con-
ference in Strasbourg, France in 1985, in which
UNESCO co-operated. The outcome of the Study
was a book published by Cambridge University
Press, bearing the conference title. With the
quick pace of change of computers, mathemat-
ics and its teaching, the book’s contents have be-
come outdated. The development of this new
document is explained in the Editors’ Foreword.

The reader will notice that the authors of this
document are all from Europe and North Amer-

ica. One might conclude that school uses of com-
puters are only known in those two regions. This
is certainly not true. But more abundant finan-
cial resources have permitted a greater penetration
of computers in schools and universities in Europe
and North America than elsewhere. For the situ-
ation in ‘the rest of the world’, see the reference,
“An International Perspective”, by Jacobsen in the
Annotated References.

Unesco wishes to express its appreciation to the
editors, Professors Anthony Ralston and Bernard
Cornu, to the authors for their contributions, to
Professor Ralston for preparing the final manuscript
and to Cambridge University Press for giving its
permission for UNESCO to include in this docu-
ment some updated contributions from the original
publication.

The views expressed in this report are those of
the editors or the individual authors and not neces-
sarily those of UNESCO.

We welcome comments on the contents of this
document, which should be sent to: Mathemat-
ics Education Programme Specialist (Science and
Environmental Education Section) or Mathemat-
ics and Computing Programme Specialist (Basic
Sciences Division), UNESCO, Place de Fontenoy,
75700 Paris, France.

UNESCO, Pans



Editors’ Foreword to Second Edition

In 1985 the International Commission on Math-
ematical Instruction (ICMI) chose The Influence of
Computers and Informatics on Mathematics and Its
Teaching as the topic of the first of a series of stud-
ies on topics of current interest within mathematics
education. ICMI could not have chosen a more apt
and important topic. In the seven years since the
publication of the first edition of this book, the im-
portance of calculators and computers has grown
rapidly and is now the single most important factor
in creating change in all aspects of mathematics ed-
ucation. Thus, ICMI with the cooperation of UN-
ESCO asked us to edit an updated version of the
original book which would retain the strengths of
that volume but would also bring the topics in it up
to date and, as well, incorporate topics which were
not adequately discussed in the first edition but are
now of major importance (e.g. symbolic mathemat-
ical systems, algorithms and algorithmics).

The conference at Strasbourg in 1985 whose pro-
ceedings were incorporated in the first edition was
organized by a Program Committee consisting of R.
F. Churchhouse (Cardiff), B. Cornu (Grenoble), A.
P. Ershov (Novosibirsk), A. G. Howson (Southamp-
ton), J.-P. Kahane (Orsay), J. H. van Lint (Eind-
hoven), F. Pluvinage (Strasbourg), A. Ralston (Buf-
falo) and M. Yamaguti (Kyoto). The proceedings
were edited by A. G. Howson and J.-P. Kahane and
were published by Cambridge University Press.

itl

For this edition the report of the Strasbourg
meeting itself has been brought up to date by the
leaders of the three workshops held at that meeting
and five of the articles in the first edition have been
updated for this edition. In addition, the editors
have solicited four new articles written just for this
edition. The result, we hope, is a volume which will
be as well received as was the first edition and which
will be useful to mathematics educators throughout
the world.

Of course, the nature of computer and calcula-
tor technology is that it changes so rapidly - as do
its implications for mathematics education - that
a third edition will no doubt be needed in several
years. But the current volume gives a fair picture
of the impact of computers and calculators on math-
ematics education in 1992. It should, therefore, pro-
vide a valuable resource for mathematics educators
who wish to learn about this impact or who wish to
incorporate the technology into their mathematics
teaching or their teaching of prospective mathemat-
ics teachers.

The editors wish to thank UNESCO for its sup-
port for this project, particularly Angelo Marzollo
and Edward Jacobsen.

This book was produced using TeX at the State
University of New York at Buffalo.

Bernard Cornu
Anthony Ralston

June 1992
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AN OVERVIEW

Hugh Burkhardt
University of Nottingham, U.K.

Rosemary Fraser
University of Nottingham, U.K.

The challenge

Where are we going? Where do we want to go?
Why? How do we know? How may we find out
more? How do we get it to happen?

As far as the influence of computers and infor-
" matics on mathematics and the mathematics cur-
riculum is concerned, these are the central questions
that this volume, like its predecessor, will address.

We shall also be concerned with progress in the
seven years since the original Strasbourg meeting.
Which aspects have moved quickly and substantially
towards reasonably firm conclusions? On which ar-
eas is the situation now little different from then?
What needs to be done about it?

A mismatch of timescales is one of the central
challenges of this field which does not normally oc-
cur in the processes of change, either within mathe-
matics itself or in the development of new curricula.
The pace of change in the technology is much faster
than has ever been achieved for school curricula;
typical timescales for significant changes to occur
are roughly as follows:

computer technology a few years
mathematics research 10 — 20 years
school curricula 5 — 20 years

Thus we should be aware that when we design new
curricula to use the power of new technology, we
shall continually be behind the times. This moving
target problem is well recognised but needs to be
addressed at a strategic level in planning change. If
the new curriculum elements are to be robust and
widely useful, the curriculum designer cannot as-
sume a specific level of technological provision and
sophistication in schools — both will vary widely
from time to time and from place to place.

This is important. If each student has a ‘micro’,
curriculum possibilities open up which are not there
with one micro per class; even these possibilities de-
pend on the sophistication of the micro - one line
of display, a few lines, many lines, graphics, access
to data — each step is significant. Equally, it is al-
ready clear that even quite low levels of computer
provision and sophistication still have enormous ed-
ucational potential. Is ‘technical restraint’ a virtue,
or does it impede progress?

The overall picture

It may be useful to begin with an overview of
the present situation in three separate domains of
activity:

A Doing Mathematics — this is the domain of math-
ematical activity; in every sphere, from everyday
uses to research, it has been revolutionised by
technology.

B Understanding of the Learning and Teaching of
Mathematics — this domain is concerned with
the processes of learning and teaching con-
cepts, skills and strategies in mathematics and
its applications; it is clear that technology has
profound implications here, both through the
changes in doing mathematics and as a potential
aid to learning and teaching, but these phenom-
ena are not yet well-understood.

C Mathematics Curricula and Teacher Training —
both the first two domains have implications for
curricula, including both materials and teacher
support; the development of new curricula that
reflect the changed learning objectives and use
technology effectively in their realisation is a ma-
jor task.

The pattern of change so far is summarised in
Table 1 on the next page.

We shall now discuss each of the three domains
in more detail.

Changes in ‘doing mathematics’

In Domain A we now have a situation in which
the changes in the way mathematics is done, at ev-
ery level from the shopkeeper to the research mathe-
matician and engineer, are moving purposefully for-
ward with the advances in the technology, and with
the methods for its utilisation that informatics helps
to develop. Obviously there is some time lag but,
at least in comparison with the exploitation within
mathematical education, there is no serious imped-
iment to change. The reasons are fairly clear

e those involved have a clear incentive to use the
new methods, which give them more power with
less pain

e and at relatively modest cost that is more than
made up for in increased effectiveness.
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A Doing

Mathematics

Where to
go? Why?

lots of ideas
+ well tried
experience

How do

we know?

many examples

work well

How do we
find out
more?

it will happen
because par-
ticipants have
incentives

How do we
get it to
happen?

it will happen
because par-
ticipants have
incentives

B Learning

and Teaching

lots of ideas +
a little exper-
ience growing
in patches

many effect-
ive examples

systematic
small-scale
studies in
realistic cir-
cumstances
+
performance
measures

more support
for system-
aticr & d

Table 1

C System
Change

very little
sign; even cal-
culators not
integrated

observation

enrichment
packages

+
whole ex-
perimental
curricula

study dynam-

ics of change
+

model ex-

periments

in realis-

tic circum-

stances

This progress is set out in some detail in the
present volume, not only in the introductory chap-
ters, but in the contributions of Steen and Stern,
and to a considerable extent in the other articles.
We shall therefore review it briefly and in general
terms — the other chapters bring these generalities
to life.

The changes in mathematics pervade the sub-
ject. The methods of first recourse in many areas

are now numerical and, particularly, graphical, al-
lowing an experimental approach with much less ef-
fort than in the past. Within mathematics most
areas have been affected: discrete mathematics and
combinatorics, number theory, algebraic and differ-
ential equations, finite groups, fractals and chaos, as
well as all aspects of data analysis — these have all
been profoundly changed; the papers in this volume
describe some examples. The role of algorithmics
is now central (see the chapter by Maurer). But
equally clear is the effect on other aspects of pure
mathematics — even the definitions of elegance and
the status of proof.

Realistic applications to practical situations
have suddenly become more accessible as the
drudgery associated with realistic numbers and
more realistic models is cut away. No longer is the
focus on extracting the maximum from the few ana-
Iytic models that are tractable by traditional meth-
ods.

Indeed, the role of such models in the future is
an important issue for both mathematics and the
curriculum. It seems likely they will continue to be
centrally important, not as methods of solving prob-
lems, but as vivid illustrations of important effects.
A closed algebraic expression displays, for those who
can read it, the dependence on all the variables in
the model — something which, if there are many vari-
ables, can be very difficult to communicate graph-
ically or numerically. (For example, the expression
for the response of a damped harmonic oscillator to
a sinusoidal driving force depends on five variables
— understanding the phenomenon of resonance from
numerical solutions alone is not easy).

Several of the chapters that follow are focussed
on the mathematical issues. Churchhouse’s review
ranges over the various fields and aspects of mathe-
matical activity, looking at the effects of technology
on the way mathematics is being done. Stern is
mainly concerned with the impact of computer sci-
ence rather than technology on the way mathemat-
ics is done while Steen introduces the perspective
of the computer as a ‘new mathematical species’.
Maurer addresses what is, perhaps, the central area
of change — the dominant place of algorithmic think-
ing and its implications.

Finally, a word of warning on the student as
mathematician. Largely because of the imitative
nature of the current curriculum, it is easy to get
a quite false picture of students’ capabilities. A ma-
ture mathematician has command of a range of con-
cepts and techniques (or knows where and how to
get such command) and uses them autonomously to
express and manipulate ideas and relationships to



get answers and understanding. There is clear evi-
dence that, on such criteria, students’ autonomous
performance is several years at least behind their
performance on imitative ezercises. The calculator
i1s a useful resource because teenage students can
already use arithmetic for a range of purposes; in
contrast it has been shown, for example, that even
very bright 17 year-old students may not use algebra
at all as an autonomous mode of expression, though
they have had 5 years of success in manipulating
it (Treilibs et al, 1981); so, for example, the bene-
fits of a machine that will manipulate in a language
_they do not speak fluently are elusive, and maybe
illusory.

The overall effect of these changes is well-
summarised by Mascarello and Winkelmann, in a
way that clarifies the challenge to designers of cur-
riculum:

“In total, there can be observed a specific

shift in the spectrum of abilities, from pre-

cise algorithmic abilities to more complex in-

terpretations, so to speak from calculation

to meaning, which in a certain sense is a re-

versal of the historical evolution. In this pro-
cess the mathematics to be mastered tends to

become intellectually more challenging, but

technically simpler.”

Changes in mathematics education

As to the other Domains, B and C, nearly all the
chapters that follow make suggestions for new cur-
riculum elements based on these new methods of do-
ing mathematics; readers will find many of these ar-
guments stimulating, and even persuasive. Changes
are surely needed and these suggestions seem better
grounded than most.

Nonetheless, it must be recognised that such sug-
gestions are fundamentally speculative at the level of
large-scale implementation — by which we mean that
converting them into a well-developed and tested
curriculum for the typical teacher and the typical
student is still a major challenge. This is the task
of Domains B and C. We can have no reliable idea
how far any suggestions we put forward will prove
feasible in any, let alone every, educational system.
Even if they are implemented reasonably faithfully,
the full curriculum reality of what occurs will con-
tain many surprising side effects; more likely, the
translation from an idea to a small scale pilot exper-
iment with exceptional teachers and facilities, and
then to large scale reality will involve critical dis-
tortions of the aims of the exercise which may even,
in the end, call into question its curriculum value.

Overview 3

Thus rigour and vigilance are needed in this devel-
opment process.

In case there are any who believe that we exag-
gerate the dangers, let me draw attention to a few
famous examples of intended innovations in mathe-
matical education which turned into something en-
tirely different:

The splendid Bourbaki enterprise was
launched (believe it or not (Weil, 1979)) to
establish a firmer foundation for mathemat-
ical education; few now see that as among
the positive contributions it has made, while
many are concerned at the effects of overem-
phasis on formalism that has arisen from this
approach in school mathematical education.

Smalltalk was originally devised by the Xe-
rox Learning Research Group largely to pro-
duce a medium, the Dynabook, that would
be ‘as natural to a child as pencil and pa-
per’ (Goldberg, 1978); what has emerged is
perhaps the most sophisticated graphics ori-
entated data management system so far —
an important achievement, but a very dif-
ferent thing. (The Learning Research Group
was renamed the Software Concepts Group.)
Smalitalk has not, at any rate, done any
harm to the school curriculum, and among
its offspring, the Macintosh microcomputer,
may yet contribute notably in a quite differ-
ent way.

Our final example must be the reform move-
ment in mathematical education of 30 years
ago ~ ‘new math’, ‘modern mathematics’ and
so on. Comparison of the initial aims agreed
at conferences, the pilot schemes in a few ex-
ceptional schools, and the classroom reality
of today shows the contrasts vividly. For ex-
ample, in England the applications of math-
ematics occupied a central place in the origi-
nal design; in most of the major courses that
emerged applications were mentioned only
to illustrate techniques with no serious at-
tention to the practical situations involved.
Equally, new mathematical concepts were in-
troduced but often with none of the payoff
that motivated their inclusion — because the
serious examples originally envisaged proved
too difficult for most students, and were re-
placed with trivial ones. The second wave of
reform over the last decade has been rather
more successful in remedying some of these
defects, but has left others untouched.

These are cautionary examples to bear in mind
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when looking at new possibilities; it is not easy to re-
alise the potential vitality of a field of mathematics
in large-scale curriculum implementation. (One can
easily imagine a vivid ‘commercial’ for the impor-
tance and excitement of a ‘new’ field like calculus;
compare it with the reality of a typical introductory
American college text.) That does not mean that
vivid, effective implementation cannot be achieved
- but success requires high-quality ‘engineering’ —
and some poetry as well as the facts. (We have ar-
gued that, if the English language curriculum were
like most mathematics curricula, the readings would
be drawn entirely from the telephone directory.)

On the learning and teaching of mathematics

Progress in Domain B continues at a steady pace
but, we would suggest, far too slowly to provide a
sound comprehensive underpinning for the new cur-
ricula that we need now. Some of this progress is
described in later chapters in this volume. These
developments and the associated research represent
deeper insights into the way technology can affect
and enhance learning and teaching, together with
some elements of curriculum that can be and have
been used successfully in classrooms. They have
rarely been tested on a large scale and thus repre-
sent only firm steps along the road towards the new
curricula (Domain C). Let us begin by looking at
some general effects in technology-related change.

In looking at curriculum reform, the first thing
to note is the scale of it — perhaps 80% of current
school classroom time is devoted to seeking fluency
in a range of pencil-and-paper technical skills, all of
which are now best done on computers of one kind
or another. This we call The Big Hole.

Secondly, the swing towards teaching mathemat-
ics that is “intellectually more challenging, but tech-
nically simpler” takes both teachers and curriculum
designers into areas outside the basis of their ex-
perience — thus such curriculum design should be
essentially a research-based exercise, if it is to work
well. It relates not only to content but to learning
and teaching style. Everywhere the curriculum is
still based on student imitation (e.g. HMI, 1977),
dominated by:

teacher explanation +

illustrative examples +

imitative exercises.
This can lead to rapid apparent student progress,
but much research evidence (see Bell et al, 1983)
shows that the skills acquired are not reliably re-
tained by most students, nor are they transferable
- particularly to non-routine problems in the world

outside the classroom. Fig. 1, for example, shows
pre-, post- and delayed-test results of individual stu-
dents from comparable groups taught by two differ-
ent methods. The first ‘positive only’ method (a) is
traditional explanation and reinforcement by prac-
tice; the second ‘conflict’ method (b) is based on
students’ discussion and ‘debugging’ of errors gen-
erated by them from their own misconceptions. The
greatly improved long-term learning is stable across
different topics (Bell and Basford 1989).

Score
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To achieve the flexible competence of under-
standing that the world requires, the pattern of
classroom activities-has to be widened to include
some which give more autonomy, more initiative to
the students. It is encouraging that the microcom-
puter has shown great promise in supporting such
activities.

Thirdly, change is often threatening. Technology
appears to reduce this threat, partly because it pro-
duces an obviously new situation and thus cannot
imply criticism of the teachers’ existing modes of op-
eration. This more than compensates for the extra
barrier of learning to use the equipment — provided
it is reliable. Further, recent work on the teaching
of non-routine problem solving of a wide variety of
kinds shows the importance of the strategic skills of
comprehension, modelling, interpretation and eval-
uation — just the skills that are brought to the front
of our attention by the computer.

In summary, the two great springs for change in
mathematical education in the past and the next
decade are technology and autonomy. Fortunately,
they can help each other, though there is much to
be learnt as to how best it might be done.

However, conversely, we believe that it may be
important not to discount too easily the value of tra-
ditional skills, remembering that the current genera-
tion of innovators have the ‘traditional’ background,
as well as newly acquired skills with computers. Al-
. most certainly, much of what was learnt is useless
but we need to check for losses as well as gains in
a curriculum change. Mental facility with numbers,
graphs and expressions has always been an asset.
What is its status now?

Exploratory investigation as a key element in
the curriculum has been a major objective in En-
glish mathematical education for at least 30 years
- the Association of Teachers of Mathematics was
founded largely to promote it; in the USA, we know
that it has been a focus since Polya (1945) and offi-
cially central at least for a decade, since the NCTM
Yearbook on problem solving. However, despite
strenuous efforts it has not become a regular part
of the curriculum anywhere except in a tiny minor-
ity (less that 1 percent) of classrooms. We have a lot
of evidence and some understanding of how difficult
such activities are for the typical teacher to handle
in the classroom; appropriate support must be de-
veloped. Everyone rightly emphasises the curricu-
lum opportunities for exploration, for ‘experimental
mathematics’, that the computer provides; however,
the development of such an investigative element in
the curriculum will succeed only if it confronts the
difficulties such activities present for teachers.

Overview 5

Equally, the challenge to explore must be at a
level matched to the student - if the aim is to ‘dis-
cover’ in an hour or so some important mathemat-
ical achievement that took a genius half-a-lifetime
to create, the exploration will have to be so closely
guided as to be essentially fake; on the other hand,
interesting, though less global, problems which stu-
dents can tackle autonomously on their own re-
sources, do exist at every level. For example, pro-
gramming projects, at school and university, have
shown some of the possibilities, and the difficulties
for the teacher. A creative and systematic program
of detailed empirical development will be essential if
exploration is not to degenerate in most classrooms
into that closely guided ‘discovery learning’, which
is really an alternative style of explanation. The
computer can, of course, help.

ILLUSTRATIONS OF
APPLICATIONS

MATHEMATICAL

TOPIC

MATHEMATICAL
AND OTHER SKILLS

SITUATION

OF

INTEREST

Figure 2

The emphasis on problem solving encourages ap-
plications of mathematics ~ even some with real
data. It is important to note two different kinds
of application, the illustrative and the situational
(see Fig. 2, from Swan 1990). In illustrative appli-
cations the focus is really on the particular mathe-
matical topic; the applications are there in support -
to help conceptual understanding through concrete
illustration, to show how mathematics can be ap-
plied, and to provide practice. In realistic, practi-
cal situations from outside mathematics the posi-
tion is quite different ~ in principle, any or all of the
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mathematics you know could help you to tackle the
problem, along with other knowledge and strategic
skills. Both these kinds of application are needed
~ but the student must know which ‘game’ is being
played, because the best tactics are quite different.
For illustrative applications the aim is to show how
much mathematics you know; for situations, it is
to provide the most powerful understanding of the
practical problem.

Finally, assessment — in arriving at a curriculum,
assessment can be very helpful in clarifying cur-
riculum definitions, particularly by example. What
range of types of tasks do we want our students lo
be able to do? Tt can be argued persuasively that a
task-defined curriculum has great advantages over a
‘scope and sequence’ approach, though the two are
complementary — one being synthetic and the other
analytic.

The chapters that follow range widely over this
field, complementing analysis with the essential
vivid exemplification which we have had to exclude
from this overview. Ralston’s review takes a look
without prior assumptions (‘zero-based’) at what
the curriculum should contain. The criteria include
value to the student and, related, the way mathe-
matics is done nowadays together with lessons from
the psychology of learning. Cornu’s review covers a
wide range of roles for the computer in enhancing
teaching and learning — Computer-assisted Learn-
ing is as diverse as Paper-assisted Learning. The
remaining chapters that follow present a kaleido-
scope of key aspects of computer use in learning and
teaching. Tall and West explore and illustrate the
visual aspects of learning and the contributions that
computer graphics can make. Hodgson and Muller
look at the other major shift enabled by the tech-
nology — automated symbolic manipulation. Graf,
Fraser, Klingen, Stewart and Winkelmann take a
broader look at the various modes of use of tech-
nology in school and the potential of each in the
elementary school; both computers and calculators
are discussed. Steen takes a similar approach to
college mathematics — where the issues range from
the place of discrete mathematics to computer lit-
eracy for all students. Seidman and Rice, and Mas-
carello and Winkelmann look in a most stimulating
and practical way at a related central problem — the
integration of discrete and continuous mathematics
within a college course.

All of these show what has been achieved in Do-
main B — in realising, on a pilot scale, something
of the enormous potential of computers and infor-
matics in enhancing the learning and teaching of
mathematics. They also set targets for future de-

velopment.

New mathematics curricula

The lack of progress in Domain C is the major
mismatch between intentions and outcomes over the
last seven years. It is notable that even the use of
simple calculators has not been fully integrated into
the curriculum in any country in a way that realises
their known potential for enhancing mathematical
performance (even on traditional skills!).

The reasons are less clear than is sometimes
thought by those who ascribe it simply to teacher in-
ertia and/or parental opposition. Certainly, teach-
ers and other educators do not have the direct in-
centives that the use of the technology provides
for those doing mathematics. It does not so obvi-
ously promise to increase their power as profession-
als, or to make their lives easier or more reward-
ing. Rather, it makes obsolete a large part of the
standard professional work of mathematics teachers
and threatens them with, at least, a need for new
skills, both mathematical and pedagogical. Equally
parents and others tend to believe that their own
education remains valid — after all, look what it has
done for them!

However, when one compares the support offered
to teachers to make these changes with that which
they routinely receive simply to sustain the current
curriculum, the contrast is stark. The textbooks
and other materials are not comparable, or often
even available. Retraining is sparse, as is coher-
ent explanation of what is being attempted, and
why. The temptation to blame the lack of change on
teachers is not only misguided but fruitless — they
are who they are. It is up to those who seek change
to find, and to deliver, an effective and appropriate
mixture of pressure and support.

We have evidence that teachers actually welcome
change, provided they are confident that the pace
and level of support is such that they can cope with
it without undue effort. As with many profound
curriculum changes, systems have so far failed to
provide any basis for such confidence.

In their chapter Cornu and Balacheff look at
the problems of the new pedagogy and how it may
be communicated to teachers in training, a key
area in Domain C. We already have evidence (see
Burkhardt, 1984, 1985) that the potential of the mi-
crocomputer for helping teachers to enhance student
learning presents a tremendous opportunity for cur-
riculum enhancement. The effects on the dynamics
of the classroom can be profound, but they are of-
ten subtle; for this reason there is a great deal still
to do before we have even a broad understanding of



what can happen in the various modes of computer
use in education.

We shall illustrate the sort of thing that may
be expected by describing one application that has
been developed and studied in some detail, and
which has proved particularly rich — the use by
the teacher of a single micro in the classroom, pro-
grammed to be a ‘teaching assistant’. We do so for
various reasons: It is less familiar to most people;
it brings out some general points about the over-
whelming importance of the people, teacher and
pupils, and of the dynamics of their interaction;
and it is particularly relevant to schools as we know
them because it seeks to enhance the performance
of a teacher working with a group of children in the
classroom in the normal way. It also only requires
one microcomputer per class rather than one per

child.

This mode of use, set out by one of us (Fraser,
1981), has been shown to have remarkable effects in
leading typical teachers in a quite unforced and nat-
ural way to broaden their teaching style to include
the ‘open’ elements that are essential for teaching
problem solving (Fraser et al, 1983, 1988). Since
this is a crucial aim that reformers have been trying
to achieve for at least thirty years with little or no
effect, this is a valuable result. It is worth explaining
briefly why these effects come about. First, the mi-
cro is viewed by the students as an independent ‘per-
sonality’. It takes over for a time a substantial part
of the teacher’s normal ‘load’ of explaining, manag-
ing, and task setting. These are key roles played by
every mathematics teacher. The micro takes them
over in such a way that the teacher is led into less
directive roles, including crucial discussion with the
children on how they are tackling the problem, pro-
viding guidance only of a general strategic kind -
counselling if you like.

These principles have been incorporated into
a range of teaching materials that enable typical
teachers to sustain in their classrooms, without ex-
ceptional effort, these learning activities of a more
open kind. This book is/full of other examples of
curriculum components that have been shown to
work well in typical circumstances, or can be devel-
oped to do so. It is also important to recognise that
there will be disappointments — or at least frustra-
tions — in the development process. In the last few
years there has been further progress to report in
the thorough, and imaginative, development of sub-
stantial curriculum elements. They illustrate what
can be done. The Journeys in Mathematics project
(EDC, 1991), funded by the National Science Foun-
dation, has developed a series of modular units that
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exploit the potential of computer support for the el-
ementary school mathematics classroom in a variety
of powerful ways. Similarly, The Power Series (UC-
SMP/Shell Centre, 1992) offers an effective element
in teacher development, through the support that
the ‘single micro classroom’ can provide in explor-
ing new, more open ways of working. There are now
many other ‘enrichment materials’ using the com-
puter to support learning, particularly those less-
routine activities that many teachers find difficult
to handle.

Full technology-integrated curricula, with mate-
rials to support them, are hardly available yet. If
there is an exception, it is a few new courses in
higher education, such as that described by Hodg-
son and Muller. There are early signs of moves
to develop materials to support complete curricula;
some of the latest round of NSF-supported projects,
for example Seeing and Thinking Mathematically at
EDC and a parallel project at TERC, have a strong
emphasis on technology.

It is interesting that all three examples quoted
above (and many others) use the computer as a ‘cat-
alyst for learning’ {Fraser, 1989) rather than as a
‘tool’ for doing mathematics or a ‘tutorial system’.

No one doubts that the computer as a tool is a
central element in the curriculum but the develop-
ment of curricula to realise this is slow. Of course,
the level of computer provision needed to make it
more than a passing experience is still beyond most
schools. It is interesting and ironic to remember the
pioneering work of the Computer Assisted Mathe-
matics Program (Johnson et al, 1966-68), in which
students learned mathematics in a Basic program-
ming environment; Kieren (1974) showed that far
more students got through to fluency in algebra in
this way — a result that has been confirmed but not
yet implemented anywhere. As we have noted, even
the simple calculator is far from fully integrated into
curricula.

Computer-based tutorial systems have contin-
ued to emerge, and to become more sophisticated,
sometimes embodying elements of artificial intelli-
gence of an ‘expert system’ kind. Apart from pro-
gramming itself, perhaps the first big idea for using
computers in mathematical education was in teach-
ing technical skills, particularly arithmetic. The ap-
proach followed the behaviourist teaching-machine
model. To provide effective teaching in this way has
proved a much harder problem than was expected.
We believe that it is still far from solution. It seems
that the computer-tutor can be effective in teaching
facts and straightforward techniques to people who
have little difficulty with them; so, of course, are
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other methods. However, despite great efforts by
some talented people, it has not so far proved possi-
ble to write programs which are successful in diag-
nosing and remediating students’ conceptual errors
underlying technical skills that they find difficult. It
remains true that tutorial systems have not begun
to tackle the main defects of the traditional (and
largely current) mathematics curriculum, still con-
centrating on automating those learning activities
(largely drill-based) that are both over-represented
and, on their own, ineffective.

The next steps

It seems from the above that Domains A and
B are making steady progress and that Domain C
presents the greatest difficulties — thus it seems that
further work on large-scale implementation should
become a priority over the next decade. There are
some small signs of movement in this direction in
various countries. However, the difficulty of achiev-
ing large scale change of any kind is often under-
rated, or at least neglected. It clearly needs empiri-
cal study of the dynamics of change in the education
system as a whole, with all the factors this brings
in. We already know far more about the benefits
that could flow from the use of technology (even
within current financial constraints) than is realised
in practice. Without attention to Domain C, this
mismatch will simply get worse.

What, specifically, are we to do about this?
This is not the place for a serious discussion of
methodologies of research and curriculum develop-
ment (Burkhardt, Fraser and Ridgway, 1990). Very
briefly, there is no proven successful answer but
some seem to be less susceptible to corruption of
outcomes than others. We believe that the essence
is an empirical approach - find out what actually
happens to your draft ideas in practice, in circum-
stances sufficiently representative of what you are
aiming for, and then revise the materials repeat-
edly until they work in the way intended. We have
found (e.g. Shell Centre, 1984) that such an ap-
proach, taken for granted in other fields, can com-
bine educational ambition with user-friendliness to a
level not achievable with more casual development.
Structured classroom observation makes a key con-
tribution to this approach, providing much richer
feedback than is often acquired in the development
of educational materials (Burkhardt, Fraser et al,
1982). However, more rigorous comparative evalu-
ation of alternative approaches is sorely needed. A
few more comments are made below.

It is important to ask of everyone in the sys-
tem, but particularly teachers, “Why should they

change?”. It seems (Fullan, 1980) that both pres-
sure and support are needed for effective change but
producing a balanced ‘well-engineered’ package that
works is still an unsolved problem. One lever for
change that cannot be ignored is the assessment sys-
tem,; if a system does not recognise, measure and re-
ward new curriculum elements then they will not be
taken seriously by many - WYTIWYG (what you
test is what you get). Pressure is often preferred by
politicians because it is less expensive than support,
so that an effective balance is destroyed.

The questions we have raised imply a great deal
of work, integrating research techniques with cur-
riculum development, before we have even a basic
understanding of the classroom potential that we
see so vividly illustrated in this book. Experience
suggests that, along the way, we shall find other
possibilities of at least as much promise.

In order to realise any of these possibilities, they
will need to be systematically developed in detail
with representative samples of teachers and stu-
dents, using structured detailed data from the class-
room.

Systematic research and development

The slow progress in B and, particularly, C
partly reflect a general problem in education — that
the level of expenditure on designing and developing
soundly-based changes is remarkably low; in Eng-
land and the US, for example, this ‘research and
development ratio’ is substantially less than 0.1% of
educational expenditure, whereas in other changing
fields such as medicine or modern industry it is typi-
cally between 5 and 15%. We believe that this arises
because education is still dominated by the ‘craft-
based’ approach, which assumes that experienced
professionals have satisfactory methods of handling
each situation that presents itself — that everything
is basically well under control.

This craft-based approach works well when two
conditions are satisfied:

the system is working satisfactorily
and
there is no expectation of major change

Otherwise it involves the extrapolation of reliable
experience beyond its domain of validity — always a
hazardous process.

In this respect the situation in education is
rather similar to that in medicine a century ago,
or engineering further in the past. There are signs
that the more systematic ‘research-based’ approach
(which now dominates the other two fields) is more



widely recognised as important in education, but
there is still a long way to go. No one would dream
of using a drug, or flying in an aeroplane, that had
only been developed and tested as sketchily as most
new (or, indeed, old) curricula. Nonetheless, the sit-
uation persists — perhaps because educational disas-
ters are much less immediately visible.

Some dismiss such arguments on the grounds
that teaching and learning are much more varied
and less controllable than engineering or medical
situations. Though this is true in some respects,
systematic observation of typical mathematics class-
.rooms (HMI, 1979) shows a remarkable uniformity
in delivering a curriculum that is inappropriate and
seriously impoverished by current standards. Simi-
lar results are observed in most countries.

The research and development ratio illustrates
how little serious attempt has been made in educa-
tion to work systematically to do better. The pro-
cesses of systematic development are either absent
or sketchy, particularly in the quality of feedback
and the typicality of the development environment.
The search for better development methods is al-
most non-existent. We believe that we are still es-
sentially leaping off cliffs, flapping ‘wings’ tied to
our shoulders — but nobody notices the mess.

These things need not be. So far from costing
money, they represent a potential source of large
saving in the overall operation of the education sys-
tem.

These considerations are not, of course, confined
to technology-inspired change. They are, however,
particularly acute in that circumstance because of
the pace of change needed. We are facing a situation
in which children are taught to do mathematics in
ways that are very largely outmoded, with at least
80% of curriculum time wasted on trying, more or
less successfully, to develop fluency in skills of now-
limited value.

In planning a systematic approach, we think it is
useful to distinguish different levels of research and
development in education. Studies at each succes-
sive level involve an order of magnitude more stu-
dents, and teachers, than at the previous one. Four
levels are:

L Learning — studies of student’s learning, the
nature of cognitive processes, difficulties and
misconceptions (10% - 10! children minimum)

T1  Teaching Possibilities ~ studies of different
kinds of stimuli and their effects on student
learning (10! - 102 children minimum)

T2 Realizable teaching — studies on what can ac-
tually be achieved with typical teachers under
realistic circumstances (102 - 103 children mini-
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mum)

C  Curriculum change on a large scale - studies of
how curriculum change can be effected and what
other school or social factors affect it? (10% - 107
children minimum)

All these levels are important, the earlier ones
contribute to a fundamental understanding of the
later ones. However, much more serious work has
been done at the early L and T1 levels; a more
balanced effort would be productive. The crucial
distinction between T1 and T2 is often not made.
At the T1 level the teacher variables are almost ir-
relevant — work there simply shows that there is a
teacher, usually a member of the development team,
who can make these things happen. At the T2 level,
curriculum developers face the challenge of show-
ing that a wide range of unexceptional teachers, in
normal circumstances of support, can also function
in the desired ways. Similarly, the C level brings
in all the variables that relate to the pressures on
the classroom from school and society, which are so
critical to the implementation of any change. These
distinctions appear to be important in the limited
impact of technology so far — and in doing better in
the future.

Acknowledgements

We have benefited from many conversations with
out friends in the ITMA Collaboration, particularly
Richard Phillips, Jan Stewart, Jim Ridgway and Jon
Coupland, and others around the world, particularly
David Tall and Tony Ralston.

REFERENCES

Bell AW, Costello J. and Kuchemann D. [1983]:
A Review of Research on Mathematical Educa-
tion, Part A: Research on Learning and Teach-
ing, Windsor: NFER- Nelson.

Bell A.W. and Basford D. [1989]: A conflict and in-
vestigation teaching method and an individu-
alised learning scheme ~ a comparative ezxper-
iment on the teaching of fractions, Notting-
ham: Shell Centre for Mathematical Educa-
tion; also Teaching for the Test, Times Educa-
tional Supplement, 27 Oct.

Burkhardt H., Fraser R. et al [1982]: Design and De-
velopment of Programs as Teaching Material,
London: Council for Educational Technology.

Burkhardt H. [1984): How can micros help
in schools?: research evidence, Nottingham:
Shell Centre for Mathematical Education.



10 Influence of Computers and Informatics on Mathematics and Its Teaching

Burkhardt H. [1985]: The Microcomputer: Miracle
or Menace in Mathematical Education in Pro-
ceedings of ICME5 (M. Carss, Ed.) Berlin:
Birkhauser.

Burkhardt H., Fraser R. and Ridgway J. [1990]:
The Dynamics of Curriculum Change in De-
velopments in School Mathematics Around the
World, Vol 2 (1. Wirszup and R Streit, Eds.),
Reston, VA: National Council of Teachers of
Mathematics.

EDC [1991]: Journeys in Mathematics, Scotts Val-
ley, CA: Wings for Learning.

Fraser R. [1981]: How to use Homo Sapiens in a
Computer Environment in Proceedings of the
1980 ADV Conference, Vienna: ADV; also
Design and evaluation of educational software
for group presentation in Microcomputers in
Secondary Education (J. Howe and P. Ross,
Eds.), London: Kogan Page.

Fraser R., Burkhardt H., Coupland J., Phillips R.,
Pimm D. and Ridgway J. [1983, 1988]: Learn-
ing Activities and Classroom Roles, Notting-
ham: Shell Centre for Mathematical Educa-
tion and J. Math. Behaviour, 6, 305-338.

Fraser R. [1989]: Introduction to Computers and the
Teaching of Mathematics (E. Dubinsky and R.
Fraser, Eds.), Nottingham: Shell Centre for
Mathematical Education.

Fullan M. [1980]: The Meaning of Educational
Change, New York: Teachers College Press.

Goldberg A. [1978]: Trends in Hardware and Sofi-
ware in Informatics and Mathematics in Sec-
ondary Schools: Impacts and Relationships,
1977 IFIP Conference (D.C. Johnson and J.D.
Tinsley, Eds.), Amsterdam: North Holland.

HMI [1979]): Aspects of Secondary Education in
FEngland, Report of the HMI Secondary Sur-
vey, London: HMSO.

ICMI [1984]: The Influence of Computers and In-
formatics on Mathematics and its Teaching,
L’Enseignement Mathmatique, 30, 159-172.

Johnson D.C. with Hatfield, L., Walther, J., La
Frenz, D., Katzman, P. and Kieren, T. [1966-
68]:  Computer Assisted Mathematics Pro-
gram, Glenfield, IL: Scott Foresman.

Kieren T [1978): Informatics and the Secondary
School Mathematics Curriculum in Informat-
ics and Mathemalics in Secondary Schools:
Impacts and Relationships, 1977 IFIP Confer-
ence (D.C. Johnson and J.D. Tinsley, Eds.},
Amsterdam: North Holland.

Shell Centre [1984): Problems with Patierns and
Numbers, a Module of the Testing Strategic
Skills Programme, Nottingham: Shell Centre
for Mathematical Education.

Swan M. [1990]: Mathematical Modelling for All
Abilities in Proceedings of ICTMA{, Chi-
chester, U.K.: Ellis Horwood.

Treilibs V., Burkhardt H. and Low B. [1981]:
Formulation Processes in Mathematical Mod-
elling, Nottingham: Shell Centre for Mathe-
matical Education.

UCSMP/Shell Centre [1992]: The Power Series (six
modules for the single micro classroom in the
elementary school), Chicago: University of
Chicago School Mathematics Project and Not-
tingham: Shell Centre for Mathematical Edu-
cation.

Weil, A. [1979]: History of Mathematics in Pro-
ceedings of the 1978 International Congress of
Mathematicians, Helsinki: ICM.



An Update of the 1985 Strasbourg Conference

The first edition of this book grew out of a conference in Strasbourg in March 1985. The attendees at
that conference divided themselves into three Working Groups on the subjects of The Effect of Comput-
ers on Mathematics, The Impact of Computers and Computer Science on the Mathematics
Curriculum and Computers As an Aid to Teaching and Learning Mathematics. The reports of
these three working groups formed the first three chapters in the previous edition. In this edition the leaders
of the three workshops have updated the reports which appeared in the previous edition. These updated
reports appear on the following pages. ‘

11



Part I
THE EFFECT OF COMPUTERS ON MATHEMATICS

R. F. Churchhouse
University of Wales, Cardiff, UK

1.0 Introduction

Mathematical concepts have always depended
on methods of calculation and methods of writing.
Decimal numeration, the writing of symbols, the
construction of tables of numerical values all pre-
ceded modern ideas of real number and of function.
Mathematicians calculated integrals, and made use
of the integration sign, long before the emergence of
Riemann’s or Lebesgue’s concepts of the integral. In
a similar manner, one can expect the new methods
of calculation and of writing which computers and
informatics offer to permit the emergence of new
mathematical concepts. But, already today, they
are pointing to the value of ideas and methods, old
or new, which do not command a place in contem-
porary “traditional” mathematics. And they permit
and invite us to take a new look at the most tradi-
tional ideas.

Let us consider different ideas of a real number.
There is a point on the line R, and this representa-
tion can be effective for prompting the understand-
ing of addition and multiplication. There is also an
accumulation point of fractions, for example, con-
tinued fractions giving the best approximation of a
real by rationals. There is also a non- terminating
decimal expansion. There is also a number written
in floating-point notation. Experience with even a
simple pocket calculator can help validate the last
three aspects. The algorithm of continued fractions
- which is only that of Euclid - is again becoming a
standard tool in many parts of mathematics. Com-
plicated operations (exponentiation, summation of
series, iterations) will, with the computer’s aid, be-
come easy. Yet even these simplified operations will
give rise to new mathematical problems: for exam-
ple, summing terms in two different orders (starting
with the largest or starting from the smallest) will
not always produce the same numerical result (see,
e.g., Churchhouse, 1980, 1985).

Again, consider the notion of function. Teach-
ing distinguishes between, on the one hand, elemen-
tary and special functions - that is, those functions
tabulated from the 17th to the 19th century - and,
on the other, the general concept of function intro-
duced by Dirichlet in 1830. Even today, to “solve” a
differential equation is taken to mean reducing the
solution to integrals, and if possible to elementary
functions. However, what is involved in functional
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equations is the effective calculation and the qual-
itative study of solutions. The functions in which
one is interested therefore are calculable functions
and no longer only those which are tabulated. The
theories of approximation and of the superposition
of functions - developed well before computers - are
now validated. The field of elementary functions
is extended, through the discretisation of nonlinear
problems. Informatics, too, compels us to take a
new look at the notion of a variable, and at the link
between symbol and value. This link is strongly
exploited in mathematics (for example, in the sym-
bolism of the calculus). In informatics, the necessity
of working out, of realizing the values has presented
this problem in a new way. The symbolism of func-
tions is not entirely transferable, and the attributes
of a variable are different in languages such as For-
tran, Lisp and Prolog.

In the sections that follow we look at some as-
pects of how computers and informatics have al-
ready affected mathematics and mathematical re-
search and present some thoughts on what future
effects might be seen. We do not claim that our
survey is comprehensive, especially so in the disci-
plines of applicable mathematics, but we hope that
it provides some pointers. In any event information
technology, in the widest sense, is advancing far too
fast for any predictions to be of value for a period
of more than a few years.

1.1 New and revived areas of mathematical
research

Computers not only provide a new tool in math-
ematical research and teaching. They are, at the
same time, themselves the source of new areas of
research. Not all of the research stimulated by the
availability of computers is in new branches of math-
ematics; some is of ancient lineage, going back to the
19th or 18th century, but open now to attack with
a weapon not available to Euler, Gauss, Jacobi, Ra-
manujan, etc. Who can doubt, though, that these
giants of the past would have exploited these new
possibilities with enthusiasm had they been avail-
able? It is one of the unique features of mathe-
matics that it is based upon a body of results that
never loses its value. Fashions and interests may
change, but the neglected subject of the last cen-



tury, or even of the last millennium, may prove to
be of new interest at any time when conditions are
right for its re-emergence. So the corpus expands;
nothing ever dies, though it may remain dormant
for centuries. In the age of information technology
we need to emphasize this fact, for it underlies ev-
erything that follows.

One of the most famous examples of mathe-
matical research being stimulated by the use of a
computer is the soliton (solitary wave) solution of
the Korteweg-de Vries equation by Zabusky and
Kruskal (1965), which was initially suggested by nu-
merical results. Continuing experimental investiga-
tions have indicated the existence of other, related,
solutions and theoretical research has provided a
substantial framework for investigating soliton so-
lutions of several nonlinear wave equations.

Another example is found in the work of Ya-
maguti, which may be summarized briefly by say-
ing that he observed continuous, but nowhere-
differentiable, functions via numerical experiments
on dynamical systems defined iteratively whose so-
lutions exhibit very chaotic behaviour. Particular
cases produce the Weierstrass function and the Tak-
agi function (see also the chapter by Tall and West);
the latter may be written

T(X) = if’“rb(")(){)

k=1
where
0<e<1/2
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and has recently been used in teaching elementary
analysis. Further research, in collaboration with
Hata on a family of finite difference schemes led to
Lebesgue’s Singular Function.

Among long-established branches of Pure Math-
ematics where computers have had a major impact
are Group Theory, Combinatorics and Number The-
ory. Many applications of computers in these areas
have been published in proceedings of conferences
(for example, Churchhouse and Herz (1968), Atkin
and Birch (1971), Leech (1970)).

The applications are already too numerous to
list in full or describe in detail but it is clear that
the search for sporadic groups, the investigation of
Burnside’s problem, the study of rational points on
elliptic curves, and the search for large primes would
be quite impossible without computers. The fac-
torisation of large integers is another example; al-
though intrinsically it is not an exciting topic it has
recently assumed considerable importance in rela-
tion to cryptography and public-key systems (Beker

Effect of Computers on Mathematics 13

and Piper, 1982). Many of these applications have
benefited considerably from the availability of pro-
gram packages specifically designed as an aid for re-
searchers in the field; the CAYLEY system for the
study of finite simple groups is a well-known exam-
ple. Another is the development of Symbolic Math-
ematical Systems (see Section 1.6 and the chapter
by Hodgson and Muller). Such systems relieve re-
search workers of a great deal of drudgery. Indeed,
they make possible manipulations which just could
not be done manually in any reasonable time or with
any valid hope of an accurate result. Another “old”
topic that has taken on a new lease of life is that
of continued fractions, both as providing approxi-
mations to real numbers and, in analytical form, in
numerical analysis.

The availability of colour graphics displays and
packages has opened up exciting possibilities for re-
search not only in geometry, modelling and fluid
flow but in less obvious areas such as analysis (see
the chapter by Tall and West). The study of the it-
eration of complex-valued functions has been trans-
formed recently; the complex nature of Julia sets
and their descendants is made beautifully apparent
by the use of colour graphics, even through much of
their mathematical nature remains unknown (see,
for example, Section 1.4 below).

It is clear to us that the computer is having, and
will continue to have, a significant impact on the
directions of mathematics research and on the way
in which mathematicians carry out their research.
Computers will not only be commonly used to arrive
at conjectures but also to assist in finding proofs.
In addition, some important questions are raised:
(i) How should computers be used to assist math-
ematicians in communicating their discoveries and
in keeping abreast of the research of others? and
(i) What are likely to be the intellectual and so-
cial consequences, so far as mathematics and math-
ematicians are concerned, of the widespread interest
in, and use of computers?

1.2 Proof

In mathematics a “proof” is, strictly, a chain of
deductions from the axioms; in practice, of course,
a proof is accepted if it makes use of results which
have themselves been deduced from the axioms, or
from other results, etc., etc. It would be possible,
but exceedingly tedious, to write out a proof of the
theorem that every positive integer is the sum of
the squares of four integers by starting from the ax-
ioms of arithmetic, but few people would regard this
as necessary and would accept various intermediate
steps - an identity of Jacobi, or representation of
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integers by binary quadratic forms - as valid rungs
on the ladder, since each of these steps is deducible
from other results which are deducible ..... from the
axioms.

Computers might be used in mathematical
proofs; they might, initially, suggest what is true
and, equally important, what is not, they might be
used for computations which are required in a proof;
they might be used - as in the proof of the 4-colour
theorem (Appel and Haken, 1976) - to examine all of
the finite set of cases, on which the truth of the the-
orem ultimately depends; they might even be pro-
grammed to find part of the proof by trying many
possible combinations of known axioms, theorems or
identities, though “combinatorial explosion” makes
such an approach infeasible except in very special
cases.

As examples, computers have been used to sug-
gest results in group theory, combinatorics, number
theory, coding theory and to support the truth of
conjectures such as the Riemann Hypothesis. For an
early survey article see Churchhouse (1973). Among
notable theorems which were initially conjectured
on the basis of numerical evidence are the Prime
Number Theorem (Gauss) and several important re-
sults of Ramanujan (1927) including the congruence
properties of the partition function and of the func-
tion 7(n). On the other hand Lander and Parkin
(1967) and a computer found that

275 4+ 84% 4+ 110° + 133° = 144°

and so disproved a conjecture of Euler that had
stood for nearly 200 years. One very specific re-
cent achievement deserves special mention viz: the
disproof by Elkies (1988) of the Euler Conjecture on
sums of fourth powers. Euler conjectured that (in-
ter alia) no fourth power could be the sum of three
fourth powers. Elkies however found that

(2682440)* + (15365639)* + (18796760)"
= (20615673)*

and went on to prove that not only are there an in-
finity of such counterexamples but, when expressed
as the representation of 1 as the sum of three ra-
tional fourth powers, the solutions are dense in
<0,1>.

Accuracy and reliability of the computations
should not be an issue today. Where a result is
sufficiently important or in doubt it can be checked
by someone else on a different machine; this has
been done on several occasions and if the result is
confirmed and, assuming that the underlying math-
ematics is correct, the result can be accepted with
considerable confidence, if not certainty. Computer-
assisted proofs need not be any more suspect than

purely human proofs; many false “proofs” - includ-
ing some of the 4-colour theorem - have been pub-
lished in the past; we do not believe that the com-
puter will increase the number of false proofs, quite
the contrary.

It is, of course, accepted that no amount of nu-
merical evidence constitutes a proof of a theorem
relating to an infinite set; the numerical evidence
may be misleading even for a very large set of val-
ues of the variables involved. A well-known example
from analytic number theory is Littlewood’s proof
(see Ingham, 1932) that despite all the numerical
evidence then, and even now, available

T dt
(=) 2 Int
(where w(z) indicates the number of primes less
than or equal to z) not only eventually changes sign,
but does so infinitely often.

A criticism of computer-assisted proofs - such as
that of the 4-colour theorem - is that they tend to
rely on brute-force and give little insight into why
the theorem is true. Unfortunately some results e.g.
finding large primes or factoring large integers in-
trinsically require such methods, and whilst it may
be true that a computer proof may bring little in-
sight, its very existence may inspire people to find
more elegant, shorter, or illuminating proofs.

Taking a longer-term view, the availability of
computer assistance may encourage mathematicians
to a more precise syntax and to express more for-
mally what is in their minds (de Bruijn, 1970). Such
a development may, in turn, aid the teaching of the
art of constructing proofs and so lead to the develop-
ment of “expert systems” to undertake a least some
aspects of mathematical work (including all the rou-
tine algebraic manipulation, computation, etc.), in
partial fulfillment of Leibniz’s dream of a rational
calculating device.

One final point: Since every proposition that is
provable has among its many proofs one of minimal
length and since the proofs of any given length are
(at most) finite in number there must be true theo-
rems of mathematics that cannot be demonstrated
by traditional discourse within the longest human
lifetime. It would appear then that there are math-
ematical theorems that can only be proved with the
aid of computers if we are unwilling to wait too long.

1.3 Experimentation in Mathematics

Certain branches of mathematics have always
been open to experimentation but the arrival of
computers means the scope for experimentation in
mathematics has been greatly increased. In some of



the sections above we have indicated cases where ex-
periments have been used to provide data on which
conjectures and, in some cases, theorems have been
based. Euler, remarking on the necessity of observa-
tion in mathematics, said: “The problems of num-
bers that we know have usually been discovered by
observation, and discovered well before their valid-
ity has been confirmed by demonstration ..... 7

The sheer speed of computers means that calcu-
lations which would once have taken a lifetime can
now be completed in hours, or even minutes. Add to
this the fact that the results can often, if required,
be presented in graphical form rather than as a list
of numbers and we see that the interpretation of the
experiments may be made much easier. The case of
the iteration of complex-valued functions illustrates
this point.

Of course, when a constraint is relaxed, there is
a danger of excess. The ability to perform calcula-
tions does not mean that everything can or should
be calculated. There is a balance to be struck and
this must be guided by experience - not to mention
the cost of the computations. The effort and cost
involved need to be combined with the probability
of success, in the sense of solving a problem or un-
covering some useful fact. Computation for the sake
of computation is not to be encouraged.

Although experimentation in pure mathematics
has its uses it is, perhaps, in the area of statistics
that it is particularly valuable. We take two exam-
ples.

Simulation

Even before the availability of the modern
computing technology, experimental sampling and
Monte Carlo methods have played a role in statis-
tics for studying the performance of statistical tech-
niques under the assumption of probability models.
The computer has enhanced this aspect on a large
scale. One famous example is the Princeton Ro-
bustness Study (Andrews et al, 1972) where sets of
estimators under a system of different modelling as-
sumptions are studied by means of computer simu-
lation. The results have stimulated new mathemati-
cal research into robust estimators (e.g. asymptotic
theory) but on the other hand they cannot merely
be interpreted as conjectures that can and should
be validated by mathematical proof, but they have
an importance in itself and have already influenced
the practice of analyzing data.

More generally, computers have given a ma-
jor impetus to the idea of mathematical modelling
wherein a physical or logical situation is embodied
in a mathematical model whose operation may then
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be simulated on a computer. Thus we no longer
need to place physical models in a wind tunnel but
instead simulate the model on a computer. Similarly
we do not have to build a new telephone system to
see if it works since we can first simulate the system
on a computer.

Exploratory Data Analysis

It is sometimes stated that the computer has led
to an unwelcome shift from hard thinking to a sense-
less computation of examples and experimentation.
A balanced picture would say that the computer
has led to broader variety of “types of rationality”
to approach problems and it is necessary to judge in
every situation which approach is more reasonable.

The classical paradigm for applying statistics is
to think first very hard and then construct a proba-
bilistic model and an adequate design for gathering
data. But this strategy is not feasible in quite a lot
of situations where little is known about the data
and the underlying system of interest. In connec-
tion with the numerical and graphical capabilities
of computers a new methodology of data analysis,
called Exploratory Data Analysis (Tukey, 1977), has
been developed. The computer has made it possible
to experiment with several models for a data set, to
construct a variety of interesting plots of the data to
gain insights into patterns, structures and anoma-
lies of the data and to develop conjectures concern-
ing the features of the system underlying the data.
Such a type of exploratory mathematics would not
be practicable on a large scale without using com-
puters.

1.4 Iterative methods

Methods of solving systems of linear equations
are traditionally divided into (i) direct and (ii) in-
direct, or iterative, methods. The direct methods
include Gaussian elimination, the indirect methods
include the Gauss-Seidel method. Direct methods
have the advantages (a) that they will always pro-
duce the solution provided that it exists, is unique
and that sufficient accuracy is retained at every
stage, and (b) that the solution is found after a
known number of operations. They have the disad-
vantage that very sparse systems of equations, such
as arise in finite difference approximations to differ-
ential equations, may become rapidly less sparse as
the elimination process proceeds so raising the stor-
age requirement from a multiple of n (for n equa-
tions) to something like n2. Iterative methods, on
the other hand, may fail to converge to a solution
and, if they do converge, it is not obvious how many
operations they will require to produce the desired



16 Influence of Computers and Informatics on Mathematics and Its Teaching

accuracy. They have, however, the very consider-
able advantages that they are very well suited to
computers and preserve the sparsity of the coeffi-
cient matrix throughout.

Direct methods of solution of nonlinear systems
are rarely available; there is, after all, no direct
method for solving the general polynomial of even
the fifth degree and so iterative methods are gen-
erally used. As in the case of linear systems, con-
vergence may not always occur, though conditions
sufficient to ensure convergence are usually known;
and although in some cases the number of iterations
necessary to produce convergence to a specified ac-
curacy may not be easily predicted, it is frequently
not a matter of great importance and, if time is lim-
ited, accelerating techniques can often be used.

The revival of interest in iterative methods
brought about by the use of computers has led to
significant advances in the study of functions which
are iteratively defined, e.g. by a relation of the type

Zn41 = F(Zn)

where Z; is a given complex number and the func-
tion F(Z) may contain one or more parameters.
Some functions of this type, such as

Zn+1 = Z?,-{-—C

were studied over 60 years ago by Julia (1918) and
Fatou (1919), but attracted relatively little interest
at that time. In the case where the function F(Z)
involves one complex parameter C and we define the
set of points K¢ to be those points Z such that the
iterated sequence of points given by

Z,F(Z),F(F(Z)),...etc.

does not go to co, then the boundary of K¢ is called
the Julia set associated with F(Z) and C. Only re-
cently, thanks to the availability of computers and,
particularly, of colour graphics terminals has the ex-
traordinary nature of these Julia sets and their nu-
merous spin-offs been appreciated. For example, the
Mandelbrot set is defined as the set of values of C
for which K¢ is connected. The relation above is a
fractal curve, the discovery of which, due to Man-
delbrot, has inspired a great deal of exciting and
attractive research by Douady, Hubbard and many
others (Devaney, 1989).

The enthusiastic study of fractals has grown very
rapidly in recent years and the ready availability of
high definition computer graphics has made it possi-
ble for schoolchildren, as well as teachers, to produce
a wonderful variety of exotic pictures based upon
iteration of simple functions of complex variables
(Peitgen et al, 1992). Even more recently the work

of Barnsley on iterated function schemes, which re-
sult in remarkably lifelike pictures of ferns and trees,
has aroused a lot of interest. The mathematical the-
ory of fractals is much more demanding than their
production on a computer but good progress has
been made here, undoubtedly inspired by the com-
puter graphics successes.

1.5 Algorithms

An algorithm is simply a procedure for solving
a specific problem or class of problems. The notion
of an algorithm has been around for over 2000 years
(e.g. the Euclidean Algorithm for finding the high-
est common factor of two integers), but it has at-
tracted much greater interest in recent years follow-
ing the introduction of computers and their applica-
tion not only in mathematics but also to problems
arising in technology, automation, business, com-
merce, economics, the social sciences, etc. (see also
the chapter by Maurer). Computer algorithms have
been developed for many commonly occurring types
of problems. In some cases several algorithms have
been produced to solve the same problems, e.g. to
sort a file of names into alphabetical order or to in-
vert a matrix, and in such cases people who wish to
use an algorithm will not only want to be sure that
the algorithm will do what it is supposed to do, but
also which of the several algorithms available is, in
some sense, the “best” for their purposes. An algo-
rithm which economizes on processor time may be
extravagant in its use of storage space or vice-versa
and the need to find algorithms which are optimal,
or at least efficient, with respect to one or more
parameters has led to the development of complex-
ity theory. Thus the Fast Fourier Transform has
reduced the time complexity of computing Fourier
transforms from order n? to order nlogn, which is
of considerable practical importance for large val-
ues of n. More recently the problem of designing
algorithms which can be efficiently run on several
processors working in parallel has attracted consid-
erable interest.

Algorithms which are ideal on a single proces-
sor may be highly inefficient, or even fail entirely,
on parallel processors. The search for algorithms
for the efficient solution of mathematical problems
on systems of parallel computers is a major area of
research and conferences on this topic are held regu-
larly. The problems are mathematically challenging
and are also of considerable practical importance.
With parallel computer systems now being readily
available, courses on parallel computing are being
taught at undergraduate level which, five years ago,
would have been possible in very few places.



A final point is this: the growing importance of
algorithms suggests an enlarged role for proof by al-
gorithm in which a constrictive proof of an existence
theorem is obtained by exhibiting an algorithm to
construct the object posited.

1.6 Symbolic Mathematical Systems

The possibility of using a computer to manipu-
late symbols, rather than numbers, and so provide
users with packages for algebraic manipulation and
indefinite integration was appreciated from the ear-
liest days of computers. Packages such as ALPAK

. and Slagle’s SAINT (Slagle, 1963) both date from

the early 1960’s. Not only were such packages avail-
able, they were used, Around 1960, Lajos Tokacs
used ALPAK to carry out some very tedious alge-
braic manipulation involving 1200 terms to find the
second moment in a problem in queueing theory, of
importance to Bell Laboratories. No one had had
the courage or energy to do this by hand. When the
second moment was finally found it reduced to just
three terms, after which a shortened mathematical
derivation was obtained and a general theory de-
veloped. Two points are worth noting: After the
brute- force use of ALPAK the nature of the solu-
tion inspired mathematicians to find a more elegant
derivation - in support of our remark in Section 1.2;
secondly, without the use of a symbolic manipula-
tion package it is unlikely that this work would have
been done at all.

Another early system, FORMAC, was utilized to
help with the solution of the restricted case of the 3-
Body Problem and, more recently, it has been used
to check that two 752-term polynomials, occurring
in the theory of plane partitions, are identical.

Some symbolic manipulation packages are gen-
eral, but many more are applications specific. We
have mentioned CAYLEY which is widely used for
the study of finite groups both at research level
and as a teaching aid. Other specific systems in-
clude MATRIX, REDUCE (Fitch, 1985), MAC-
SYMA (Pavelle and Wang, 1985); Maple (Char,
1988); Mathematica (Wolfram, 1988); many more
traditional algebra systems are surveyed in Pavelle
et al (1981). These are further discussed in the chap-
ter by Hodgson and Muller.

1.7 Computers and Mathematical Communi-
cation

Whilst it affords great personal satisfaction to
prove (or disprove, or conjecture) a result, the math-
ematical community only gains if that result is com-
municated to others. This communication may take
various forms (though the distinctions are not rigid).
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e epistolary - where A writes a letter to B
communicating the result;

e proscriptive - where A writes the result on
a wall (literal or metaphorical) for others to read;

e privately published - the usual form is a de-
partmental technical report, whose existence is an-
nounced;

o publicly published - journals or books.

This communication may be received either di-
rectly by the person who is going to use the result,
or indirectly.

The advent of computed-aided typesetting and
camera- ready copy has obviously changed the vi-
sual form of mathematical comunication (partic-
ularly the publicly-published) and its economics.
This has consequences for mathematicians (espe-
cially editors) who may need to read the input to
such type-setting systems. But computer technol-
ogy is capable of changing and is changing, far more
than this.

Epistolary. Computer networks have revolu-
tionized this method of communication by allow-
ing “letters” to be sent via electronic mail instead
of physical mail As more and more mathematicians
are linked by such networks, they will replace most
written communication.

Proscriptive. In addition to the physical no-
tice boards in one’s own department or elsewhere
on which one can place proofs (or, more likely, an-
nouncements of technical reports containing proofs),
computer networks distribute electronic “bulletin
boards” to various sites which “subscribe” to them.
In some areas of computer science in North America,
most results are announced on such bulletin boards.

Private Publishing. This is closely related to
the above. Such networks also distribute electronic
“newsletters” to individual subscribers, which often
contain lengthy articles in draft form, or state con-
Jectures or problems.

Public Publishing. This is the area whose
form has been directly least affected. Though there
1s talk of it, no serious refereed journals distributed
by electronic means exist.
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Part 11

THE IMPACT OF COMPUTERS AND COMPUTER SCIENCE ON THE
MATHEMATICS CURRICULUM

Anthony Ralston
SUNY at Buffalo, Buffalo, NY 14260, USA

2.0 The Changing Science of Mathematics

In this section we will consider how computers
and computer science should be causing changes in
the mathematics curriculum because of the chang-
ing importance of various branches of mathematics
wrought by computers and computer science (see
the chapter by Steen). One aspect of this change
is that increasingly the knowledge of mathematics
important to the user of mathematics is no longer
that of detailed knowledge but rather what might
be called “meta-knowledge” about the characteris-
tics and power of methods, often numerical, for the
solution of classes of problems (see the chapter by
Mascarello and Winkelmann). A related perspec-
tive is that computers have brought mathematics
much closer in philosophy to the classical natural
sciences where there has always been an interplay
between theory and experiment. Now mathemat-
ics, too, has a laboratory - the computer - on which
experiments can be performed which lead to the-
ories and on which theories can be tested. These
points should be kept in mind in what follows. Al-
though we shall not return explicitly to them, they
influence much of this section.

2.1 The Common Mathematical Needs of
Students in Mathematics, Science and Engi-
neering

(a) Preparation for University
Mathematics

To provide a context in which to discuss the im-
pact of computers and computer science on curricu-
lum and pedagogy, it is necessary to agree first, in
general, on the appropriate mathematics for the sec-
ondary school student (see the chapter by Graf et
al) and then to consider the university curriculum.
Since there are significant differences between dif-
ferent parts of the world on when secondary school
ends and university instruction begins, the com-
ments which follow will have to be interpreted in
the local context.

Algebra has traditionally been an important
subject in high school. Since elements of abstract
algebra are likely to become increasingly important
in mathematics education, it is clear that algebra
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will remain of central importance in the secondary
school curriculum. The important thing, however, is
not to have students achieve great manipulative skill
in algebra (e.g. in polynomial algebra) but rather
to teach them to consider algebra as a natural tool
for solving problems in many situations. Neverthe-
less, the ability to use formulas and other algebraic
expressions will remain necessary.

In recent years there has been a trend toward
replacing much of Euclidean plane geometry with
those aspects of geometry more closely akin to al-
gebra. This is useful as a preparation for university
mathematics but there is much feeling among math-
ematics educators that the loss of Euclidean geome-
try is a sad development. A consensus on how geom-
etry might best be taught at school and university
is not yet available. It should be noted, however,
that some computer scientists feel that the aspect of
traditional instruction in geometry concerned with
teaching the meaning and construction of rigorous
proofs can be achieved through material concerned
with the analysis and verification of algorithms (see
the chapter by Maurer).

For many parts of mathematics trigonometry is
useful preparation. But we note that much of the
tedious work which was necessary in the past, both
numerical and symbolic, can now be easily done on
hand-held computers.

Next we mention calculus. In many countries
this has been a secondary school subject for many
years for most university-bound students while in
other countries only the very best students begin
calculus in secondary school. The main thrust of
secondary school calculus has been to provide stu-
dents with techniques, and to prepare those intend-
ing to study mathematics at university with a first
introduction to the concepts they will encounter at
the university level. Since all the techniques of sec-
ondary school calculus as well as much of univer-
sity calculus can now be done on hand-held devices
or on symbolic mathematical systems (often called
“computer algebra” systems) on computers (see the
chapter by Hodgson and Muller), calculus at the sec-
ondary as well as university level must focus almost
entirely on concepts and not on computation.
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Various new subjects have become part of the
secondary school curriculum in recent years. Among
these is probability which has come into the cur-
riculum in many countries. Topics such as discrete
probability distributions, the binomial distribution
and related topics are appropriate. So too, is an
introduction to data analysis and elementary statis-
tics because of their importance in science as well as
mathematics. Another subject, about which there
will be further discussion below, which we would
like to see more of in the secondary school curricu-
lum, is discrete mathematics including elementary
combinatorics and graph theory as well as an intro-
duction to induction and recursion. In this connec-
tion it would be appropriate to introduce both the
design and verification of a number of important al-
gorithms such as those for sorting. Finally we note
that elementary linear algebra, particularly matrix
algebra and work with systems of linear equations,
should certainly be considered for the secondary
school curriculum.

(b) The University Mathematics
Curriculum

The core of the university mathematics curricu-
lum for many years has been the calculus and, to a
lesser extent, linear algebra. This is the case no mat-
ter how much mathematics the student may have
studied in secondary school. Computers themselves
have an impact on both the content of this curricu-
lum and its pedagogy. Not only do computers allow
more interesting and effective presentation of clas-
sical subject matter but, in addition, as with the
secondary curriculum, they affect what subject mat-
ter is important to students. For example, symbolic
mathematical systems suggest a deemphasis on the
more skill-oriented portions of the current curricu-
lum.

Informatics (i.e. computer science) itself also
implies changes in the content of the core curricu-
lum. This is essentially because informatics is a
highly mathematical discipline whose problems re-
quire almost universally the tools of discrete rather
than continuous mathematics. Thus, there is now
a strong argument to provide a balance in the
core curriculum between the traditional continuous
mathematics topics and topics in discrete math-
ematics (Ralston 1981, Ralston and Young 1983,
Ralston 1989). For university courses aimed at a
broad spectrum of mathematics, science and en-
gineering students, this balance may well contain
nearly equal portions of the continuous and the dis-
crete. For those courses aimed at specific student
populations, the balance might be weighted more
in the direction of the discrete for informatics and

social and management science students, might be
about equal for mathematics students themselves
and surely should be weighted more toward tradi-
tional continuous mathematics for physical science
and engineering students. It needs to be empha-
sized, however, that all groups of students need
some exposure to both the continuous and discrete
approaches to mathematics. Whether students are
exposed to calculus first and then discrete math-
ematics or vice versa will depend on the student
population and on institutional convenience.

The actual content of the discrete mathemat-
ics component is still quite variable. However, the
discrete component normally contains at least some
“traditional” discrete mathematics (e.g. combina-
torics, graph theory, discrete probability, difference
equations) as well as perhaps some abstract algebra
although the latter may follow in a later course after
completion of the core courses.

We note also the importance of mathematical
logic in the core university curriculum. Although
traditionally an advanced undergraduate or a post-
graduate subject (at which levels there will be a
continuing need for specialized courses), logic is so
important in informatics that it needs to be intro-
duced early in the university mathematics curricu-
lum. Moreover, with the increasing need for people
in the scientific and technical professions to han-
dle information in a precise manner, logic has great
value for a wide variety of students. Logic is an im-
portant constituent of many discrete mathematics
courses (see below). But it can also be considered
as a subject for a course by itself which would fol-
low the introduction in discrete mathematics. Such
a course can usefully be given a distinctive computer
flavor as described by Schagrin et al (1985).

As a final matter, we stress the importance of
using the paradigms of informatics (e.g. an algo-
rithmic approach, iteration, recursion) in the teach-
ing of mathematics at all levels. Although these
paradigms may seem most easily applicable to dis-
crete mathematics, there is considerable scope for
their introduction into the classical continuous cur-
riculum.

The reader may be surprised to find no mention
of numerical analysis here (or hereafter in this doc-
ument) because this subject is the one that most
obviously combines the continuous and discrete ap-
proaches to mathematics. But we take the posi-
tion that numerical analysis is now such a well-
established subject in the mathematics curriculum
that it does not need to be discussed in the context
of this report. This is, however, not to say that the
subject matter of numerical analysis is no longer af-
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fected by advances in computing; developments in,
for example, parallel computing are having great im-
pact on numerical analysis.

2.2 A Discussion of Particular Curriculum
Areas on Which Computers and Informatics
Have an Impact

Although discrete mathematics and calculus are
discussed separately in what follows, it should be
emphasized that there is no intellectual reason to
consider them as separate subjects. Indeed, they are
mutually supportive and ideally would be taught in
integrated courses (see the chapter by Seidman and
Rice). However, for at least some years to come,
such integrated courses will be relatively rare, not
least because of the lack of textbooks for integrated
courses.

(a) Discrete Mathematics Courses

We begin with a discussion of what topics in dis-
crete mathematics should be contained in courses
intended for mathematics students as well as for
students in the social and management sciences. Al-
though the topics to be listed below cover a broad
spectrum, it is possible to design a coherent course
covering these topics if the course is built around
themes such as algorithms and their analysis and
inductive and recursive thinking.

A Discrete Mathematics Syllabus

1. Mathematical Preliminaries - Sets, functions, re-
lations, sumnmation and product notation, ma-
trix algebra, an introduction to proof and logic
concepts.

2. Mathematical induction including its applica-
tion to algorithms and recursive definitions.

3. Graphs, digraphs and trees including path,
searching and coloring algorithms, tree traversal,
game trees and spanning trees and applications
in a variety of areas.

4. Basic Combinatorics including the sum and
product rules, permutations, combinations and
binomial coeflicients, inclusion-exclusion, the
pigeonhole principle and combinatorial algo-
rithms.

5. Difference equations (i.e. recurrence relations)
including first order equations, constant coeffi-
cient equations and the relationship of recur-
rence relations to the analysis of algorithms, par-
ticularly divide-and-conquer algorithms.

6. Discrete probability including random variables,
discrete distributions and expected value.

7. Mathematical logic including the propositional
calculus, Boolean algebra, the verification of al-

gorithms and an introduction to the predicate
calculus.

8. Infinite processes in discrete mathematics: Se-
quences, series, generating functions, approxi-
mation algorithms.

In addition, other possible topics depending
upon local needs and desires are:

9. Algorithmic linear algebra including the use of
Gaussian elimination as an entree to abstract
linear algebra and an introduction to linear pro-
gramming and applications of linear algebra.

10. Decision mathematics including such things as
queueing theory and packing problems.

11. Algebraic structures such as rings, groups etc.

12. Finite state machines and their relation to lan-
guages and algorithms.

And, of course, there can be extensions of all the
above topic areas to more advanced subject matter
if desired and appropriate.

Since the Strasbourg conference in 1985, at least
40 books have been published from which a course
on the above lines can be taught (see, for example,
Epp, 1990 and Maurer and Ralston, 1991).

The experience of those who have taught such
courses is that, despite the potpourri of topics listed
above, these courses can be made interesting and
satisfying if a consistent, coherent approach is taken
which emphasizes algorithmic, recursive and induc-
tive thinking.

Following a course from a syllabus like that
above, a variety of advanced courses in discrete
mathematics can be contemplated although only
the largest institutions would be able to offer all
of these. Indeed, each of the subject areas listed
above suggests one or more advanced courses which
would build on the introductory material in a first
discrete mathematics course. Most of these courses
are currently in a process of evolution as the sub-
Jject matter in the first discrete mathematics course
changes and develops and as the applications of dis-
crete mathematics grow and diversify. A program
which combines a carefully constructed introductory
discrete mathematics course with several advanced
courses will give the student a firm basis for study-
ing informatics as well as providing a basis for pro-
fessional work in modern applied mathematics and
other fields in science and engineering.
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(b) Calculus in the Computer Age
(i) The Role and Relevance of Calculus

Among the key factors which compel change in
the teaching of university mathematics courses are:

- the substantial experience with minicomput-
ers and microcomputers and programming packages
which many students have had before coming to the
university;

- the growth of new areas of applied mathemat-
ics such as the analysis of algorithms and computa-
tional complexity.

One result of this is that many students have at-
titudes and expectations which lead them to believe
that the most challenging and meaningful mathe-
matical problems today are related to computers
and informatics. This cannot help but influence
how we must motivate mathematics students and
all other students in mathematics courses.

In considering the place of calculus in the com-
puter age, we cannot forget that it is one of hu-
mankind’s great intellectual achievements. Every
educated person should be aware of it. Its his-
tory exemplifies the “unreasonable effectiveness” of
mathematics better than any other branch of math-
ematics. And its effectiveness is as great today as
it has ever been. But this does not excuse teaching
calculus as is so often the case now with an empha-
sis only on the execution of mechanical procedures
- and paper-and-pencil procedures at that. Instead
calculus needs to be taught to illustrate the unique
ways of thinking it epitomizes.

The realm of applications of calculus remains im-
mense. They are, indeed, increasing due to the in-
creasing mathematization of heretofore qualitative
sciences like biology. In constructing calculus mod-
els of phenomena and then solving the resulting
equations, there is often an interplay between these
models and their discrete counterparts with the cal-
culus models representing the limiting behaviour of
the discrete models. It is now more important than
ever to include this interplay in calculus (and dis-
crete mathematics) courses because inevitably the
solution of most problems in calculus involves the
(discrete) computer. The discretization necessary
to solve problems of calculus with a computer often
has not borne a close relationship to the underlying
discrete model. But the increasing power of com-
puters means that more and more frequently it is
possible to have computer models which mirror very
closely the discrete models from which the continu-
ous model was initially abstracted.

There already are powerful software tools which
can be used in the study of calculus. These in-

clude symbolic mathematical systems and a variety
of graphical packages. Advances have taken place
so rapidly in these areas that it is now the case that
very powerful symbolic and graphical systems are
available on hand-held computers (e.g. the HP-48S)
as well as on microcomputers. One result of this is
that an understanding of functions, variables, pa-
rameters, derivatives etc. and the ability to inter-
pret formulas and graphics is becoming more im-
portant to the student than skills in executing the
(numerical or symbolic) procedures of calculus. In
the teaching of calculus to all students the need is
clear for a shift from an emphasis on calculational
technique to one which emphasizes the development
of mathematical insight.

(ii) The Content of Calculus Courses

If functional behaviour and representation are
to be the focus of the calculus course, then continu-
ous functions and discrete functions (i.e. sequences)
must be emphasized and motivated by a wide vari-
ety of mathematical models. (Indeed, mathemat-
ical models and their applications in a variety of
disciplines should be an important part of calcu-
lus courses.) (Note: it can be argued that se-
quences belong more properly in the discrete math-
ematics course discussed previously. This only illus-
trates the need to bring the discrete and continuous
points of view together into an integrated sequence
of courses as soon as possible.

An important theme in calculus courses should
be the contrast between the local and global be-
haviour of functions. Local behaviour is, of course,
derived by studying the derivative for continuous
functions (and the difference operator for discrete
functions). And similarly the integral (and summa-
tion) operators are used to derive global information
about functions. Undoubtedly it will remain neces-
sary to develop some ability to do formal computa-
tions with derivatives and integrals. But the major
emphasis should be on numerical algorithms (par-
ticularly for integrals) and on how derivatives and
integrals can be used to understand the behaviour
of functions.

A topic such as the Taylor series representation
of a function should be used to show how good local
information can be obtained using low-degree Taylor
polynomials and interpolating polynomials, another
area where the analogy between the continuous and
the discrete may be usefully shown.

Finally, there should be a balance in the cal-
culus course between traditional topics and ones
whose importance has greatly increased because of
the advent of computers and informatics. Thus,
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for example, the O() and o() notations, which en-
able the asymptotic growth rates of functions to
be compared to standard functions like polynomials
and logarithms, are not always taught in calculus
courses, but they should become so.

This discussion is intended only to provide the
flavor of how an orientation toward computation
should change the approach toward teaching most
of the standard calculus topics.

(iii) Computers for Learning and
Teaching Calculus

Computers enable teachers to modify their
methods of teaching calculus (and, of course, much
other mathematics also) in order to meet better the
need of their students. Computer graphics is a pow-
erful medium in which to provide examples - and
non-examples - of continuous functions, discontin-
uous functions, the area under a curve, direction
fields and nowhere differentiable functions as well as
in many other areas. Well-designed software (there
still isn’t nearly enough of this) can be used by
students to discover and explore the concepts men-
tioned above as well as such fundamental concepts
as slope and tangency (see also Section 2.3). But the
effective use of such software requires that teachers
sometimes depart from a lecturing style and go in-
stead to guiding and interacting style with small
groups of students or individual students.

Well-designed software will also permit enhance-
ments by students through the writing of (usually
short) programs. This is just another way in which
students can be actively involved in their own learn-
ing although it is important that the use of the
computer does not become the message instead of
the mathematics which it is supposed to illustrate.
Thus, programming per se should not play any sig-
nificant role in a calculus course.

Another impact of the computer in calculus may
be to change the order in which topics are taught.
For example, it is becoming increasingly common
to introduce limits at the very start of a calculus
course. Tangent functions and area under a curve
can be motivated and defined graphically. When
a formal definition of a limit is needed, students
will be ready for it. As another example, differ-
ential equations can now be treated much earlier
in the curriculum than was previously possible be-
cause of the ease of understanding made possible by
new graphics systems (see the chapter by Tall and
West). They can be introduced right after differ-
entiation and before integration. Studies are now
under way to discover whether such reorderings will
lead to a greater or more rapid understanding of

fundamental concepts and theorems.

To take full advantage of the use of computers in
teaching calculus, it will be necessary to change the
standard classroom environment. Classrooms need
to be provided with large monitors or screens on
which the monitors may be projected. Both inside
and outside the classroom, students need adminis-
tratively easy and user-friendly access to comput-
ers and software. Teachers will need private com-
puter facilities in order to prepare course material.
A prerequisite for this is in-service training so that
teachers may become comfortable with computers
and then fluent in their use and aware of possibili-
ties beyond what may be available in the particular
software on which they have learned.

Finally, we note the value of using computers
in the classroom to teach mathematics. The desir-
ability of this for calculus and related subjects is
particularly clear since the dynamics of computer
graphics is ideally suited to help explain a subject
which is essentially about change. Indeed, it is ironic
that only static technology - the chalkboard and the
overhead projector - are still used so widely to teach
calculus. There is a considerable amount of software
available now which can be used in the classroom to
teach calculus (e.g. Flanders (1991)) and differen-
tial equations. There is much less software available
to teach discrete mathematics in the classroom but
there are numerous aspects of discrete mathemat-
ics (e.g. induction and recursion) for which suitable
software would be valuable in the classroom. We
can expect to see the development of such software
in the near future.

2.3 Exploration and Discovery in
Mathematics

The i1dea of using computers to enable students
to explore mathematics and discover mathematical
patterns for themselves is not a new idea (Steen,
1988). However, the advent of powerful and avail-
able computer systems makes this point so impor-
tant in teaching mathematics today that we devote
an entire section to it.

First, why should exploration and discovery be
important components of the educational process in
mathematics? The answers parallel the reasons why
we teach mathematics in the first place:

e active learning leads to better retention and un-
derstanding and more liking of the mathemat-

- ics we teach because the mathematics is seen
as a basic component of human culture; it also
leads to more self-confidence in the ability to use
mathematics to solve problems;
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e exploration and discovery helps to teach people
to think;

e discovery provides the greatest aesthetic expe-
rience in mathematics, the “aha” of seeing or
proving something is what makes mathematics
attractive;

e exploration and discovery are perhaps the best
ways for students to see that mathematics is so
useful;

e discovery enables the student to see a familiar
idea applicable in a new context, thereby en-
abling a grasp of the power and universality of
mathematics.

Computer technology may be used to assist in
mathematical exploration and discovery in a variety
of ways; for example:

e through visualization of a great variety of two
and three dimensional objects via computer
graphics, students may explore questions and
discover results by themselves.

s through computer graphical presentations of in-
teresting geometries like “flatland” and turtle
geometry;

e via exploratory data analysis to, for example,
draw conclusions from data (e.g. is it bimodal?
are there outliers?), to transform data {e.g. by
logarithmic plots), to smooth data and to com-
pare different sets of data.

e by graphical and numerical explorations of how
to approximate complicated functions by simple
ones;

e by applying the first step of the inductive
paradigm - compute, conjecture, prove - in
many, many different situations;

e by using symbolic mathematical systems to dis-
cover mathematical formulas such as the bino-

~ mial theorem;

¢ by designing and executing different algorithms
for the same or related tasks.

This list could be made much longer. Readers will
probably be led to make their own suggestions.

There are various implications to using comput-
ers to facilitate exploration and discovery:

e we must start with easy tasks so that students
feel they are really succeeding on their own and
are not being led step by step by the teacher;

e teachers need to be educated for this kind of in-
structional mode; few teachers can become com-
fortable with these ideas without explicit educa-
tion; we note, in particular, that testing what
has been learned by the student is not easy. But
experience has shown that success is not only
possible but yields rich rewards. The difficulties

can be overcome; teachers can be trained to feel
comfortable with this mode of learning.

2.4 Some Speculation about the Future

As mathematics becomes increasingly an exper-
imental science, it is inevitable that computers and
computer science will have increasing influence on
the mathematics curriculum. Computer science will
become a gradually greater focus of applications of
mathematics and this will affect what is important
in mathematics. At the same time the means by
which all mathematics is taught will be inextrica-
bly entwined with computer technology. Although
the cost of this technology will continue to be a
problem for developing countries, the curricular in-
ertia in developing countries is far less than that
in the developed countries. Developing countries
have an unparalleled opportunity to use computers
and the influence of computer science to modernize
their mathematics curricula and their mathematics
teaching faster than will be possible in developed
countries.

REFERENCES

Douglas, R.G. (Ed.) [1986]): Toward a Lean
and Lively Calculus, MAA Notes Number 6,
Washington, DC: Mathematical Association of
America.

Epp, S.S. [1990]: Discrete Mathematics with Appli-
cations, Belmont, CA: Wadsworth.

Flanders, H. [1991]: Microcalc 6.0, Calculus Soft-
ware for VGA, Ann Arbor, MI.

Maurer, S.B. and Ralston, A. [1991]: Discrete Algo-
rithmic Mathematics, Reading, MA: Addison-
Wesley.

Ralston, A. [1981]: Computer science, mathemat-
ics and the undergraduate curricula in both,
Amer. Math. Monthly, 88, 472-485.

Ralston, A. (Ed.) [1989]: Discrete mathematics in
the First Two Years, MAA Notes Number 15,
Washington, DC: Mathematical Association of
America.

Ralston, A. and Young, G.S. [1983]: The Fuiure
of College Mathematics, New York: Springer-
Verlag.

Schagrin, M.L., Rapaport, W.J. and Dipert, R.R.
(1985]: Leagic: A Computer Approach, New
York: McGraw-Hill.

Steen, L.A. [1988]: The Science of Patterns, Science,
240 (29 April), 611-616.



Part III
COMPUTERS AS AN AID TO TEACHING AND LEARNING MATHEMATICS

B. Cornu
IUFM, Grenoble, France

3.0 Introduction

Mathematicians and mathematics teachers have
been provided with a new tool, the computer. There
is no shortage of applications or interesting exam-
ples which one can quote. But, like all tools, the
computer by itself does not supply a solution to
the problems of mathematics education. There is
" no automatic beneficial effect linked to a computer:
The mere provision of micros in a class - or lecture
room will not solve teaching problems. It is essen-
tial, therefore, that we should develop a serious pro-
gramme of research, experimentation and reflective
criticism into the use of informatics and the com-
puter as an aid to teaching mathematics. It will not
suffice to think only in terms of mathematics and
the computer, and of the production of software
which amuses and interests mathematicians. We
must also take into account types of knowledge and
the ways in which these can be transmitted, and at-
tempt to study, in a serious epistemologically-based
manner, various concepts and the obstacles which
they present to learners. We must think of students,
their development and the matching of new and old
knowledge. We must consider in depth the teaching
possibilities created by the computer. It is essential,
above all, that we should move beyond the stage of
opinions, enthusiasms, and wishful thinking and en-
gage in a true analysis of the issues. Only in this way
will we come to a true resolution of certain problems
of teaching. Such research, of necessity experimen-
tal, will have to be critically evaluated. It must be
shown how, in given circumstances, the use of the
computer can facilitate the acquisition of a partic-
ular concept. Finally, such research work will have
to be built upon and developed to provide a vital
component in the training (whether formal or self-
directed) of teachers and lecturers. Only then can
computers have any large-scale effect on mathemat-
ics teaching.

Certainly such research has been done in the
past few years, and we can now see examples of uses
of computers in education, based on a serious study
of the didactical problems to be solved. In such
uses, the computer is not a tool supplementary to
traditional teaching; it is integrated in a pedagog-
ical strategy, adapted to the actual obstacles the
students have in learning. But much remains to be
done. Both the development of educational research
and the evolution of technology have the potential
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to effect major changes in teaching and learning in
the future.

Computers for mathematics teaching are not so
widely used as one could think. Appropriate soft-
ware and strategies do exist; but they are used
by few teachers; one of the main problems now
is to help all teachers to use computers, not as a
new experience, but as a common tool for teach-
ing. This requires not only good training for teach-
ers and good pedagogical products and tools, but
also good integration of new technologies in curric-
ula and good long term pedagogical strategies.

3.1 A changing view of mathematics

There are many references in this book to the
way in which the computer can lead to a changed
view of what mathematics and mathematical activ-
ities comprise. For example, as the experimental
aspects of mathematics assume greater prominence
(see Section 2.3), and there is a corresponding wish
to ensure that provision should be made for students
to acquire skills in, and experience of, observing,
exploring, forming insights and intuitions, making
predictions, testing hypotheses, conducting trials,
controlling variables, simulating, etc. Examples of
how such work can be carried out are found in later
chapters in this book. However, mechanisms need to
be found for disseminating information about fruit-
ful experimental environments and how these can
be formed.

Yet, as we put new emphasis on the particular
activities listed above, it is also necessary to ensure
that such traditional activities as proving, general-
ising and abstracting are not neglected or omitted.
We will need to find an appropriate balance between
‘experimental’ and more formal mathematics.

The possibilities presented by the computer will
actually help focus our attention on the kind and
types of knowledge which we wish students to ac-
quire. Not only are new possibilities offered to us,
but also a greater incentive to identify more pre-
cisely our educational goals.

If our aims of teaching change significantly so
as to encompass and stress the ‘process’ of mathe-
matics more than the ‘products’ of the mathemat-
ical activities of others, then there will, of course,
be a need to identify those parts of mathematics
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most suitable for our purposes. Topics and areas of
mathematics must be selected which encourage and
facilitate an experimental approach.

Finally, in this section we must stress two impor-
tant, interrelated points. Many, indeed the major-
ity, of our students do not intend to become math-
ematicians. We must not lose sight of the implica-
tions of this in terms of educational goals and em-
phases. But, also, many of these may be students
of the experimental sciences. This raises further im-
portant issues, for experiments in mathematics dif-
fer somewhat from those in the physical and natu-
ral sciences. The techniques are often very similar,
but in mathematics we have that extra, vital ingre-
dient of ‘proof’. Experiments are an essential and
neglected part of mathematics, yet mathematics is
not an experimental science. The distinctions be-
tween disciplines and ways of thought will have to
be displayed and observed.

3.2 Computers change the relation between
teacher and student

Computers can affect the behaviour of students.
This creates new interactions and relationships be-
tween student, knowledge, computer and teacher.
The role of the teacher in such situations demands
considerable thought.

(a) The mathematical activity of the stu-
dent

Students will be better able to learn conceptual
material and develop autonomous (as opposed to
imitative) behaviour patterns with respect to math-
ematical ideas if they can be cognitively active in
response to mathematical phenomena presented to
them. This activity should consist of the formation
of mental images to represent mathematical objects
and processes. It should also include the develop-
ment of skills in manipulating these objects and pro-
cesses. In this way students can increase their abil-
ity to think mathematically.

Inducing students to emerge from passivity and
to think actively about mathematics is, however,
not easy. One approach is to make use of the com-
puter to supply sufficiently powerful and novel expe-
riences to stimulate such behaviour. The action of a
computer program and the structure of data as it is
represented in the computer can form useful mod-
els for thinking about mathematical entities. For
example, a “WHILE loop” whose body is a simple
sum is a process that can represent the mathemati-

cal entity
m

3N

This expression, which troubles so many students,
can then be thought of in terms of a simple, famil-
iar and useful computer process. Again, in Pascal,
representing a fraction as a record with two inte-
ger fields (the second being non-zero) helps students
think about rational numbers as ordered pairs of
integers, especially if they are given the experience
of writing programs to implement the arithmetic of
fractions without truncation.

More generally, many mathematical concepts
can be defined or described as procedures. This
gives a more dynamic approach, and can help the
student 'in understanding and in using these con-
cepts. Algorithmics (see the chanpter by Maurer)
gives many tools for introducing mathematical con-
cepts in such a way.

Many examples of ways in which such ex-
periences can be incorporated into mainstream,
tertiary-level courses are available. Moreover, the
success of such initiatives would seem to be inde-
pendent of several issues which in discussion tend
to be overrated. An important factor in this ap-
proach appears to be that students should write the
programs and so must be cognitively active about
the processes and data structures they are imple-
menting. These experiences are then coordinated
with classroom activity.

In their chapter, Mascarello and Winkelmann
describe a course containing ‘continuous’ topics such
as multiple integration and ordinary differential
equations. Here the students wrote programs in
a low-level language running on a microcomputer.
These were interactive and the results were used for
experimentation and demonstration.

Of course, writing programs is not the only use-
ful way in which students can use the computer.
The use of complicated software packages for il-
lustration of phenomena that are very difficult to
display otherwise can clearly broaden the students’
awareness and add to their general understanding
(see, for example, the chapter by Tall and West).
They can, of course, also be used for exploration
and discovery. Indeed, some would see the most
exciting opportunity offered by the computer to be
the way in which it can motivate students to exer-
cise the process of discovery. Here we should only
stress the need to see exploration and discovery as
essential mathematical activities to be practised.
Traditionally, this has not been so - teaching and
learning have been almost wholly concerned with
the transmission and reception of accepted mathe-
matical facts. However, now, for example, computer
symbolic mathematical systems (see the chapter by
Hodgson and Muller) permit such rapid and flaw-
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less processing of non- trivial examples that it is
easy first to look for patterns which suggest con-
jectures and generalisations, and then to search for
counterexamples or machine-aided proofs.
Computers then can greatly assist us in extend-
ing the range and the depth of students’ mathemat-
ical activities. In some approaches the students will
write their own programs (and there will be an at-
tendant risk that mathematical aims may become
obscured by some of the programming problems);
in others students will use prepared software. Both
approaches have already been shown to be of great
. value; further investigations into both will now have
to be continued.

(b) The role of the teacher

The computer can be used in two distinct ways
in the classroom. In one it is an aid for the teacher,
an electronic blackboard — more powerful than the
traditional blackboard, the overhead projector, or a
calculating machine — but nevertheless a tool whose
output is almost entirely under the teacher’s con-
trol. In this role the computer does not upset the
traditional balance in the classroom. It will still
demand effort on the teacher’s part to select or pro-
vide suitable software and it can give rise to ex-
tra administrative problems; in return it should en-
hance learning. However, it will not revolutionise
the classroom.

If, however, students are allowed and expected to
interact with computers, then the position changes,
for this leads of necessity to a change of method-
ology. The teacher no longer has total control —
his/her role can no longer be limited to exposi-
tion, task-setting and marking. The format ‘lecture-
examples, homework-exam’ must be augmented by,
for example, ‘project (through interaction between
student, machine and teacher) assessment on the
basis of a completed (and possibly debugged) as-
signment’.

Probably the teacher must combine diverse uses
of the computer. Some activities fit well with the
‘blackboard computer’; some others will be more
efficient if each student has the opportunity to in-
teract with the computer.

Such a change would produce a revolution in
most class- and lecture-rooms. It demands that
teachers should not only acquire new knowledge,
skills and confidence in the use of hardware and
software, but that they should also radically change
their present aims and emphases, and accept a less-
ening in the degree of control which they presently
exert over what happens in their classrooms. This
last demand means a sacrifice of traditional security,

at a time when teachers will still be fighting hard
to gain new skills and acquire confidence in them.
It would be foolish to underestimate the challenge
this presents.

The acquisition of new skills will be time-
consuming and constantly changing hardware and
software will make the process a continuing one. For
many mathematicians these new skills will be read-
ily usable in their research work. Others may be
tempted — particularly when universities and other
educational institutions are under pressure — to feel
that such time would be more profitably spent in
increasing personal research output, rather than
in improving their teaching, particularly if this re-
quires such a large step in the dark.

Computer usage is still actively avoided by many
mathematicians and by many mathematics teach-
ers. The problem at the tertiary level is particu-
larly great, for the gulf between the traditional lec-
ture often given to a hundred or more students and
the classroom/laboratory in which students interact
with computers is enormous. To bridge this gulf will
need considerable investment in both material and
human resources. Time, assistance and in-service
training will have to be provided on a scale un-
precedented at this level. Particular attention will
have to be directed at those teachers who still have
many years - even decades - to go before they re-
tire from teaching. First, however, the necessity for
change will have to be accepted, and this will only
come through clear, unequivocal demonstration of
the benefits which can accrue from innovation.

The current problem now is to make all teach-
ers able to use computers in teaching, or to know
why they will not use them! This leads to different
problems:

o The availability of computers in the teachers’ en-
vironment: Can they easily find and use a com-
puter at home for preparing their teaching and
elaborating activities? Can they easily find and
use a computer in the school? Are computers
easily available in classrooms?

e The user-friendliness of hardware and software:
Will it take hours and hours to prepare a lesson
with computers, and will very specialised abili-
ties to use such software be needed?

e The integration of the computer in the teach-
ing strategy and in the learning environment.
The computer is a tool among others, and its
use must be integrated in a pedagogical strat-
egy. Textbooks, homework and all the activities
of the learner must take this into account.

The computer does not only change the teacher’s
role, but also the attitude and activities of the
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students. The relationship is not only between
the teacher and the learner: The computer takes
its place in the relation, and it also develops the
group work and the project activities. Learning
from pupil-pupil talk is one of the components of
the learning environments provided by new tech-
nologies. Different types of environments, differ-
ent teaching methods and different strategies can
be used by teachers. Computers change the organ-
isation of education, and give teachers the role of a
pedagogical-engineer in elaborating their strategy,
in preparing their teaching, in choosing among the
resources available and the tools and products they
will use.

3.3 Some particular uses of the computer in
the classroom

We have already remarked on the way in which
computers can assist in the introduction, develop-
ment and reinforcement of mathematical concepts,
in building up intuition and insight, etc. In this sec-
tion we look at particular ways in which they can
be used within the classroom.

(a) Graphic possibilities

Many of the applications of computers in teach-
ing make use of the possibilities provided for graphic
display. There can be no doubt about their value in
providing quickly good quality graphic illustrations
which can help build intuition. The example of or-
dinary differential equations such as z’ = z2 — ¢,
whose solutions cannot be written down in elemen-
tary terms, is now widely known and used: Visu-
alising the field of tangents and visualising many
solutions of the equation make the student better
able to understand the concepts which intervene in
this domain. Moreover, this allows them to discuss
exciting questions concerning the behaviour of solu-
tions.

Where the computer scores over many other me-
dia is that graphics capabilities now enable move-
ment as well as static diagrams to be portrayed.
This, of course, was true of the film. Yet now the
possibility of being able to change parameters adds a
completely new dimension to the teaching/learning
experience.

Much interesting and high quality graphic soft-
ware is now available and allows visual representa-
tions from areas such as calculus, differential equa-
tions, linear algebra, numerical analysis, and geom-
etry.

A famous example in geometry is that of Cabri-
Geometré which allows pupils to draw geometrical

figures very easily, and to modify them by moving
some elements (points, lines, etc.), and see at the
same time how the figure evolves. Invariants and
loci can be visualised in a very user-friendly way.
Such software can be used by the teacher for demon-
strating or by the students in an interactive way.

(b) Many types of utilities are available for use
in teaching. Spreadsheets are the best known ex-
ample. They provide a good environment for intro-
ducing many concepts in arithmetic, algebra, and
even calculus. At a very elementary level, they per-
mit interesting activities about the concepts of vari-
ables, parameters, unknowns, etc. They also pro-
vide nice illustrations of iteration. They are increas-
ingly used in teaching.

(c) Databases are now more easily accessible.
They suggest documentation activities, they allow
students to look for sophisticated information and
so develop project work. They also give teachers the
possibility to use or build large sets of exercises and
activities. The distant interrogation of databases is
now common and enlarges the resources for teach-
ers.

(d) Artificial intelligence and problem-solv-
ing tools are developing. The first step is to have
software and tools able to solve mathematical prob-
lems. The second step is to produce software able
to help students in problem solving.

(e) Hypermedia and multimedia products:
These allow the integration of different media, and
their combination for educational uses. They al-
low activities which are not ‘hinear’, but in which
users may build their own paths and organise their
own learning. They considerably enrich other ed-
ucational tools, linking and making simultaneously
available all existing types of software and other ed-
ucational technology products. We surmise that in
the future this domain will provoke great changes in
the use of technology in education.

(f) Self-evaluation and individualised in-
struction

One of the advantages of the computer is that it
helps the individualisation of teaching and learning.
This is not only because the student can sometimes
work alone with the computer, but mostly because
the computer can help to provide a teaching envi-
ronment which matches the needs of each student
— the way he learns, the right speed for her, the
appropriate activities.

The computer can provide a tool for self-
evaluation and can help students to take charge of
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the organisation of their own work. It is a diffi-
cult problem for students to judge how well they
are coping with a subject. One use of comput-
ers is to enable students to test themselves. Ques-
tion banks can be made available and instantaneous
scores given.

The advantages of Computer-assisted Learning
(CAL) for individualised instruction have, of course,
been argued for some twenty years, namely that the
computer can offer non-threatening, individualised
responses to students. There have, indeed, been sev-
eral demonstrations of the value of CAL, for exam-
ple, PLATO in the USA. However, as the cognitive
complexity of what has to be learned increases, the
difficulties of producing adequate software become
very great.

The problems become less pronounced when the
aim of the program is to revise or to exercise and not
to teach. Thus ‘Recalling Algebra’ and ‘Recalling
Mathematics’ (Kinch) are examples of software de-
signed to help students prepare for the Entry Level
Mathematics Exam at California State University
which have been favourably received.

More and more, educational software includes a
“counsellor”, helping the student to make his or her
way through the activities of the software, evaluat-
ing him or her, and individualising the activities.

(g) Assessment and Recording

The computer can be used for testing students’
progress. Some software employs the random gen-
eration of test items. Such testing can, of course,
go far beyond reliance on multiple choice items and
can measure responses other than correct and in-
correct. Such newer testing procedures, which can
be designed to capitalise on the graphic potentiali-
ties of the computer, can reduce testing time, allow
tests to be broken off and resumed at any time, of-
fer immediate summaries and analyses, and assign
specific help for identified deficiencies.

The obvious disadvantages include preparation
costs and the need to provide ready access to a com-
puter. Open-ended testing of projects or personal
problem solving is at present difficult, but begin-
nings are being made. Computer-assisted recording
also has great potential.

A computer at home, or a computer easily usable
at school, enables students to use individualised sets
of data for homework or assessments

Very interesting examples of ‘learning credit
cards’ are being experimented with: The card con-
tains information about the learner, and gives him
or her access to appropriate software and activities.

(h) Pocket calculators must be mentionned
here. Even if their possibilities are small in com-
parison with computers, they are improving very
rapidly: We now have calculators with graphic
possibilities and even with symbolic capabilities.
And the permanent availability of pocket calcula-
tors gives them great power. In many countries, the
use of pocket calculators in mathematics has been
introduced into the curricula so that all teachers and
all pupils use calculators.

(i) Student errors

Related to the possibilities described above is
that of investigating the errors which students make
in learning mathematics. Such information can be
used in two ways: To help the student remove mis-
conceptions, which is its role in individualised CAL,
or to help the mathematics educator to identify spe-
cific points of difficulty and to design curricula with
these in mind. Errors are symptoms which allow
us not only to identify stumbling blocks, but also
to form an impression of the student’s conceptions.
The computer allows students to respond to their
errors in-a new way: They can identify and con-
trol them themselves. Getting rid of them can even
become a motivation for learning.

One example of the use of the computer to detect
and correct errors is found in Okon-Rinné’s course-
ware. This enables a student to choose a basic func-
tion such as f{z) = |z| and then to experiment with
the effects which translations and reflections have on
it. Thus the graph can be translated vertically or
horizontally or reflected in the vertical axis. Simul-
taneously the function changes to correspond to the
new graph. The intention is to detect such common
errors as confusing f(z) = |z—2| with f(z) = jz+2],
or f(z) = |£+2| with f(z) = |z|+2. When an error
is detected, a tutorial subroutine is activated and af-
terwards the student has the option of continuing or
branching back to an earlier unit.

3.4 Student responses to work with comput-
ers

It is common to talk about the enthusiasm gen-
erated in students by computer-based systems. In
many experiments, it is claimed that this has re-
sulted in students developing a new interest in the
subject and that the general level of student activity
had increased as a result of reacting with a computer
package. Not only had activity increased, but so had
confidence. Dubinsky typically reports (of a course
on discrete structures): ‘This approach makes for
a lively course in which students are responsive in
class and active outside class. In comparison with
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similar groups to whom I have tried to teach this
material, these students seem to be more prone to
speak in terms of sets and less confused by compli-
cated logical statements’.

It must not be thought, however, that enthusi-
asm can be automatically generated through the use
of a computer. Much will depend on the students
and the teaching situation; there are also negative
experiences to report! One must also judge on how
much students learn as well as the enthusiasm they
show whilst engaged on the task.

Here one is faced with a new problem in teach-
ing. Students can frequently appear fascinated by
computer demonstrations or by working interac-
tively with a computer, but what happens ‘when
the machine is switched off>? Will the students only
be able to imitate what they have seen or will they
obtain a deeper understanding of concepts?

It is recognised that the value of much computer
work is largely dependent upon the follow-up activ-
ities which ‘must guard against the possibility that
the machine is doing all the work and providing all
the answers’. Many traditional activities will still
have to be carried out, thus suggesting yet again
that the computer’s main contribution will be to en-
hance student understanding and not to save time
for the lecturer. The introduction of the computer
is unlikely to solve (or even ease) the problem of
overloaded syllabuses.

3.5 The provision of software

The way software is conceived and designed
evolves very quickly. The progress of technology
and the development of multimedia tools enriches
the possibilities for pedagogical uses. The roles of
teachers, of pedagogs and of computer scientists in
software design has evolved. Very user-friendly sys-
tems allow any teacher to create teaching situations
with computers.

Current software resources may be considered in
several categories:

(a) Sophisticated systems (in computer terms)
such as the symbolic manipulation systems, large
statistical packages, etc., form the first category.
These systems have been developed in a ‘goal-
oriented’ fashion, that is they seek to provide solu-
tions to specific mathematical problems. They have
not needed to consider to any great extent ‘peda-
gogical design’. Interest in their use as pedagogical
tools is growing.

Commercial companies exist with an interest
in marketing this type of software and research

mathematicians are involved in creating such sys-
tems. As a result, sophisticated packages are self-
perpetuating, Since they will exist, we need to un-
derstand their pedagogical uses and the possibly
dramatic effects they could have on current mathe-
matics education.

(b) Less sophisticated in computer terms but
still very demanding in pedagogical design are the
software packages suitable for use on a microcom-
puter. These packages attempt to aid the stu-
dent’s mathematical development and employ such
themes as visualisation, simulation, exploration and
problem-solving. They may be used by students
working alone, in groups, or with a teacher. Many
individuals and groups are writing such packages.
Many are also provided by educational software
companies.

A major problem arises here. The production of
packages that can be recommended for widespread
use as pedagogically sound and well-tested is an
expensive, complicated task requiring considerable
professional resources. It should involve fundamen-
tal research based on the structured observation of
the materials in use in parallel with the develop-
ment of the materials. Thus the team may need to
include mathematicians, educators, psychologists,
computer scientists, graphic designers, publishers
and editors. The financial needs of such a group
would be considerable.

(c) General purpose programming languages can
be used as tools aiding students’ mathematical de-
velopment and are a readily available teaching re-
source. Extension of such languages or even cre-
ation of new ones expressly for this purpose would
be welcome.

This brief discussion of the present position
points out the need (i) to establish channels of com-
munication so that researchers and educators are
aware of resources currently available and (ii) to es-
tablish structured research studies using currently
available resources in order to gain and share un-
derstanding of their use as pedagogical tools.

"The emergence of software packages has raised
a new problem for mathematics teachers, that of
black boxes, for they often/usually produce answers
without giving any hint of the way in which they
were obtained. This may well conceal a wealth of
deep mathematics. (It could, of course, be argued
that the problem is not new, but merely heightened -
for students have been employing algorithms whose
workings they did not understand for centuries!).

How can students learn (be taught/encouraged)
to look critically at the answers supplied? How
much should students be required to know about
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the workings of black-boxes before being allowed to
use them? For example, there are packages which
invert matrices. If such a package uses floating-point
arithmetic, it can give answers which should not be
accepted at face value. At least students should be
warned about this or, better, should learn to recog-
nise when this has occured.

3.6 Cultural, social and economic factors

We have written of the computer as an aid to
mathematics teaching and learning. So is the over-
head projector. The difference though between the
two tools is not, however, solely the enormous dif-
ference in the range of possibilities opened up by
the former. Equally, it springs from the enormous
effect which the computer is having upon society
outside the confines of educational systems. As a
result society has expectations concerning comput-
ers and their use, expectations which often have lit-
tle basis in reality. Students too have expectations
about their use. There are then enormous pressures
on educators at all levels to use computers, not nec-
essarily for their intrinsic value, but because society
expects it, and not because to do so might be con-
sidered old-fashioned and reactionary.

It will be difficult for computers to be used effec-
tively in education until society has become better
informed about their power and limitations. Un-
realistic expectations must be strongly discouraged.
There is a danger that false advertising by computer
companies and software developers, and a pressure
from various sections of society, could lead to ill-
designed, over-optimistic innovation and, in turn,
to a backlash comparable with that of the 1970s
resulting from the hasty introduction of the ‘New
Math’. Political decision makers in some countries
are ‘pushing’ computers and computer-related cur-
ricula into education without adequate considera-
tion of objectives and consequences.

It is important, therefore, to realise that:

e reasonable use of computers in education re-
quires software programs and packages whose
educational standards and qualities are compa-
rable with the technical ones offered by the avail-
able hardware,

e integrating computers into the curriculum must
be coordinated with teacher/faculty in-service,
professional development programs,

e educational budgets must be prepared to permit
appropriate expenditure on hardware, software,
and teacher development,

e no curriculum should remain stagnant for a long
period.

Not all problems associated with computers in
education can be anticipated. Many questions
need to be answered through research initiatives di-
rected at investigating the possibilities, limitations
and possible dangers of computer use in education.
Some causes for concern are:

e uniformity in students’ thinking and reasoning
could arise from overuse of computers in the
learning process,

e standardisation of software development (in an
attempt to form a commercial market) may lead
to mediocrity and conformity,

e subtleties of communication between teachers
and students could be impoverished by over-
using computers,

e insensitive working with computers could ad-
versely influence the total intellectual develop-
ment of students (of their intuitive thinking, cre-
ativity, perception, etc.).

The case of developing countries demands spe-
cial attention. For them the provision and mainte-
nance of hardware creates great problems. More-
over, scarce resources must be husbanded carefully.
The computer could offer special advantages to
them; on the other hand the absence or shortage of
computers could widen still further the gap between
them and the developed countries. Several confer-
ences have considered the question of new technolo-
gies in education for developing countries (see, for
example, Amara, Boudriga and Harzallah, 1986).

3.7 Conclusion

We are only experiencing the very beginning of
the effect of computers on the teaching and learn-
ing of mathematics. Gradually, we are beginning
to take advantage of some of their more obvious
possibilities such as their quick and accurate pro-
duction of graphical material, their quick and accu-
rate (though not always precise) arithmetic, analyse
large quantities of data.

In numerous publications one can see examples
of mathematical situations for which the computer
and informatics allow us to see and approach situa-
tions from a new point of view. Obvious examples
which spring to mind are the many applications in
statistics (dealing with vast quantities of data), in
probability (with all the possibilities opened up for
simulation by pseudo-random number generators);
in geometry, too, there is a range of interesting ac-
tivities — production and processing of images, curve
plotting, the transformation of images (translations,
reflections, etc.), loci, exploration of images and fig-
ures. The dynamic aspect dominates here: One can
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visualise instantly the effect of varying a parameter.
In linear algebra, an algorithmic approach furnishes
a tool both for calculations and also for demon-
stration. Here again the dynamic aspect plays an
important role: To see a matrix steadily assume a
diagonal form is very different from obtaining the
result once and for all after a long and involved cal-
culation. But it is above all in analysis that the
opportunities to utilise informatics are richest and
most numerous. The study of numbers, of func-
tions, of the solution of equations, observation and
study of sequences and series (and in particular of
their speed of convergence), integral calculus, differ-
ential equations, asymptotic expansions, discretisa-
tion, power series for functions, etc. In addition to
these ‘classical’ fields where the use of the computer
arises naturally, one has also seen developments in
newer fields which have occurred largely because of
computers: Formal symbolic logic is a striking in-
stance; discrete mathematics can provide us with
other examples. The computer is not only an aid
for computation and demonstration, but a force for
development,.

In all of these cases, the contribution of the com-
puter takes several forms. Firstly, it is a calculating
tool allowing numerous and rapid calculations; it
also serves to place renewed emphasis on numeri-
cal methods, and thus on the study of algorithms;
and, especially, it is a pedagogical tool for promot-
ing teaching and learning.

However, let us reiterate, the act of using a com-
puter does not automatically lead to an improve-
ment. It is not a magic wand! Like all tools, it can
serve us badly; we must learn how to get the best
from it.

The development of technology (computers be-
coming smaller and cheaper) and the development
of new tools (such as multimedia ones) will certainly
provoke very large changes in education. Complex
learning environments and integrated software will
become more and more available. The technology
age in education is still to come!

Computers are now widely to be found in schools
and universities, but they are not always widely
used. Teachers are being trained in their use, but
principally in techniques and programming, and the
question of giving them a true pedagogical training
is not totally solved. It is also necessary to bear
in mind that if we wish to change the educational
system, then there will be a need simultaneously to
reform both the training given to those preparing to
teach in schools and universities and also the con-
tinuing education of existing teachers. Many inter-
esting and rich experiments have been done, many

enthusiastic teachers have produced activities and
tools, and have tried new pedagogical strategies us-
ing computers. We now need to have ALL teachers
able to use computers as a natural tool, and to in-
tegrate them into their teaching.

At the same time there is the need to carry out
much research and experimentation so that we may
effectively understand and control the impact of the
use of the computer on students’ learning and on
their conceptions and representations of mathemat-
ical objects. Only after such studies will we be able
to provide high quality software and, most impor-
tantly, a new range of didactical activities, tasks and
situations to enhance learning.
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LIVING WITH A NEW MATHEMATICAL SPECIES

Lynn Arthur Steen
St. Olaf College, Northfield, Minnesota 55077, U.S.A.

Computers are both the creature and the creator
of mathematics. They are, in the apt phrase of Sey-
mour Papert, “mathematics-speaking beings.” J.
David Bolter, in his stimulating book Turing’s Man
[Bolter, 1984], calls computers “embodied mathe-
matics.” Computers shape and enhance the power
of mathematics, while mathematics shapes and en-
hances the power of computers. Each forces the
other to grow and change, creating, in Thomas
Kuhn’s language, a new mathematical paradigm.

Until recently, mathematics was a strictly hu-
man endeavor. But suddenly, in a brief instant on
the time scale of mathematics, a new species has
entered the mathematical ecosystem. Computers
speak mathematics, but in a dialect that is difficult
for some humans to understand. Their number sys-
tems are finite rather than infinite; their addition is
not commutative; and they don’t really understand
“zero,” not to speak of “infinity.” Nonetheless, they
do embody mathematics. ‘

The core of mathematics is changing under the
ecological onslaught of mathematics-speaking com-
puters. New specialties in computational complex-
ity, theory of algorithms, graph theory, and formal
logic attest to the impact that computing is hav-
ing on mathematical research. As Arthur Jaffe has
argued so well (in [Jaffe, 1984]), the computer rev-
olution is a mathematical revolution. )

New Mathematics for a New Age

Computers are discrete, finite machines. Unlike
a Turing machine with an infinite tape, real ma-
chines have limits of both time and space. Theirs is
not an idealistic Platonic mathematics, but a math-
ematics of limited resources. The goal is not just to
get aresult, but to get the best result for the least ef-
fort. Optimization, efficiency, speed, productivity—
these are essential objectives of modern computer
mathematics.

Computers are also logic machines. They em-
body the fundamental engine of mathematics—
rigorous propositional calculus. The first celebrated
computer proof was that of the four-color theorem:
the computer served there as a sophisticated ac-
countant, checking out thousands of cases of reduc-
tions. Despite philosophical alarms that computer-
based proofs change mathematics from an a pri-
ort to a contingent, fallible subject (see, e.g., [Ty-
moczko, 1979]), careful analysis reveals that noth-
ing much has really changed. The human practice

of mathematics has always been fallible; now it has
a partner in fallibility.

Research on the so-called Feigenbaum constant
reveals just how far this evolution has progressed in
just a few years: computer-assisted investigations
of families of periodic maps suggested the presence
of a mysterious universal limit, apparently indepen-
dent of the particular family of maps. Subsequent
theoretical investigations led to proofs that are true
hybrids of classical analysis and computer program-
ming [Eckmann, 1984], showing that computer-
assisted proofs are possible not just in graph theory,
but also in functional analysis.

Computers are also computing machines. By
absorbing, transforming, and summarizing massive
quantities of data, computers can simulate reality.
No longer need the scientist build an elaborate wind
tunnel or a scale model refinery in order to test en-
gineering designs. Wherever basic science is well
understood, computer models can emulate physical
processes by carrying out instead the process im-
plied by mathematical equations. Whereas mathe-
matical models used to be primarily tools used by
theoretical scientists to formulate general theories,
now they are practical tools of enormous value in
the everyday world of engineering and economics.

It has been just over fifty years since Alan Turing
developed his seminal scheme of computability [Tur-
ing, 1936] in which he argued that machines could
do whatever humans might hope to do. In abstract
terms, what he proposed was a universal machine of
mathematics {see [Hodges, 1983] for details). It took
two decades of engineering effort to turn Turing’s
abstract ideas into productive real machines. Dur-
ing that same period abstract mathematics flour-
ished, led by Bourbaki, symbolized by the “gener-
alized abstract nonsense” of category theory. But
with abstraction came power, with rigor came cer-
tainty. Once real computers emerged, the complex-
ity of programs quickly overwhelmed the informal
techniques of backyard programmers. Formal meth-
ods became de rigueur; even the once-maligned cat-
egory theory is now enlisted to represent finite au-
tomata and recursive functions (see, e.g., [Beckman,
1984], [Lewis, 1981]). Once again, as happened be-
fore with physics, mathematics became more effica-
cious by becoming more abstract.
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The Core of the Curriculum

Twenty-five years ago in the United States
the Committee on the Undergraduate Program in
Mathematics (CUPM) issued a series of reports that
led to a gradual standardization of curricula among
undergraduate mathematics departments [CUPM,
1965]. Shortly thereafter, in 1971, Garrett Birkhoff
and J. Barkley Rosser presented papers at a meeting
of the Mathematical Association of America con-
cerning predictions for undergraduate mathemat-
ics in 1984. Birkhoff urged increased emphasis on
modelling, numerical algebra, scientific computing,
and discrete mathematics. He also advocated in-
creased use of computer methods in pure math-
ematics: “Far from muddying the limpid waters
of clear mathematical thinking, [computers] make
them more transparent by filtering out most of the
messy drudgery which would otherwise accompany
the working out of specific illustrations.” [Birkhoff,
1972, p. 651] Rosser emphasized many of the same
points, and warned of impending disaster to un-
dergraduate mathematics if their advice went un-
heeded: “Unless we revise [mathematics courses]
so as to embody much use of computers, most of
the clientele for these courses will instead be taking
computer courses in 1984.” [Rosser, 1972, p. 639]

In the first decade after these words were writ-
ten, U.S. undergraduate and graduate degrees in
mathematics declined by 50%. The clientele for
traditional mathematics migrated to computer sci-
ence, and the former CUPM consensus all but dis-
appeared. In 1981 CUPM issued a new report, this
one on the Undergraduate Program in Mathemat-
ical Sciences ([CUPM, 1981], reprinted in [CUPM,
1989]). Beyond calculus and linear algebra, they
could agree on no specific content for the core of a
mathematics major: “There is no longer a common
body of pure mathematical information that every
[mathematics major] should know.”

The symbol of reformation became discrete
mathematics. Anthony Ralston argued forcefully
the need for change before both the mathematics
community [Ralston, 1981] and the computer sci-
ence community [Ralston, 1980]. Discrete math-
ematics, in Ralston’s view, is the central link be-
tween the fields. The advocacy of discrete math-
ematics rapidly became quite vigorous (see, e.g.,
[Kemeny, 1983], [Ralston, 1983,] and [Steen, 1984]),
and the Sloan Foundation funded experimental cur-
ricula at six institutions to encourage development
of discrete-based alternatives to standard freshman
calculus. The impact of this work can be seen in
the growth of courses and publications: in the five
year period from 1985 to 1990, hundreds of courses

were created and over 40 new textbooks in discrete
mathematics were published.

Soon calculus itself came under scrutiny, as a
natural force for counter-reformation. Critics ar-
gued that the power of computation and the ubig-
uity of applications had changed fundamentally the
role of calculus in the practice of mathematics (e.g.,
[Douglas, 1986; Steen, 1988]). The National Science
Foundation launched diverse projects to reshape the
nature of calculus instruction. Virtually all of these
projects feature supporting roles for the numeric,
symbolic, and graphic power of computers.

The néed for consensus on the contents of un-
dergraduate mathematics is perhaps the most im-
portant issue facing American college and univer-
sity mathematics departments [CUPM, 1989]. On
the one hand departments that have a strong tra-
ditional major often fail to provide their students
with the robust background required to survive the
evolutionary turmoil in the mathematical sciences.
Like the Giant Panda, these departments depend for
survival on a dwindling supply of bamboo—strong
students interested in pure mathematics. On the
other hand, departments offering flabby composite
majors run a different risk: by avoiding advanced,
abstract requirements, they often misrepresent the
true source of mathematical knowledge and power.
Like zoo-bred animals unable to forage in the wild,
students who have never been required to master
a deep theorem are ill-equipped to master the sig-
nificant theoretical complications of real-world com-
puting and mathematics.

Computer Literacy

Mathematical scientists at American institutions
of higher education are responsible not only for the
technical training of future scientists and engineers,
but also for the technological literacy of the edu-
cated public—of future lawyers, politicians, doctors,
educators, and clergy. Public demand that college
graduates be prepared to live and work in a com-
puter age has caused many institutions to introduce
requirements in quantitative or computer literacy.

In 1981 the Alfred P. Sloan Foundation initiated
curricular exploration of “the new liberal arts,” the
role of applied mathematical and computer sciences
in the education of students outside technical fields.
“The ability to cast one’s thoughts in a form that
makes possible mathematical manipulation and to
perform that manipulation ...[has] become essen-
tial in higher education, and above all in liberal ed-
ucation.” [Koerner, 1981, p. 6] Others echoed this
call for reform of liberal education. David Saxon,
President of the University of California wrote in



a Science editorial that liberal education “will con-
tinue to be a failed idea as along as our students
are shut out from, or only superficially acquainted
with, knowledge of the kinds of questions science
can answer and those it cannot.” [Saxon, 1982)

Too often these days the general public views
computer literacy as a modern substitute for math-
ematical knowledge. Unfortunately, this often leads
students to superficial courses that emphasize vo-
cabulary and experiences over concepts and princi-
ples [Steen, 1985]. The advocates of computer lit-
eracy conjure images of an electronic society dom-

.inated by the information industries. Their slogan
of “literacy” echoes traditional educational values,
conferring the aura but not the logic of legitimacy.

Typical courses in computer literacy are filled
with ephemeral details whose intellectual life will
barely survive the students’ school years. These
courses contain neither a Shakespeare nor a Newton,
neither a Faulkner nor a Darwin; they convey no
fundamental principles nor enduring truths. Com-
puter literacy is more like driver education than like
calculus. It teaches students the prevailing rules of
the road concerning computers, but does not leave
them well-prepared for a lifetime of work in the in-
formation age.

Algorithms and data structures are to computer
science what functions and matrices are to math-
ematics. As much of the traditional mathematics
curriculum is devoted to elementary functions and
matrices, so beginning courses in computing—by
whatever name—should stress standard algorithms
and typical data structures. As early as students
study linear equations they could also learn about
stacks and queues; when they move on to conic sec-
tions and quadratic equations, they could in a par-
allel course investigate linked lists and binary trees.

Computer languages can {and should) be stud-
ied for the concepts they represent-—procedures in
Pascal and C, recursion and lists in Lisp—rather
than for the syntactic details of semicolons and line
numbers. They should not be undersold as mere
technical devices for encoding problems for a dumb
machine, nor oversold as exemplars of a new form
of literacy. Computer languages are not modern
equivalents of Latin or French; they do not deal in
nuance and emotion, nor are they capable of per-
suasion, conviction, or humor. Although computer
languages do represent a new and powerful way to
think about problems, they are not a new form of
literacy.

Computer Science

In the United States, computer science programs
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cover a broad and varied spectrum, from business-
oriented data processing curricula, through manage-
ment information science, to theoretical computer
science. All of these intersect with the mathematics
curriculum, each in different ways.

To help clarify these conflicting approaches,
Mary Shaw of Carnegie Mellon University put to-
gether a composite report on the undergraduate
computer science curriculum. This report is quite
forceful about the contribution mathematics makes
to the study of computer science: “The most im-
portant contribution a mathematics curriculum can
make to computer science is the one least likely to
be encapsulated as an individual course: a deep ap-
preciation of the modes of thought that characterize
mathematics.” [Shaw, 1984, p. 55]

The converse is equally true: one of the more
important contributions that computer science can
make to the study of mathematics is to develop in
students an appreciation for the power of abstract
methods when applied to concrete situations. Stu-
dents of traditional mathematics used to study a
subject called “Real and Abstract Analysis;” stu-
dents of computer science now can take a course
titled “Real and Abstract Machines.” In the for-
mer “new math,” as well as in modern algebra, stu-
dents learned about relations, abstract versions of
functions; today business students study “relational
data structures”, in their computer courses, and ad-
vertisers tout “fully relational” as the latest innova-
tion in business software.

An interesting and pedagogically attractive ex-
ample of the power of abstraction made concrete can
be seen in the popular electronic spreadsheets that
are marketed under such trade names as Lotus and
Excel. Originally designed for accounting, they can
as well emulate cellular automata or the Ising model
for ferromagnetic materials [Hayes, 1983]). They
can also be “programmed” to carry out most stan-
dard mathematical algorithms—the Euclidean al-
gorithm, the simplex method, Euler’s method for
solving differential equations [Arganbright, 1985].
An electronic spreadsheet—the archetype of ap-
plied computing—is a structured form for recur-
sive procedures—the fundamental tool of algorith-
mic mathematics. It is a realization of abstract
mathematics, and carries with it much of the power
and versatility of mathematics.

Computers in the Classroom

Just as the introduction of calculators upset the
comfortable pattern of primary school arithmetic,
so the spread of computers will upset the traditions
of secondary and tertiary mathematics. This year
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long division is passe; next year integration will be
under attack.

The impact of computing on secondary school
mathematics has been the subject of many discus-
sions in the United States (e.g., [Steen, 1987]). Jim
Fey, coordinator of two assessments ([Corbitt, 1985;
Fey, 1984]), described these efforts as “an unequivo-
cal dissent from the spirit and substance of efforts to
improve school mathematics that seek broad agree-
ment on conservative curricula.” [Fey, 1984, p. viii]
The new Curriculum and Evaluation Standards for
School Mathematics [NCTM, 1989] of the National
Council of Teachers of Mathematics as well as other
recommendations from the U.S. National Academy
of Sciences ([NRC, 1989; MSEB, 1990]) set expec-
tations for school mathematics that employ calcula-
tors and computers in every appropriate manner.

Teachers in tune with the computer age seek
change in both curriculum and pedagogy. But the
inertia of the system remains high. For example,
the 1982 International Assessment of Mathematics
documented that in the United States calculators
are never permitted in one-third of the 8th grade
classes, and rarely used in all but 5% of the rest
[McKnight, 1987]. Recent data [NAEP, 1991] show
some improvement, but still fall well short of the
NCTM recommendations.

Laptop computers are now common—they cost
about as much as ten textbooks, but take up only
the space of one. Herb Wilf argues (in [Wilf, 1982])
that it is only a matter of time before students will
carry with them a device to perform all the al-
gorithms of undergraduate mathematics. Richard
Rand, in a survey [Rand, 1984] of applied research
based on symbolic algebra agrees: “It will not be
long before computer algebra is as common to engi-
neering students as the now obsolete slide rule once
was.” Just five years after Wilf’s article appeared,
the same journal carried a review [Nievergelt, 1987]
of the first pocket calculator with symbolic algebra
capabilities.

Widespread use of computers that do school and
college mathematics will challenge standard educa-
tional practice [Steen, 1990]. For the most part,
computers reinforce the student’s desire for cor-
rect answers. In the past, their school uses have
primarily extended the older “teaching machines:”
programmed drill with pre-determined branches for
all possible responses. But the recent linking
of symbolic algebra programs with so-called “ex-
pert systems” into sophisticated “intelligent tutors”
has produced a rich new territory for imaginative
computer-assisted pedagogy that advocates claim
can rescue mathematics teaching from the morass

of rules and template-driven tests (see e.g., [Smith,
1988; Zorn, 1987]).

It is commonplace now to debate the wisdom
of teaching skills (such as differentiation) that com-
puters can do as well or better than humans. Is
it really worth spending one month of every year
teaching half of a country’s 18-year-old students
how to imitate a computer? What is not yet so
common is to examine critically the effect of ap-
plying to mathematics pedagogy computer systems
that are themselves only capable of following rules
or matching templates. Is it wise to devise sophisti-
cated computer systems to teach efficiently precisely
those skills that computers can do better than hu-
mans, particularly those skills that make the com-
puter tutor possible? In other words, since com-
puters can now do the calculations of algebra and
calculus, should we use this power to reduce the
curricular emphasis on calculations or to make the
teaching of these calculations more efficient? This
i1s a new question, with a very old answer.

Let Us Teach Guessing

Forty years ago George Pdlya wrote a brief pa-
per with the memorable title “Let Us Teach Guess-
ing” [Pdlya, 1950]. It is not differentiation that our
students need to learn, but the art of guessing. A
month spent learning the rules of differentiation re-
inforces a student’s ability to learn (and live by)
the rules. In contrast, time spent making conjec-
tures about derivatives will teach a student some-
thing about the art of mathematics and the science
of order.

With the aid of the mathematics-speaking com-
puter, students can for the first time learn college
mathematics by discovery. This is an opportunity
for pedagogy that mathematics educators cannot af-
ford to pass up. Mathematics is, after all, the sci-
ence of order and pattern, not just a mechanism for
grinding out formulas. Students discovering math-
ematics gain insight into the discovery of pattern,
and slowly build confidence in their own ability to
understand mathematics. Formerly, only students
of sufficient genius to forge ahead on their own could
have the experience of discovery. Now with comput-
ers as an aid, the majority of students can experi-
ence for themselves the joy of discovery.

Metaphors for Mathematics

Two metaphors from science are useful for un-
derstanding the relation between computer science,
mathematics, and education. Cosmologists long de-
bated two theories for the origin of the universe—
the Big Bang theory, and the theory of Continuous



Creation. Current evidence tilts the cosmology de-
bate in favor of the Big Bang. Unfortunately, this
is all too often the public image of mathematics as
well, even though in mathematics the evidence fa-
vors Continuous Creation.

The impact of computer science on mathemat-
ics and of mathematics on computer science is the
most powerful evidence available to beginning stu-
dents that mathematics is not just the product of
an original Euclidean big bang, but is continually
created in response to challenges both internal and
external. Students today, even beginning students,
can learn things that were simply not known twenty
years ago. We must not only teach new mathemat-
ics and new computer science, but we must teach as
well the fact that this mathematics and computer
science is new. That’s a very important lesson for
the public to learn.

The other apt metaphor for mathematics comes
from the history of the theory of evolution. Prior
to Darwin, the educated public believed that forms
of life were static, just as the educated public of
today assumes that the forms of mathematics are
static, laid down by Euclid, Newton, and Einstein.
Students learning mathematics from contemporary
textbooks are like the pupils of Linnaeus, the great
eighteenth-century Swedish botanist: they see a
static, pre-Darwinian discipline that is neither grow-
ing nor evolving. Learning mathematics for most
students is an exercise in classification and memo-
rization, in labeling notations, definitions, theorems,
and techniques that are laid out in textbooks as so
much flora in a wondrous if somewhat abstract Pla-
tonic universe.

Students rarely realize that mathematics con-
tinually evolves in response to both internal and
external pressures. Notations change; conjectures
emerge; theorems are proved; counterexamples are
discovered. Indeed, the passion for intellectual or-
der combined with the pressure of new problems—
especially those posed by the computer—force re-
searchers to continually create new mathematics
and archive old theories.

The practice of computing and the theory of
computer science combine to change mathematics
in ways that are highly visible and attractive to stu-
dents. This continual change reveals to students the
living character of mathematics, restoring to the ed-
ucated public some of what the experts have always
known—that mathematics is a living, evolving com-
ponent of human culture.
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WHAT ARE ALGORITHMS? WHAT IS ALGORITHMICS?

Stephen B. Maurer
Swarthmore College, Swarthmore, Pennsylvania 19081-1397, U.S.A.

Overview. Roughly speaking, an algorithm is a
precise, systematic method for solving some class of
problems. Algorithmics is the systematic study of
algorithms — how to devise them, describe them, val-
idate them and compare their relative merits. There
have been algorithms in mathematics since ancient
times, but algorithmics is new. Only with the ad-
vent of computers has it been possible to tackle such
large and complicated problems that a systematic
approach to algorithms is necessary. Because al-
gorithms are now essential in almost all business
and scientific applications of mathematics (as well
as being increasingly important to mathematicians
themselves and fundamentally important to com-
puter scientists), it is important that mathematics
education take algorithms and algorithmics into ac-
count.

This paper has four sections. In Section 1, by far
the longest, we explain what algorithms are in much
more detail, presenting many examples. In Section
2 we do the same for algorithmics. In Section 3 we
discuss several reasons why the study of algorithms
and algorithmics is valuable in mathematics, and
we also discuss some counterarguments. Finally, in
Section 4 we make some suggestions for incorporat-
ing algorithms and algorithmics into the secondary
and tertiary mathematics curriculum.

1. What Are Algorithms?

Algorithms turn input data into output data
through sequences of actions. For instance, an al-
gorithm might take two integers and output their
product. The rules specifying the algorithm (includ-
ing rules specifying what inputs are allowed) must
be precise enough to satisfy

1. Determinateness. For each allowed input,

the first action is uniquely determined, and
more generally, after each action in the se-
quence the successor action is uniquely de-
termined.
It doesn’t do us any good to have an algorithm that
doesn’t stop, so we also require
2. Finiteness. For any allowed input, the al-
gorithm must stop after a finite sequence of
actions.
Usually algorithms are devised to solve problems.
Such algorithms must be appropriate for the pur-
pose at hand:

3. Conclusiveness. When the algorithm termi-

nates, it must either output a solution to the
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problem for the given input, or it must indi-

cate that it cannot solve the problem.
In some cases it is reasonable to relax these stringent
requirements; we’ll take up this point later. One
can also ask: how precise is precise? Just how are
the rules to be stated to make them precise? Good
question. It depends on who or what you are talking
to. We will also address this further. But let’s turn
immediately to some examples.

Example 1: Arabic Multiplication

The traditional paper and pencil algorithm for
multiplying two numbers expressed in arabic numer-
als is brilliant. Too bad we all take it for granted.
It’s brilliant because it reduces a general problem
to a small subcase — how to multiply two single-
digit integers — and does so in a small amount of
space. Here’s the result of applying the algorithm

to 432 x 378:
432

378

3456
3024
1296

163296

Each row of intermediate calculation is obtained
by multiplying the top factor (432) by one digit of
the bottom factor. If we expand out the first inter-
mediate row in more detail, we get

432
8

16
24
32

3456

Of course, it’s never written this way. To save
space, the “carries” are either all done mentally, or
they are marked with small digits as follows:

2 1
3 4 5 6

We include Display (1) to make the role of single-
digit multiplications explicit. For instance, 16 is the
product of the 2 in 432 by the 8 in 378.

. Now, is this format precise enough for present-
ing Arabic multiplication? Apparently so, because
such a format does seem to suffice for teaching the
algorithm to children (when presented with many
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examples, lots of oral explanations, and hands-on
practice). And you do need to make use of dia-
grams if the physical positioning of symbols on the
page is part of the algorithm.

Nonetheless, this is not the format we will use
for other algorithms, and it is not a good format
for systematically verifying the defining conditions
1-3 above. So we now restate Arabic multiplica-
tion using “algorithmic language”, a language style
quite similar to a programming language. (We will
assume basic familiarity with how such languages
are to be read, e.g., what a loop is, what an assign-
ment is.) Actually, we restate only the part shown
in Display (1) — a multidigit number times a sin-
gle digit number. The algorithm makes use of two
procedures,

DigMult(a,b)  which multiplies the single
digits a and b and returns M;
and M,., the left and right dig-

its of the product.
DigAdd(a,b)  which adds the single digits a
and b and returns A; and A,
the left and right digits of the
sum. (A; will be either 0 or

1)

Here’s the algorithm:

Input ag,a,...,an [the ones, tens,. .., digits
of an (m+1)-digit number]
b [the one-digit multiplier]
Algorithm
carry « 0

for j=0tom
DigMult(a;, b)
DigAdd(M,, carry) [add any carry from
previous product]
Pj — A, [jth digit of the product known]
DigAdd(M;, A;) [needed in case the carry
affects the left digit]
carry — A, [carry to the next single-
digit multiplication]
endfor
if carry > 0 then P,,4, « carry
Output Py, Py, ..., Py and sometimes P44

[digits of the product]

This is no doubt hard to follow, but try carry-
ing it out on the example above. Look at 432 x 7
(the middle line of the first example), which shows
why the two lines before “endfor” are needed. That
this description is hard to follow should bring home
the point that the Arabic algorithm is really quite

subtle. (For instance, we don’t include a step just
before endfor to carry A;, because at this point 4,
is always 0. Do you see why?)

The advantage of this formulation of the algo-
rithm is that it is easier to verify that it is an al-
gorithm. Is it determinate? Yes, because each line
leaves no doubt about what is to be done, and the
order of execution is also specified — go down the
page, except when you get to the end of a loop, go
back to the beginning. Is it finite? Yes, because
the loop has only 5 lines, and the loop gets carried
out m + 1 times. Does it solve the problem? This
is not so obvious, but the specificity of the lines
makes 1t easier to present a proof when it is time to
get around to that. (We will talk about algorithm
verification later.)

Notice that this algorithm involves iteration:
some subprocess is applied repetitively. In this case
the subprocess of multiplying two single-digit num-
bers (and then carrying) was iterated. While an
algorithm does not have to involve iteration (or a
related type of repetition called recursion), almost
all algorithms of interest in mathematics do.

Example 2: Euclid’s Algorithm

This one is much older than the first, and also
much simpler, but perhaps not so well known. It is
the classical Greek method for finding the greatest
common divisor (ged) of two positive integers. It
assumes you already know how to divide and find
remainders. The algorithm keeps dividing and find-
ing a remainder until the remainder is 0. Then the
previous remainder is the ged of the original num-
bers.

Here is a numerical example. Find the ged of
147 and 33. The quotient of 147 divided by 33 is 4
with remainder 15. That 1s,

147 =33 x 44 15.

So any number that divides 147 and 33 also divides
15, and conversely, any number that divides 33 and
15 divides 147. Now, do the same operations to 33
and 15 that we did to 147 and 33: 15 divides into 33
with remainder 3. Thus a number divides 33 and 15
if and only if it divides 15 and 3. But 3 divides into
15 exactly. So the largest number dividing 3 and 15
is 3 itself. Thus the ged of 147 and 33 is 3.

In algorithmic language, Euclid’s algorithm is
the following:



Input m,n [integers >= 0]
Algorithm
num — m; denom «~— n
repeat until denom = 0
quot « |num/denom]|
[integer part of num/denom]
rem — num — quot*denom
num « denom; denom + rem
, [update num and denom)]
endrepeat

Output num

For instance, for the numerical example above,
initially num(erator) is 147 and denom(inator) is 33.
Since 33 # 0, we enter the repeat loop, quot(ient)
is computed as 4 and rem(ainder) as 15. Then
(33,15) become the new (num,denom) pair. Since
denom is still not 0, we traverse the loop again, and
(num,denom) becomes (15,3). At this point, work-
ing by hand, we immediately recognized that 3 di-
vides 15, but a computer must “discover” this by
following the rules. Since 3 # 0, we enter the loop
again, and update (num,denom) to (3,0). Now de-
nom = 0 and the algorithm quits, outputting num =
3 as the ged.

Notice there is no factoring in this algorithm.
Another way to find ged(m, n) is to factor m and
n, and then take the product of all common factors.
This second method is the standard one currently
taught in elementary schools in North America. For
small values of m and n, the second method is often
faster than Euclid’s method, but factoring very large
numbers is very hard. In general, Euclid’s method
is the way to go.

Euclid’s method is an algorithm. Clearly it is
determinate. It is finite, because rem is always a
nonnegative integer and gets smaller with each it-
eration, so eventually it must reach 0 and the algo-
rithm stops. The algorithm is conclusive (correctly
determines the gcd) for the reasons we argued in-
formally above. A formal proof would be by math-
ematical induction.

Example 3: Matrix Multiplication

Let A be an m xn matrix and B an n X p matrix.
Call the entry of A in row i (down from the top) and
column j (from the left) a;;. Similarly, B = [bj].
Then their product AB is defined to be the m x p
matrix whose (7, k) entry is

n

Dbk (2)

j=1

For instance,
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7 —6
1 2 3 5 4l = 6 -4
4 5 6| “l21 -18])°
3 -2
In particular, the (2,1) entry of the product is
4%T+5%(=5)+6%3 =21

How can we express the definition of matrix multi-
plication as an algorithm?

Informally, you just go through each combina-
tion of a row from A and a column from B and com-
pute their product according to (2). Their product
is a sum of real-number products, so we can com-
pute it by keeping a running sum and successively
adding real products until we are done. In algorith-
mic language we have

Input A, B,m,n,p
Algorithm
fori=1tom
fork=1top
Cik — 0
[initialize the ik entry of C = AB]
forj=1ton
Cik +— Cik + @z * bjp
endfor
endfor
endfor
Output C

Example 4: Construct /n

All the examples so far have been arithmetic or
algebraic. Here’s one from geometry. By construct-
ing a number r, we shall mean constructing a line
segment of length r, starting with a line segment of
length 1 and using a straightedge and compass. To
construct v/2, construct a unit perpendicular at one
end of the initial unit segment. By the Pythagorean
Theorem, the hypotenuse has length /2. Now it is
possible to construct /3 by repeating the process.
Construct a unit perpendicular at the end of the seg-
ment of length /2. The new hypotenuse will have
length \/g See Figure 1.

Figure 1
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By induction, it should be clear that /n may be
constructed for all positive integers n. Here is the
construction in algorithmic language.

Input n, unit line segment AB
Algorithm
forc=2ton

Construct BC 1 AB, with BC =1

AB —~ AC [change names]
endfor
Output AB [segment of length /7]

Is this determinate enough to be called an algo-
rithm? It depends on the audience. If the reader
knows well how to construct perpendiculars with
straightedge and compass, it 1s. If not, the line
“Construct BC 1L AB” must be expanded.

Example 5: Towers of Hanoi

Algorithmic approaches apply not just to tradi-
tional mathematical topics, but also to any situa-
tion where a systematic and repetitive approach is
needed for a solution. Towers of Hanoi (TOH) is a
game played with a set of n rings (or disks) of differ-
ent sizes and three poles. Initially the rings are all
on one pole, from smallest on top to largest on the
bottom. The object is to get them all to another
pole, in the same order, making moves according to
the following rules.

1. Move only one ring at a time.

2. A larger ring may never be placed on a
smaller ring.

TOH is often used by psychologists doing experi-
ments with children. While it is easy to figure out
solutions for n = 3 or 4, for larger n most kids soon
lose their way. University students often don’t do
much better! The key to understanding why the
game can be solved is recursion — reduce to the pre-
vious case. Suppose we already know how to solve
the (n—1)-ring game. Regarding that subgame as
an indivisible block, then Figure 2 shows how to
solve the n-ring game. This solution may be put into
algorithmic language if we allow a procedure (recall
DigMult in Example 1) to invoke itself. The pro-
cedure H in the algorithm is first defined (in terms
of itself) and then invoked by the {one-line) main
algorithm. The poles are numbered 1,2,3. Note,
therefore, that if r and s are numbers of two differ-
ent poles, then 6 — r — s 1s the number of the third
pole.

n—-1
rings

I
|

lﬁill
L[] LA

Figure 2

Input num, Pinit, Pfin [number of disks,
initial pole number, final pole number]
Algorithm
procedure H(n, r, s)
[move n disks from pole r to pole s]
if n = 1 then Move disk on r to s
else H(n—1,r 6—r—s)
[move all but bottom disk to nontarget pole]
Move disk on 7 to s
H(n—1,6—r—s,s)
[move other disks onto target pole]
endif
endprocedure
H(num, Pinit, Pfin)
[main algorithm — invoke H]
Output Solution to the game

That this is an algorithm is not so clear. It’s
not clear how to start carrying out the call of H,
since mostly it just calls itself again instead of mov-
ing disks. It’s also not clear that when it finishes
(if it finishes), it has solved the game. But in fact
it is an algorithm, and once one develops a good
understanding of how recursion works, it is fairly
evident why. In any event, good programming lan-
guages have recursion built in, and thus the algo-
rithm above is easy to translate into such languages.

Example 6: The Quadratic formula

The traditional formula for solving ax?+bz+c =
0 seems simple enough; where’s the algorithm and
why bother with it? Well, there are several cases -
two distinct real roots, one repeated real root, no
real roots — and properly choosing between cases is
an algorithmic matter. Even if the audience knows
about complex numbers, if they want to compute



solutions, there is the problem that most calculators
and computers won’t accept a request to take the
square root of a negative number. So presenting the
solution process as an algorithm has merit.

Input a,b, ¢ [coefficients of
az? + bz + ¢, with a # 0]
Algorithm
D — 4% — 4ac
if [three cases follow]
D >0 then [two real roots]

s —VD
z; — (b+s)/2a
z2 — (b—s)/2a
D=0 then z; — 23 — b/2a
[one repeated real root]
D <0 then [two complex roots]
§ /=D
z1 — (b+is)/2a
zg2 — (b—is)/2a
endif
Output the roots, z; and z;

If we want to be even more comprehensive, and
allow input with a = 0, then we have to include
several more cases. Note that there are no loops in
this algorithm, but several if-statements (even more
if a = 0 is allowed). Many procedures in the ev-
eryday world involve more multiple decisions than
iteration — think of tax laws. Such procedures trans-
late into algorithms with many if-statements.

Example 7: Numerical Solution of Equations

There is no formula for most equations f(z) = 0
that need to be solved in real applications, so one
must use numerical approximations. A common ap-
proach is the bisection method. If f(z) is continu-
ous, and one can find input values a and b with
f(a) < 0 and f(b) > O, then there is at least one
root in between. (f(a) > 0 and f(b) < 0 is just as
good, and below we cover both cases by the condi-
tion f(a)f(b) < 0.) Try the midpoint ¢ = (a + b)/2.
It is unlikely that f(c) = 0, but the sign of f(c) tells
us which half of the interval [a, b] to look in further.
Now iterate:
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Input a,b [£(a)£(8) < 0]
Algorithm
repeat
¢ — (a+b)/2
if f(c) = 0 then exit
if sign(f(c)) = sign(f(a))
then b — ¢
else a — ¢
endrepeat
Output ¢

Now, this is not an algorithm, because it can go
on forever. For instance, if f(z) = z2—2,a =1 and
b = 2, then it takes an infinite number of halvings
to converge to the root ¢ = V2. Of course, a cutoff
condition can be added:

endrepeat when |a—b| < tolerance

for whatever tolerance you choose. Even with such
a condition, a real computer running this algorithm
may not terminate, because, if the tolerance chosen
is very small, roundoff error may result in |a—b| >
tolerance no matter how many iterations are per-
formed.

Nonetheless, it may be best to present this algo-
rithm initially in the nonterminating form above —
it gets at the key idea of bisection without obscur-
ing details, and it also ties in with the concepts of
infinite processes and limits needed for a full math-
ematical attack. So this is our first example that
suggests why the three defining conditions at the
start of this section should often be relaxed.

Example 8: Sequences of Heads and Tails

An important role of mathematics is to guide us
in making decisions under uncertainty. This can of-
ten be done using probability theory, but often the
most direct approach is simulation. To take a very
simple example, suppose we flip a fair coin until we
get two heads in a row. How many flips should we
expect to take? If we actually carry out this ex-
periment many times, we find out what to expect.
Here is a algorithm to carry out the experiment one
time. Rand(0,1) is a command for flipping a coin;
the output 1 means heads, 0 means tails. The algo-
rithm could be run a thousand times inside a loop
of a bigger algorithm, which could then analyze the
output data in various ways (take the average, the
variance, draw graphs, etc).
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Input (none)
Algorithm
count «— headct — 0
repeat
flip — Rand(0,1)
count «— count + 1
ifflip=1
then headct «— headct + 1
else headct — 0

[0 or 1, at random]

endrepeat when headct = 2
Output count
[total flips to get 2 heads in a row]

Now, this algorithm violates our definition in
two ways. First, it is not determinate: actions are
not uniquely determined. Second, it is theoretically
possible that it won’t terminate — we might get Os
forever. Nonetheless, we certainly want to be able
to study such “algorithms”. The hard part, actu-
ally, is to get computers to perform such procedures,
since computers really are determinate machines. In
other words, how can computers be made to produce
what appear to be random numbers? Fortunately,
there are good answers, using “pseudo-random num-
ber generators”.

Example 9: A Calculator Exercise

Except in Example 1 we have not said anything
about how our calculations are carried out; it could
be by hand, by calculator, or by computer. In fact,
what is easy to do depends on the device. In this
example let us specifically consider hand calcula-
tors, since one can hope that this product of mod-
ern technology can be made available to students
almost worldwide.

Consider the problem:

evaluate a(by + b2 + - - - + by,).

How shall we do this? On my scientific calculator,
which has parentheses buttons, I can do it exactly
in the order presented.

ax (b +b24+ -+ by) = (3)

where each symbol now represents a button (except
a, by, etc., may represent many number buttons, and

. represents repetition). However, we can save
time if we multiply by a on the right:

by + by +

A “4” would do as well as the first “="; the point
is, the sum is computed as we go along, so once the
sum is finished, we can proceed to multiplication.
One button-push is saved. Also, if you have only
a simple 4-function calculator without parentheses

i+ by, = xXa = (4)

buttons, approach (4) is available while approach
(3) is not.

Still other approaches are possible. Using the
distributive law, we could instead evaluate

aby +abs + - -+ ab,,.

The direct approach to this, using the fact that mul-
tiplications are completed before addition (on my
calculator), is

a x b +axb+ - 4+axbd, =

which involves considerably more button-pushes.
But many calculators, mine included, have a fea-
ture to shorten repeated multiplication by the same
factor: hit the x button twice. Thus the following
string of steps displays first ab;, then abs, and so
on:

axbe:b2: b3:

Now we want to add these up, but hitting + (or any
other operator on the main display) will cancel the
effect of x x. Soinstead we push M+, the memory
plus button, which does the addition in the hidden
memory register. Finally, at the end, we push MR
to remove memory:

a x xb, M+ b M+ -.. b, M+ MR (5)

Perhaps this sequence looks sufficiently odd that a
presentation in algorithmic language would help:

push ¢ x x b M+
fork=2ton

push &, M+
endfor
push MR

A count shows that method (5) takes the
same number of button-pushes as the original ap-
proach (3), and only one more than the best ap-
proach (4). So this problem provides a good exam-
ple of how the issue of relative efficiency of algo-
rithms pertains to even very elementary mathemat-
ics.

To close this section, let us emphasize that by al-
gorithms we do not mean computer programs. We
mean procedures for solving problems presented in a
sufficiently precise form for careful analysis. While
we have written most of our algorithms in a style
which until recently has been associated only with
computer programs, this 1s because that style is a
good one for making key points precise. Our al-
gorithm descriptions cannot be input directly to
any computer. They omit all sorts of information
that a computer would need to know about (how is
the data input and output, what type of variables



need to be declared, how much storage must be re-
served?). Many computer scientists call this sort of
algorithm description pseudocode, because it is not
real code for computers. But it is quite real for
the sort of communication that interests us here —
between humans — and so we prefer to call it algo-
rithmic language.

2. What Is Algorithmics?

First, algorithmics does not mean performing
a lot of algorithms. Students worldwide have suf-
fered too much rote repetition of mathematical al-
gorithms over the years already. In the future, al-
gorithms will be carried out more and more by ma-
chines, or by person-machine combinations, so hand
calculation except of the simplest sort should receive
less emphasis.

Algorithmics is the process of creating, under-
standing, validating and comparing algorithms. In
short, it is thinking about algorithms, not thinking
like algorithms.

Here is another way to put this. The phrase “al-
gorithmic mathematics” has two meanings, tradi-
tional and contemporary [Maurer, 1984)]. The tradi-
tional meaning emphasizes carrying out algorithms,
the contemporary emphasizes developing them and
choosing intelligently among different algorithms for
the same task.

We now discuss the components of algorithmics
in more detail. It is standard to divide algorithmics
into three parts, design, verification, and analysis.

Algorithm Design is the process of algorithm cre-
ation. There are some general principles of algo-
rithm design; it does not have to depend on un-
teachable flashes of originality.

The most important idea, as in much of math-
ematics, is to break a problem into pieces. If you
can find a small building block that you understand,
try to iterate on that block. To sum a sequence of
numbers, reduce to the case of summing two num-
bers; create a running sum and add one more num-
ber to it each time. To multiply two large num-
bers (Example 1), figure out a way to reduce it to
many instances of multiplying two one-digit num-
bers. To multiply two matrices (Example 3), first
use the definition (2) to reduce this to many cases
of a real-number calculation, and then use iteration
to return this to single additions and single multi-
plications.

Sometimes one does not immediately see how to
reduce a large problem to small pieces. Then one
tries to reduce it to slightly smaller pieces. What
is the ged of two large numbers m and n (Exam-
ple 2)7 Well, does some slightly smaller pair of
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numbers have the same gcd? Yes, m — n and n
have the same gcd as m and n, because anything
that divides (evenly into) m and n divides m — n
and n, and anything that divides m ~ n and n di-
vides m = (m—n) + n and n. And if subtracting n
from m once preserves the gcd, then subtracting as
many times as possible, leaving the remainder when
m is divided by n, also preserves the gcd. This is
the insight that leads to Euclid’s algorithm.

The algorithm for Towers of Hanoi is also based
on reducing to a smaller case. You can solve the
game with n rings if you can solve the game with
n — 1 rings, as shown in Fig. 2.

There are, of course, many other principles of al-
gorithm design, and whole university courses are de-
voted to it. Here we’ll mention two more, top down
design and bottom up design. The former refers to
outlining the big picture first, and then filling in the
details of the parts later. The latter refers to start-
ing with small pieces and putting them together
to do the whole job. While top down is generally
the better approach for involved problems, both ap-
proaches have their roles.

Algorithm design is more or less the same thing
as problem-solving methodology. Since mathemat-
ics education is permeated with problem solving, al-
gorithm design is rightly an important component
of a modern mathematics education. Practice in de-
sign not only makes people more successful at solv-
ing problems, but also it results in algorithms that
are easier to communicate to others and to verify.

Algorithm Verification is the process of confirm-
ing that algorithms solve the problems they claim
to solve; in other words, proving algorithms correct.
Since loops are a primary aspect of algorithms, and
since a loop can be iterated any nonnegative integer
number of times, mathematical induction is the key
method of verification.

Take Euclid’s algorithm (Example 2). Let P(k)
be the statement that, just before commencing the
kth pass of the repeat loop, ged(num, denom) is
the same as the gcd of the original m and n. That
P(k) is true for all ¥ > 1 is easily proved by in-
duction, using the fact that ged(m,n) = ged(n,r)
where r is the remainder when m is divided by n.
(We argued this fact informally when Example 2
was introduced, and again somewhat differently five
paragraphs ago.) When the loop entrance condi-
tion is tested for the last time, denom = 0, and
so clearly gcd(num, denom) = num, and num is the
value output. So by the induction, the output equals
ged(m, n) and the algorithm is valid. A proof of cor-
rectness like this is called a proof by loop invariant;
the loop invariant is the statement you prove to be
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correct each time you enter the loop.

Or take the algorithm for Towers of Hanoi. We
may do induction on n, using the statement that
any call of procedure H(n,r,s) correctly moves n
rings from pole r to pole s. Since the very definition
of H involves itself with n — 1 rings, induction is
easy to carry out. In general, a recursive algorithm
immediately suggests an inductive proof.

The specifics of how to do induction for algo-
rithms is not the point here. The point is that in-
duction is the right tool. Mathematical induction,
heretofore regarded in some quarters as a special-
ized method for proving certain formulas for sums,
must be viewed as a more central proof method in
any curriculum that gives substantial emphasis to
algorithmics.

Algorithms need to be verified because more and
more our lives depend on them, and once they are
in place (say in our bank, to maintain our account
records) they tend to get treated as black boxes. To
be honest, algorithms used in the world at large are
very complicated, too complicated for humans to
carry out detailed mathematical proofs of correct-
ness; and machine verification of correctness is still
in its childhood. Thus, empirical debugging tech-
niques play a vital role.

But mathematical verification should not be dis-
missed. First, big programs use many small build-
ing blocks which can or have been verified. Second,
the algorithms whose correctness you are primar-
ily responsible for are the ones you create yourself,
and knowledge of how to verify an algorithm can be
helpful at the design stage. If you propose to in-
clude a loop in your algorithm, and you know that
the way to validate it is with a loop invariant, you
will devise the loop invariant before you write the
loop, and then you can write it to be sure that the
loop invariant is preserved.

Algorithm Analysis is the process of determining
how long an algorithm takes to run, and comparing
that run time to that of other algorithms for the
same problem and to absolute standards for that
problem. “Run time” is a rough way to put it, since
that suggests an actual machine (or person) to per-
form it, and different machines {and persons) will
perform differently on the same algorithm. Usually
one picks some salient feature, say the number of
real-number additions if addition is the main oper-
ation in the algorithm under consideration, and de-
termines the number of repetitions of this feature as
a function of the input size. This function is called
the complexity of the algorithm, or its efficiency.

Take, for instance, our algorithm for matrix mul-
tiplication (Example 3). If the two input matrices

are both n x n, then there are n? entries to com-
pute, and each entry requires n real-number multi-
plications and n — 1 additions. Therefore, the whole
algorithm takes n? steps (if only multiplications are
counted), and 2n3 — n? (if additions and multiplica-
tions are counted). Or take Towers of Hanoi. The
obvious thing to count is number of ring moves. It
turns out that, if there are n rings, the algorithm
takes 2”7 — 1 moves. If {,, is the number of moves
with n rings, the recursive definition of procedure H
leads to the conditions

tag1 = 28, + 1, ty =1 (6)

the unique solution of these conditions is ,, = 2" —1.

Calculations like these become valuable if the
number of steps appears large and one wonders
whether the problem will be tractable with the com-
puting equipment available. Suppose, for instance,
that a problem requires n! steps when there are
n input data. (Brute force approaches to the fa-
mous Traveling Salesperson Problem take this many
steps, and the best exact methods known are in gen-
eral not much better.) Then when n is merely 25,
a computer that could do a billion steps a second
would still take 50 million years to solve the prob-
lem! In contrast, the same computer could play 25-
ring Towers of Hanoi in only .003 seconds, and could
compute the product of two 1000 x 1000 matrices in
a second.

These efficiency calculations become even more
interesting when you have more than one algorithm
for the same problem. Take Example 9 for comput-
ing a(by + - -+ b,) on a hand calculator. The best
approach we discussed takes n+2+C button-pushes,
where C is the number of pushes needed to enter
all of a,by,...,b,; two others took n 4+ 3 + C and
the fourth approach took much longer. On a hand
calculator, each button-push takes time, so even a
saving of one is significant. Furthermore, there are
lots of other, elementary problems where different
calculator methods make a considerable difference.
Take the problem of evaluating a polynomial

p(z) = anz™ + no1z" V4 -+ ap.

There are a great many multiplications involved, es-
pecially if you don’t have an exponential key. But
there is another way to write this polynomial, best
understood in traditional notation if we use a nu-
merical example. If

p(z) =4z + 323+ 222 4 2 + 8,
then in nested form

p(z) = z(z(z(4z+ 3)+ 2) + 1) + 8.



Calculating p(z) in this form takes many fewer steps
(count them) and it’s easy to carry out even with a
simple four-function calculator and no memory. By
the way, to make clear how both approaches work in
general, and to make the algorithms precise enough
to count the steps without confusion, the first thing
to do is figure out how to state them in algorithmic
language.

Or take the algorithm for constructing /n (Ex-
ample 4). It takes n — 1 right triangle constructions
to obtain y/n. Noting this surely will inspire stu-
dents to find a better way.

For Euclid’s algorithm, the number of steps de-
pends on the specific input, not just the size (num-
ber of digits) of the input. And in the Two Heads
algorithm (Example 8), there is no input at all, but
the number of steps varies. In these cases one takes
several measures of the algorithm’s efficiency — best
case, worst case and average case. Average case is
especially important, but usually hard to analyze.

The hardest problem is to compare an algorithm
to an absolute standard. The complexity of a prob-
lem (as opposed to the complexity of an algorithm)
is defined to be the number of steps needed by the
best possible algorithm for the problem. Problem
complexity is the subject of much current research -
it’s hard to figure out the complexity if, as usual,
you don’t know what the best algorithm is. For in-
stance, it is known that Arabic multiplication and
standard matrix multiplication are not the best al-
gorithms for their problems, at least when n is quite
large, but no one knows what the best algorithms
are or how fast they are. Nonetheless, progress has
been made in finding bounds on problem complex-
ity. And every once in a while the complexity of
a problem can be determined completely. For in-
stance, it is not hard to show that the algorithm we
gave for Towers of Hanoi is optimal.

In closing this section, we note that there are
other ways to analyze the goodness of an algorithm
than speed. One can consider space complexity —
how much storage is needed. One can also con-
sider numerical stability. For instance, in solving
a quadratic (Example 6), if & > 0 and 4ac is very
small compared to b2, then (b~ s)/2a is practically
0, and roundoff error may swamp the computation.
In this case it is better to set z3 to 2¢/(b+s). Alge-
braically, the two formulas are equivalent, but less
roundoff error is introduced in the latter since b+ s
is not near 0.

3. Why Study Algorithmics?

We have already given our main reason: the use
of sophisticated algorithms to solve problems is al-
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ready pervasive in the world, and so informed citi-
zens need to know what can be done by algorithms,
how it is done, and how algorithms can be assessed.
Also, a fair number of people need to know how to
create algorithms.

Mathematically, this is an extrinsic justifica-
tion; algorithms are important, so students ought
to study them whether or not they are interesting
mathematics or do good things for mathematics ed-
ucation. Fortunately, there is equally strong intrin-
sic justification.

First, introducing algorithmics in school raises
fresh questions about old material and allows for
greater student creativity. As Example 9 (calcu-
lator efficiency) shows, even basic arithmetic is no
longer cut and dried. Too many traditional curric-
ula consisted of many computational courses where
students were told the right methods, and a few
proof courses (say, classical geometry) where they
were asked to be creative, but in a narrow theo-
retical way. In contrast, each question of the sort
“devise an algorithm for ...” allows for many cor-
rect answers (not all equally good). Even a student
who does not have a good theoretical grasp of the
problem at hand may come up with a correct algo-
rithm.

Even incorrect algorithms can have worthy fea-
tures. They may involve good heuristics — imperfect
but insightful ideas that often lead to a reasonably
good solution in a reasonable amount of time. Also,
an analysis of their flaws may be instructive and lead
to interesting class discussions. For instance, sup-
pose you want to pick a random set of two distinct
numbers from 1 to 10. What’s wrong with picking a
number i at random from 1 to 9 and then picking a
number j at random from i41 to 10? I once heard a
businessman say, speaking at a college graduation,
that in the outside world one learns from one’s fail-
ures. While there may not be much to learn from
mistakes in traditional rote calculations, there is a
great deal to learn from one’s failures in devising
algorithms.

A second intrinsic reason for studying algorith-
mics is: it can help students understand traditional
mathematics better. You really have to understand
a procedure well in order to “explain” it to a com-
puter, or to write it in algorithmic language. For
instance, to understand Arabic multiplication well
enough to describe it in algorithmic language (Ex-
ample 1), you really have to understand place no-
tation and the distributive law. And it’s not just
procedures that come to be understood better, but
abstract concepts as well. For instance, the function
concept is concretized by seeing algorithms turn in-
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puts into outputs. Real numbers are made more
concrete as the student sees (Example 7) that suc-
cessive rational approximations needed to compute
them. Moreover, when students test their algorith-
mic representations by running them on computers,
they get instant feedback as to whether their con-
structions are correct.

There are also arguments against studying algo-
rithmics in school. The basic argument goes: the
sort of questions emphasized in algorithmics are al-
ready outdated, or soon will be. For instance, al-
gorithmics puts great emphasis on the relative ef-
ficiency of algorithms. But if one approach to a
problem takes n2 steps and another takes n steps,
the difference in actual seconds will be unnoticeable
for the values of n used in any classroom. Or, why
bother discussing methods for doing computations
on a four-function calculator when soon all calcu-
lators will be much more powerful? Indeed, what’s
the point of talking about the merits of different
methods of polynomial evaluation, when on the now
popular “algebraic” calculators, you can punch in
the definition of a function as a formula in z, then
punch in a numerical value for £ and finally just hit
the EVAL button? One doesn’t need to know any
method for breaking down the evaluation of the for-
mula into small steps because the calculator does it
all.

Generalizing, computing devices are getting
more and more advanced in the sense that they
can respond to higher and higher level commands.
When you think that, in the wings, there are ma-
chines that will create proofs and create algorithms
for solving problems, why do students need to be
schooled in the ability to create algorithms them-
selves?

I answer as follows. No doubt the level at which
it will be appropriate to do algorithmic analysis will
change over time. I really like to discuss different
methods of polynomial evaluation with my classes,
but one day (perhaps soon) this may seem as out-
dated to them as if I were to explain the theory be-
hind slide rules. But if we can draw any lesson from
the history of computing technology, humankind,
including students, will always use technology to its
limits, and its most powerful use will always involve
the interaction of human and machine. To pick a
simple example, I am not worried that the differ-
ence between an n’-step algorithm and an n-step
algorithm will be lost on students. First, some stu-
dent always tries to run a recently learned algorithm
on data that is too large, and wonders out loud why
the machine sat spinning its wheels. Second, even if
most students stick to small “textbook” data sets,

it is easy to show them that in the outside world
some very large problems must be solved where dif-
ferences in algorithm efficiency are crucial. Sorting
and searching (discussed later) provide good exam-
ples; governments and large businesses must sort
and search enormous data sets.

The issue, then, is to keep the algorithmic exam-
ples up to date. This can be done if educators keep
informed about the latest research and the latest
technology.

Sometimes the exact opposite reason is proposed
for not studying algorithmics. It is a theorem that
there is no algorithm for determining which prob-
lems are solvable by algorithms. (This is because the
“universal Turing machine” cannot solve the “halt-
ing problem”.) So to emphasize algorithmics either
misleads them about what algorithms can do or cuts
them off from problems that have no algorithmic so-
lutions.

But we do not propose that only algorithmic ap-
proaches to mathematics be studied. We only pro-
pose that algorithmics receive much more attention
than previously.

4. Suggestions For Implementation

Two disclaimers: First, my knowledge of cur-
ricula worldwide is limited, and so I speak mostly
from an American viewpoint. Second, in a paper
this length, one can at most give illustrative exam-
ples and broad ideas of how to implement algorith-
mics. For more detailed ideas, appropriate at least
in North America, see [NCTM 1989, Kenney 1991].
The suggestions below concern the primary and sec-
ondary levels except for a few brief remarks about
the university level at the end.

Look at traditional computations more closely.
Basic arithmetic, computations with polynomials,
solutions of linear equations — such things are often
taken as routine and devoid of opportunity for fresh
thought. But from the viewpoint of algorithmics
there is plenty to think about. Students can dis-
cover traditional algorithms using design principles,
and discover alternative algorithms. While they are
unlikely to discover significantly faster algorithms,
they can be told (or, at a higher level, shown) that
faster algorithms exist, and that best algorithms are
unknown.

Treat nontraditional compulations related to
classical questions. In every country students learn
closed form solutions to certain sorts of equations,
but they don’t always look closely at how to eval-
uate those solutions accurately, or discuss methods
for approximately solving equations without solu-
tion formulas. Students often learn to count per-



mutations and combinations, but they don’t often
consider how to efficiently list all of them of a certain
size, or generate a random one. In short, classical
formulas that don’t appear algorithmic raise algo-
rithmic issues.

Introduce some new topics. There are whole
fields of mathematics, with many applications, that
have an algorithmic flavor and are not represented
at all in many curricula. Many of these are grouped
these days under the headings discrete mathematics,
operations research and theoretical computer sci-
ence. Here are a few examples, but at this point they

.are little more than name-dropping, and one should
refer to texts in these fields, such as [Hillier and
Lieberman 1986, Manber 1989, Maurer and Ralston
1991)].

Difference equations is the study of inductively
defined sequences such as the step-count sequence
t,, of Towers of Hanoi in Display (6). These include
the traditional arithmetic and geometric sequences
and series — and much more. Computing terms in
inductively defined sequences is immediately an al-
gorithmic question, and conversely, analyzing algo-
rithms reduces to analyzing difference equations.

Graph theory, in the sense of networks, is full
of algorithmic questions. If a graph represents an
existing road network, how do you find the shortest
routes between points (in distance, time, or what-
ever)? If the network represents the possible links
between cities is a telephone network planned for a
developing region, how do you decide which set of
links will connect up the region at minimum cost?
There are a variety of good (and not so good) algo-
rithms for such problems, and many of these algo-
rithms are not hard for students to discover.

Sorting and searching (e.g., alphabetizing and
looking through an alphabetized list for a word) are
standard computer science examples that wouldn’t
traditionally be thought of as having any mathemat-
ical content — clearly it is possible to sort and search,
so what’s the problem? But once again, there are
lots of different methods, with various efficiencies,
and various challenges to verify them and analyze
them.

Make computing power available to students.
This is a tall order. No matter how rich the country,
there are always newer and more powerful devices
one could want, and even 1n rich countries it may be
a long time before there is one computer per student
in every class. But the point is, algorithmic ques-
tions take on much more life when students have
what they regard as powerful computing aids, and
then they discover they can still devise problems
that aren’t solved instantaneously. As discussed ear-
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lier, even four-function calculators are very helpful
in bringing to life algorithm design and efficiency
questions. With computers as well as calculators,
one can start in the early years with such things as
the language Logo and Turtle graphics, and move
in later years to computer algebra systems.

Introduce algorithmic language. Whatever com-
puting power is available, precise methods for de-
scribing algorithms are necessary if algorithms are
to be an object of study and not just something
students perform. There is no standard algorithmic
language, and perhaps different sorts of languages
are best for problems to be treated with different
sorts of machines (or by hand). Nonetheless, it is
not hard to devise useful language constructs.

Put more emphasis on mathematical induction.
We have indicated how induction is the main
method for validating algorithms. Actually, induc-
tion can be viewed more broadly, and as such is at
the foundation of algorithmics. There are inductive
discovery techniques (reduce to the previous case, or
build up from small cases to find a pattern), induc-
tive definitions, as in Display (6), inductive algo-
rithm commands (loops and recursive procedures)
as well as inductive proofs.

Eliminate the schism between solving and com-
puting. Traditionally there is pure mathematics and
applied mathematics. Pure mathematicians prove
that solutions exists, and applied mathematicians
figure out how to find them. In algorithmic math-
ematics, good computation methods are found si-
multaneously with showing that solutions exist. By
putting these two issues together right from the ear-
liest years, we help to overcome what has sometimes
been an unfortunate two-class system in mathemat-
ics and science.

A few words about the university level. Here
the schism between pure and applied has been par-
ticularly acute. But it is breaking down. Many
research mathematicians in pure fields are finding
algorithmic questions interesting. Some algebraists,
for instance, are now very interested in how classical
objects in group theory can best be computed [Bee-
son 1990; Mines, Richman and Ruitenberg 1988].
This could filter into the classroom. Even in calcu-
lus, some questions can be given a much more al-
gorithmic flavor than they have been. The rules of
differentiation, instead of simply being a set of rules,
can be viewed as the parts of an algorithm that de-
termines the derivative for any elementary function
(once elementary functions are given an inductive
definition!). The rules of integration can be viewed
as part of an algorithm that determines the integral
of some elementary functions, and some discussion
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can be added that integration is no longer an “art”,
because there is an algorithm for determining ex-
actly when a function can be integrated in closed
form. Those university mathematicians who have
gotten interested in algorithmic questions should be
encouraged to share with their colleagues their ideas
about how to introduce these new approaches in the
standard courses.
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It is now clear to an anybody that a working
mathematician cannot ignore computers: as a con-
sequence, it is commonly admitted that students in
mathematics, and especially those who intend to be
teachers in the field, have to be exposed to some

“high-level language (such as Pascal). Nevertheless,
this is far from enough: the question of whether stu-
dents in mathematics should be familiar with some
parts of the theoretical foundations of computer sci-
ence cannot be avoided because these topics are pre-
cisely the parts of computer science close to mathe-
matics and seem to be necessary in order to estab-
lish connections between both fields that go beyond
the ability of using the computing power of modern
machines.

In France, following this line of ideas, the study
of algorithms and related topics has become, in
most universities, a significant part of the standard
curriculum leading to graduation in mathematics.
Also, an optional test in computer science has been
offered for a few years in the well-established “Con-
cours d’Agrégation de Mathématiques”, which is a
kind of “teaching Ph-D”, passed by most of the
teachers for the age-group 17-22.

The author has recently published a book en-
titled “Fondements Mathématiques de 1'Informa-
tique”[1990], which covers a large part of the re-
quirements in computer science for undergraduate
programs in mathematics. The aim of the present
contribution is precisely to present some general
ideas that grew during the process of writing up
that book. These ideas are my personal views al-
though I owe a great debt to many colleagues with
whom I have had inspiring discussions.

Before going into greater detail, let me make one
remark: Mastering some of the basic tools in com-
puter science will not turn a mathematician into a
computer scientist. Instead, it should help to de-
velop a different frame of mind, suitable to under-
stand the specific features of computer science. This
is most important for a mathematician because, as is
shown in other contributions in this book, these spe-
cific features will necessalily affect both the teaching
and the practice of mathematics themselves.

Around the notion of computation
Computation Theory is considered by many peo-
ple to be a very dull subject; nevertheless, it is the
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first burden of the theory to provide a suitable crite-
rion for drawing a limit between what is computable
(or effective) and what is not. A simple way would
be to use the word computable for everything that
can be processed on a real computer. Although this
point of view is not completely meaningless, it re-
mains rather vague and cannot be considered as a
genuine mathematical notion because of its lack of
precision. Furthermore, this point of view is not
even historically correct: a lot of outstanding work
connected with the subject of computation theory
was published before the first modern computer was
built. For example, note the work of Turing [1936],
Post [1936] on computation theory itself, and also
the work of McCulloch and Pitts [1943] on the mod-
elling of neuron nets, from which the theory of au-
tomata grew.

It is precisely the theory of automata that we we
propose to choose as a starting point. Many reasons
can be put forward in order to justify such a choice.
The theory is simple, established on firm mathe-
matical grounds and provides various exercises in
programming: for example, one can simulate an au-
tomaton in a high-level language like Pascal or dis-
cuss algorithms that compute the minimal automa-
ton. Also, the concept of non-determinism, which
is of utmost importance in theoretical computer sci-
ence, can be quickly and naturally introduced in a
simple setting. Finally, the theory of automata has
several applications: to text editors and compilers
in particular; this is not a minor argument.

Nevertheless, one can easily come to the con-
clusion that automata do not provide a satisfactory
model for real machines. This conclusion can be
reached by writing down simple languages that are
not accepted by a finite automaton but also through
the convincing observation that a central feature of
computers is completely wiped out, namely their
ability to store data in a memory. We are thus
back to our original problem of defining the notion
of computable and it is reasonable, at this point,
to require that this notion should be described us-
ing various different techniques that come out to
be equivalent: this will ensure that a mathemat-
ical invariant has really been found and this will
make Church’s Thesis highly plausible. (Recall that
Church’s thesis states that the notion of machine-
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computable function and the mathematical family
of recursive functions are identical).

Four distinct approaches can be taken.

¢ Adding a memory device to a finite au-
tomaton. This yields the definition of a Turing
machine.

e Directly modelling actual computers. This
can be done through the notion of a random ac-
cess machine (cf. Cook and Reckhow [1973])
operated by a very simple language similar to
machine code.

e Defining a simple class of programs. For
example one can define a restricted version of
Pascal which uses only the integer type and the
control sequences if ... then ... else and while

. do. 7

e Defining the class of (partial) recursive
functions. This is a good opportunity to dis-
cuss functional languages: recursive definitions
can be handled by using constructs that are ex-
actly similar to those appearing in Lisp.

The proof that all these definitions are actually
equivalent is a source of very interesting observa-
tions. For example, the fact that the restricted ver-
sion of Pascal can compute all recursive functions
proves the well-known fact that the goto statement
can be dispensed with. It may be worthwhile to note
that replacing while ... do by for only allows the
computation of primitive recursive functions. Also,
the simulation of a random access machine by a Tur-
ing machine is a good exercise that shows how to
handle a sequential memory.

Once the notion of a computable function has
been given a precise definition, it becomes possible
to discuss decidability issues: By coding Turing ma-
chines and constructing a universal machine, it does
not require much more effort to state correctly the
“halting problem” and show that it is semidecidable
but not decidable (which means that a machine can
find positive answers in a finite computation time
but cannot do the same both for positive and nega-
tive answers). It is not clear that the study of gen-
eral recursion theory should be pursued. Still, one
may wish to present the semantics of recursive pro-
cedures and the fixed-point approach to programs
and develop the recursion-theoretic tools that are
needed, such as Kleene’s theorem (which basically
states that the name of a recursive function can be
used within its own definition).

Then, one can have a discussion on whether or
not the dichotomy decidable/undecidable is of prac-
tical significance. This is a way to introduce Com-
plexity Theory through the constraints of time. Go-
ing back to the various mathematical models of com-

putation, one can explain how a basic cost can be
attached to the execution of each instruction, the
overall cost (or complezity) being the sum of all
basic costs. Thus, one can define the complezity
function of an algorithm which measures its cost in
terms of the size of the data. Of course this com-
plexity depends on the abstract machine chosen but
one can check that, when one machine is simulated
by another, the complexity functions are polynomi-
ally related. This allows the definition of the class
P of polynomial time computations, which is a rea-
sonable candidate for modelling a class of problems
sometimes called feasible or tractable.

Around the notion of algorithm

Now that we are equipped with a theoretical no-
tion of complexity, it is necessary to use it in con-
crete situations. This can be done through a re-
view of various algorithms. This review is, by no
means, an exercise in programming style, even if
correct programs have to be written at some point.
The emphasis should be on the design and analy-
sis of algorithms, which are very closely connected.
Of course, the rules of the game should be clearly
stated and discussed, especially the choice between
the two main notions of complexity that are in use:
worst-case analysis and average-case analysis. This
choice depends on the underlying model: for exam-
ple, average-case analysis is relevant when the prob-
ability of “ill-behaved” cases is small. In both cases,
the analysis is combinatorial in character and quite
often yields non-trivial recurrence relations. In or-
der to handle these, some specific tools are needed,
like the statistics of permutations and distributions
and the use of generating series (cf. Knuth [1973]).
Generally, such techniques (e.g. the use of singu-
lar points of the generating series) only allow an
asymptotic analysis and one may ask if this kind
of information has any practical meaning: after all,
the size of the data are bounded by the computing
environment! It turns out that the asymptotic anal-
ysis 1s actually relevant: When a given algorithm
runs in time O(nlogn), for example, it is usually
true that the constant implicit in the O notation is
rather small and that the asymptotic behaviour is
reached rather quickly.

The students should also get used to performing
the analysis of the complexity of an algorithm with-
out going back to the original definitions, based on
abstract models of computation. If the size of the
integers is bounded (which is often the case in prac-
tical situations), the complexity is roughly the num-
ber of machine instructions performed during execu-
tion. This validates the use of the overall number of



comparisons as a measure of complexity for sorting
algorithms. When large integers are involved, things
become a bit more complicated: a convenient way
is to multiply the number of instructions performed
by n?, where n is the number of digits of the inte-
gers used. This is to take into account the cost of
multiplication as O(n?).

Together with algorithms the specific data struc-
tures used in computer science should be discussed:
stacks, files, trees, graphs etc. It should be stressed
that this point of view is quite different from the
one that was taken in the previous section: In com-
putation theory, we considered simulations involv-
ing basic manipulations on data structures and we
claimed that these manipulations were not costly,
becauce we were interested in the general notion of
polynomial time. In practical cases, a given polyno-
mial time algorithm can be superior to another one
and, very often, the choice of a good data structure
may actually save a significant part of the running
time.

The choice of algorithms that can be reviewed is
quite large and depends on the mathematical back-
ground of the students. At an advanced level, it is
probably more rewarding to give examples that use
mathernatics in a non-trivial way, such as:

e The fast Fourier transform and its applica-
tion to fast multiplication of integers (in time
O(nlognloglogn)).

e Basic algorithms for computer algebra.
This can be an opportunity to demonstrate the
use of a computer algebra system, like Maple or
Macsyma.

¢ The simplex algorithm for linear program-
ming.

o Primality tests, at least probabilistic ones.
Unfortunately, it is not possible to discuss these

algorithms in detail. and we will only briefly com-
ment on the last example. As is well known, test-
ing primality by sieving requires a large amount of
time and memory. In order to overcome this diffi-
culty, one may try to use the mathematical prop-
erties of prime numbers. For example, it is known
that, whenever p is prime and a is not zero modulo

p, the so-called Jacobi symbol (g—) is equal to a5,

This is not the case in general. More precisely, if
n is not prime, at most one half of the possible a’s
satisfy the equality

a n=1

—)=a7 d n).

(n) a (mod n)

As was observed by Solovay and Strassen, the com-
putations required to compute Jacobi symbols and
exponentials modulo n can be performed efficiently.
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This makes it possible to recognize whether or not
a given integer n is prime by picking random values
of a and testing the above equality. If sufficiently
many tests are successful, n is declared to be prime.

At a more elementary level, examples can be
taken from the following list (which is not exhaus-
tive):

e Sorting. This should include a comparison of
various algorithms and a discussion of quicksort,
as an 1llustration of the power of the divide and
congquer method.

e Searching, with an emphasis on the choice of
specific trees as data structures.

e Pattern matching, because of the connection
with automata.

e Graph algorithms, for the nice interplay be-
tween discrete mathematics and computer sci-
ence.

Graph algorithms can be a way to introduce
NP-complete problems. Indead, one can observe
that computing shortest paths can be done in a
very efficient way whereas no polynomial time al-
gorithm is known for many graph problems, such as
the Hamiltonian path problem. This problem can be
described in very concrete terms as follows: Given
a set of cities together with possible air connections
between them, can one tour all the cities, visiting
each city once and returning to one’s starting point?
In order to handle this problem, one can

e guess a plausible solution
o check its correctness (in polynomial time)

All problems that can be solved in such a non-
deterministic manner are called A'P-problems, and
an N'P-complete problem is an AP-problem that
can be used as a “subroutine” in order to solve
all other N'P-problems, with polynomially many
extra steps of computations. It is an open prob-
lem (probably the most important problem in the-
oretical computer science) whether or not an A'P-
complete problem can be solved through a polyno-
mial time algorithm, and as a consequence, N'P-
complete problems are considered to be difficult:
They can only be attacked by time-consuming tech-
niques such as backtracking.

Of course, the class of A"P-complete problems
can be given a formal definition through non-
deterministic Turing machines. Once this is done,
one can prove Cook’s Theorem (Cook [1971]), stat-
ing that the satisfiability problem for clauses of the
propositional calculus is AP-complete. More ex-
amples of N"P-complete problems can be given (cf.
Garey and Johnson [1979]), such as:



54 Influence of Computers and Informatics on Mathematics and Its Teaching

o The travelling salesman problem
o The knapsack problem
e The cligue problem
Finally, some indications can be given on how to
handle A’P-complete problems and also on practi-
cal applications of these notions, through the use of
“one-way” functions.

Around logic

Many authors now emphasize the role of logic in
the foundations of computer science. This is pre-
sumably because of the deep connection that exists
between computer programs and proofs. This con-
nection was already implicit in the section on com-
putation theory: The undecidability phenomenon is
closely related to Godel’s Incompleteness Theorems
that show the extreme limits of deductive mathe-
matics.

It is therefore necessary to include a thorough
introduction to logic in order to endow mathemati-
cians with a synthetic view of computer science. But
it should be added that the interplay between math-
ematical logic and computer science is such that
logic cannot be taught now as it it was before the
advent of computers. This applies both to the for-
mal presentation of syntactical objects and to the
development of the theory itself.

From the formal point of view, it is extremely
helpful to follow computer scientists and to consider
formulas as trees and not only as strings of sym-
bols, as was done classically. With this approach,
a notion such as a free occurrence of a variable is
given a clear, almost geometrical definition, which
was not the case when it was introduced through
a cumbersome recurrence. This can be quite im-
portant considering the fact that syntax must be
quickly understood by students who have not been
exposed to logic beforehand.

For the same kind of reasons, students have to be
motivated as early as possible. Indeed, this can be
done by discussing the aim of artificial intelligence:
How to make correct inferences from a database of
known facts. This is meaningful even in the simple
framework of propositional calculus and the diffi-
culty of the problem can be understood by recalling
that the satisfiability problem is A"P-complete. The
search for solutions to the deduction problem that
are not brute search algorithms leads to the method
of resolution, which can be made very efficient in the
particular case of Horn clauses through linear res-
olution. For the convenience of the reader, let us
recall that clauses are disjunctions of literals; liter-
als are either positive, 1.e. propositional variables or
negative (negation of such variables). Horn clauses

include at most one positive literal. The resolution
method is a way to derive a contradiction from a set
of clauses by making systematic use of the tautology

(pv@)A(-pVr)—qVvr

As far as the predicate calculus is concerned,
it is almost compulsory to use a constructive ap-
proach based on Skolem functions and Herbrand’s
theorem. (Recall that Skolem functions ensure that,
whenever a formula 32®(z, y1, - - -, y») holds, a pos-
sible solution z of this can be computed by a term
f(v1,---,yn).) Herbrand’s theorem states that, pro-
vided Skolem functions exist, any set of formulas
from which no contradiction can be derived can be
realized in a model whose domain is the set of closed
terms). This provides both completeness and com-
pactness by reduction to the propositional calculus.
At this point, one should not avoid discussing un-
decidability issues again: even if one starts with a
finite set of formulas, one usually gets an infinite
number of Herbrand clauses and therefore the Her-
brand procedure does not necessarily come to a stop.

In the above setting, the search for a more ef-
ficient procedure leads to Robinson’s unification-
resolution algorithm, and as in the case of the
propositional calculus, one has to restrict oneself
to Horn clauses if one is really concerned with ef-
ficiency. As is well known, such a restriction en-
ables the use of backtracking and this is basically
the strategy of the Prolog language. The study of
Prolog offers a very interesting application of logic
in computer science. It shows that the views of ar-
tificial intelligence can be turned into an actual pro-
gramming methodology. Of course, it is clear that
Prolog is a programming language and not a theo-
rem prover and that completeness is lost, as a con-
sequence of various features of the actual language,
as the lack of the so-called “occur-check” and the
use of the “cut” primitive. In order to show how
the language works, simple programs can be writ-
ten and discussed.

Now, Prolog is not the only example of appli-
cation of logic to computer science and one can
choose to give an exposition of program verification
through Hoare’s logic. Recall that this method is
based on cutting the execution path of a Pascal-like
program into loop-free pieces. To each cutpoint A
is attached a formula ¢4, whose free variables are
the actual variables of the program. Logic comes
into the picture in proving that, if execution leads
from A to B and if ¢ 4 is true at A, with the current
values of the variables, then ¢g is true at B, with
the resulting values of the variables. This is used
to show partial correctness of the program, which



means that, if execution terminates, the final for-
mula expresses that the result is as expected. Total
correciness can be proved along the same lines by
using a well-founded relation and proving that loops
decrease values of the variables with respect to this
well-ordering.

Finally, another topic where logic and com-
puter science interact at the conceptual level is
the A-calculus, considered as another approach to
program-correcness. Once again, it is based on the
connection between algorithms and proofs. This
time one is talking about formalized proofs within
the framework of intuistionistic logic (without use of
the middle-third) and about systems of rules using
the typed-A-calculus, where a proof yields a term ¢,
which is, in a way, its algorithmic content (cf Kriv-
ine and Parigot [1990]). In order to be more precise,
let us recall that A-calculus builds terms from vari-
ables, through the following rules:

e ift and u are terms, then (fu) is also (application

of t to u)

e if t is a term and z a variable, then Az.t also

(abstraction)

The A-calculus can be considered as a kind of
machine language, a term being turned into a so-
called normal form by reduction rules. In order to
program a function with integer arguments (for ex-
ample), one proves a formula (stating that the re-
sult is an integer). This gives a term ¢ and execution
is jJust the reduction of the application of t to the
terms denoting the arguments. Because of the way
programming is performed, correctness is ensured.
Of course, the work on this type of programming
strategy is only beginning and one should not con-
ceal that the resulting programming style is highly
inefficient at this stage.

More on syntax

Because of the organization of our paper around
computation, algorithms and logic, we have not
discussed some quite interesting connections where
mathematics provides the necessary background.
For example, we mentioned that logical formulas
can be considered as trees and the same is true of
computer programs. Now both usually appear as
strings of symbols. It is therefore very important
to be able to recover the full tree structure from its
string version. This is a part of compilation, called
syntaz analysis (cf Aho, Sethi, Ullman [1986]). It
turns out that the theory of contezi-free languages
is exactly the tool needed to perform syntax analysis
efficiently.
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Conclusion

In this short paper, we have tried to describe
what we consider as the mathematical basis of com-
puter science, to show how the chosen topics can be
organized and to motivate the choices that we have
made. Following the further developments of com-
puter science, these contents will presumably have
to be expanded or modified. For example, it may
appear important to discuss boolean networks (to
model VLSI) or to introduce tools for the study of
relational databases. In any case, we feel that math-
ematical tools for computer science will become a
part of any advanced curriculum in mathematics.
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Introduction

Historical Sketch and Trends

The three traditional cultural techniques (Kul-
turtechniken), which play the most important role
in our children’s education are reading, writing and
calculating. From the time of their “definition”
(perhaps 1200 years ago; Alkuin, an adviser of
Charlemagne, mentioned them) the sets of methods
establishing these techniques have undergone great
changes and so did the subsets which were accessible
at school levels. In our times the largest expansion
occurred in calculating, which developed into a tech-
nique of solving problems formally with numbers,
symbols, graphics and words. On one side, this is
a result of extensive mathematical research, which
among other results brought about powerful algo-
rithms, easy to execute. On the other side this trend
was accelerated by the rise of powerful processors for
algorithms, namely computer systems together with
their scientific background, informatics (i.e. com-
puter science). These aids make a variety of formal
problem-solving methods accessible for school math-
ematics and other subjects, which previously could
not be executed by students and pupils. Algorithms
form one important class of these methods.

The development outlined above caused and still
has a significant impact on school mathematics ed-
ucation. At least three of the didactical dimensions
of the mathematics classroom are envolved: content,
method and medium, to say nothing of the pupil -
teacher relationship. Control on these impacts can
only be gained by integrating and organising them
into mathematics curriculum at all levels, since, as
A. Ralston [1990] points out “ .. only .. curricu-
lum content can serve as a lever to change the en-
tire mathematics education system”. Computer use
in mathematics education started as a very special
method with mostly special topics. Future com-
puter use should be a standard method, applied in
whole strands of subject matter. This article will
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give a review of some effective and successful steps
and some reasonable trends in the pursuit of this
goal in school mathematics.

In addition, many of the examples of this pa-
per indicate that the technology is already a signifi-
cant factor in school classrooms, a factor that more
than deserves its place. The contribution that it
can make to the social and academic interactions is
vivid and, once experienced, always valued.

Finally, just as children play out a wide range
of roles in being part of the community they are in,
so too can computers. Thus we ask the reader to
consider the computer as a member of the classroom
community, one that is able to contribute to the
day’s activities in an appropriate fashion.

Considerations and concrete suggestions for the
use of computers in mathematics teaching depend
on knowledge about and experience with such in-
struments shared by teachers and mathematics edu-
cators. Fifteen years ago these people had access to
computers mostly as programmers in numerically-
oriented languages. So computing power was mainly
used in secondary math education for numerical al-
gorithms in the form of short Basic programs. Ten
years ago, another step — but still in the algorithmic
spirit — was taken with Logo on various home com-
puters with its underlying philosophy of exploring
mathematics in specially designed microworlds and
of learning mathematics by teaching it to the com-
puter; Logo also included the use of geometry and
symbolic manipulations. Primary education was in-
volved with these ideas, even kindergarten.

The proliferation of so-called standard software
on personal computers in the last decade gave way
to new considerations and experiments, especially
with spreadsheets, programs for data representa-
tion, statistical and numerical packages, databases,
CAD (Computer Aided Design)-software and com-
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puter algebra systems. But in the beginning such
software was not very user-friendly, and afterwards
became too complex; the need soon became obvi-
ous for special school adaptations which allowed
easy specializations, employed mathematical nota-
tion similar to that used at school, and used power-
ful and helpful metaphors, so that even users with
little training and only occasional practice (as is typ-
ical of school users) could succesfully handle them.
This led to the creation of general and didactical
software tools which sometimes also had a tutorial
component, thereby integrating some traditions of
computer-aided instruction (CAI). All these forms
of using the computer came into being in sequence
but can now be found simultaneously in discussions
about mathematics teaching. '

Even if suitable hardware and software are now
available for ordinary schools, several necessary in-
gredients are still missing: Teacher training is far
from sufficient; hardware availability in most schools
1s still dictated by the needs of computer science and
computer awareness courses and the concentration
of machines in special locations prevents or makes
difficult the natural, selective use of software - e.g. a
function plotter - during short episodes in the teach-
ing process.

Influences on the Goals and Aims of
Mathematics Teaching

In elementary schools children meet basic pro-
cesses with patterns and numbers in the mathemat-
ics classroom for the first time. There is a range of
uses of technology that have proved positive and
stimulating in helping children to express them-
selves and to progress in a confident and enjoyable
fashion. In particular these can help to discovery —
partly unconsciously — of the importance of underly-
ing structures as an aid to qualified communication
in language and problem solving. The computer is
well-suited to setting up structures - this will be il-
lustrated in the examples that are discussed in detail
in the section on Illustrative Software below. (For
a more comprehensive discussion of the influence of
computers on mathematics teaching, see the survey
by Fey, 1989.)

The emergence of multimedia technology means
that our communication with computers and, in-
deed, amongst ourselves will employ words, pictures
and sound in equal partnership and will not be lim-
ited to a fixed sequential presentation. Although
this article draws on the experience of using micro-
computers in the classroom, it will also be relevant
to the more sophisticated interactive video delivery
that is now available.

At the secondary levels we consider two main
aspects which influence the goals and aims of math-
ematics education: the (mathematical) preparation
of students for their lives and occupations, and the
role of mathematics and its applications in society.

The students’ preparation for their lives and oc-
cupations starts in the first instance at school with
its various disciplines. Since through the availabil-
ity of computers, there are now strong tendencies
to introduce simulations into the school teaching of
science, most notably in biology, or of introducing
elements of statistics and data analysis into the mea-
suring sciences and geography (cf. Winkelmann,
1987), this is obviously a challenge to the teaching
of mathematics: Mathematics should elucidate the
principles, possibilities and possible pitfalls of these
methods; ad-hoc-explanations of such methods by
the specific content-oriented disciplines are surely
not appropriate for giving the student a coherent
appreciation.

It is important to realize that routine calcula-
tions of all complexities will be done increasingly by
ubiquitously available machines which must be con-
trolled at various levels by the users concerned. This
requires more insight, more breadth, more ability
to check consistency, but fewer routine algorithms.
Such an emphasis belongs to the perennial goals of
mathematics teaching, of course, especially in the
new math movement. But now there is really the
possibility of leaving out some of the drill because
technology can take over. Even an insight into the
fundamentals of computers and their programs may
belong to the preparation for life. This can often be
shared with the other formal discipline, informat-
ics/computer science, if it is implemented. It is hard
to be more specific, since the determination of the
elementary and more advanced cultural techniques
which are needed by the future citizens presupposes
a futurist view of society which is notoriously hard
to specify.

As to preparation for vocations, for university
studies, fundamental ideas and experiences in al-
gebra, geometry and fractals, analysis, data analy-
sis and statistics, simulation and chaos would now
seem to be necessary in different kinds of studies.
More specific preparations for special vocations are
again difficult to determine. For example, CAD
(Computer-Aided Design which helps the construc-
tion of planar, spatial and other objects on the com-
puter screen) is necessary for an increasing number
of technical vocations, and this means the need for
new and different qualifications in geometry; but
what 1s exactly needed and how to build a curricu-
lum to fulfill the needs of the trades remains unclear.



The same is also true for the other domains men-
tioned in this chapter; therefore, it is not laziness
that the descriptions above are so general and un-
specific. The general direction of necessary change
can clearly be seen, but concrete decisions cannot be
built on scientific knowledge yet; we have to experi-
ment and gather 1deas, examples and proven results
in concrete circumstances.

Mathematics education at school not only has
the task of delivering to students the qualifications
asked for in vocations and daily life, but it should
also give insight into the role of mathematics in cul-
.ture and society, into the fundamental possibilities
for understanding and description offered by math-
ematics, and into connected assumptions and lim-
itations. In this respect, on the one hand today
the greater part of the applications of mathematics
is transmitted by the computer and thereby influ-
enced In its character, as will be discussed in some
instance below, and on the other hand the computer
is fundamentally a mathematical machine and thus
its proliferation is a tremendous amplification of the
mathematization of our lives.

Primary School

Computers and Calculators for Young
Children

The greatest impact of computers on the learn-
ing of school mathematics has occurred in secondary
school. However, we wish to begin by discussing the
primary school curriculum for three reasons:

e anatural and basically positive attitude towards
computers can only be achieved at this level.

e since primary school determines a student’s life-
long attitude toward mathematics, we must use
all possible means - and the computer is one of
the most powerful of these - to create a positive
attitude during primary education.

e it is necessary that teachers planning to use com-
puters in secondary school and even in universi-
ties understand what was done in primary school
and what the problems were there.

The first major need to socialise with peer
groups and to share them arises when children move
out of the home into regular contact with others
at playschool or infant school. Here, also, serious
work starts in developing spoken and written lan-
guage skills, learning about the world and meeting
basic processes with patterns and numbers. Plenty

of play and creative opportunities are provided to

allow natural skills to flourish.
How can technology help in this busy active
happy environment of early childhood? Technology
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is certainly part of the world that the children will
grow up in but one might feel it is not yet a part that
children need to meet directly. Indeed, there are
concerns expressed in some countries that it might
be positively harmful to allow the use of technology
before certain basic skills have been mastered.

In the next section we shall look at some exam-
ples of use under ‘content’ headings although they
also give rise to cross-curricula work. For ease of
illustration we shall take Language Development,
Early Science and Basic Mathematics as our main
categories. The decision not to limit the primary
school part of this article to mathematics is deliber-
ate in view of the fact that most elementary school
teachers carry a responsibility for the major part of
a total curriculum. It is thus important that the
use of computers be set in this context. However,
the Language and Science examples also have a rel-
evance to mathematical processes although this is
not made explicit.

Before looking at the specific examples, it is nec-
essary to discuss the social situation that children
find themselves in. Basically, there is a teacher to
whom they can turn and who organises their ac-
tivities during the day; there is a group of children
that they work with, those they play with plus spe-
cial friends that they confide in. Thus children con-
tribute to a whole range of interactions sometimes as
part of a large class, at other times with a smaller
group, often just to one other person and, finally,
they must frequently work things out as an individ-
ual. In short, the challenge that young children face
of being a member of the classroom community is
complex and demanding.

Children need to develop good productive rela-
tionships and for this they need effective verbal and
nonverbal skills. Communication through body lan-
guage and other nonverbal signals develop naturally
and requires no formal intervention. With the spo-
ken and written word the structure of the language,
although not formally expressed, begins to be un-
consciously absorbed and then actively used to build
new sentences and expressions. This somewhat sur-
prising occurance indicates the importance of under-
lying structures as an aid to communication. The
possible role of the computer in this process was
mentioned above.

We shall analyse, albeit in a rather crude fash-
ion, the roles played out by teachers, children and
computers in the examples that follow.

Thus the focus of the following descriptions will
be to consider the quality of the communication
in the classroom community and to identify struc-
tures and roles that enhance the interactions be-
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tween members of the community.

Hlustrative Software

1. Language Development

We describe here an extremely simple but power-
ful program called DEVELOPING TRAY. It allows
teachers to type in pieces of text or poems they wish
children to explore. The written material may be fa-
miliar or unfamiliar; it may be related to a project
they are studying or simply may have an interesting
language pattern or style. At first all the children
see on the screen is the punctuation — commas, full
stops etc. Even this stimulates discussion — is it a
poem or a piece of prose? They make their decision
and go to the ‘scratchpad’- a type of notebook built
into the program — to record their first predictions
about the nature of the text. Now they must ‘buy’
letters. Every letter or letter pattern they choose to
appear in the text costs them points. Every correct
word they type in or correct guess they make on
their note pad gains points. At first children tend
to buy letters arguing about those which are ‘the
best value’. As they see single letters and groups of
letters dotted about the screen, a pattern starts to
emerge. The following letters at the beginning of a
text:

O—ce ——0— a ———e

may suggest the familiar opening to a traditional
story — ‘once upon a time’. The three letter word
t-e may be guessed as ‘the’. The children can type
in any missing letters. Correct guesses are not only
accepted by the computer but are also placed in the
rest of the text. Thus one ‘h’ typed in a correct
position places all the ‘h’s’ in the passage. Incor-
rectly placed letters simply vanish from the screen.
Thus the piece of writing is slowly revealed to the
class like developing film in a photographers’s dark-
room {hence its name). There is great excitement
as a word or phrase is identified or as the range
of words suggests the general content being writ-
ten about. Prawns, shells, fish for example might
suggest a passage about the sea; it could however
be about working on a trawler or in a fishmongers
or part of a menu for a banquet. The children not
only have fun watching the text develop before them
but they also enjoy looking back at their notes on
their scratchpad to see whether their guesses were
right or wrong. It is not just an exercise in reading
and comprehension; it is about collaborating and
co-operating towards a common goal — and it is fas-
cinating for teachers to watch all the skills and in-
teractions generated.

As a supporting structure into which the teacher
or indeed the children may place any text for ex-

ploration, this software is independent of country,
culture or age range. It offers a stimulus to explore
language from many different angles and from many
different content areas. It can be used by groups of
children just beginning to read or by groups study-
ing an author’s style or even to consider a math-
ematical argument. In this activity the computer
plays the role of tasksetter and manager and pro-
vides support to a rich and enjoyable learning expe-
rience. It may be a task that an individual tackles,
but equally small groups and large groups can com-
bine their talents to find the hidden text. Teachers
and children can work together if the text is not
known to them. Thus there is the opportunity for
the teacher to join in the activity as a fellow pupil
rather than to share the role of a tasksetter with
the computer. The children find that they can use
the structure of language and their previous expe-
rience in language to help solve the problem. DE-
VELOPING TRAY stimulates communication and
supports the strengthening of the use of structure
in language.

2. Early science

The following description by Anthony Paddle de-
scribes work using EARLY SCIENCE. He considers
a use of the computer that offers support to infor-
mation structured in binary trees. A diagram such
as this is shown below.

Is it mainly yellow
undemeath?

Has it gota Does it have a crest
blue cap? on its head?
Blue Great Crested
Tit Tit Tit Has it got a

white patch on
the back of its
head and neck?

Coal
Tit

cail?

Docs it make a
loud ‘pitcheew’

7N

Marsh
Tit

Willow
Tit



Several years ago, various versions of a computer
game based on binary trees called ANIMAL ap-
peared in magazines-and books. A typical dialogue
with a computer running ANIMAL looks something
like this:

Are you thinking of an animal? YES
Does it live in water? NO
Does it fly? NO
Does it walk on four legs? NO
Does it go “BOING”? YES
Is it a KANGAROO? YES

Are you thinking of an animal?

Only the boldface answers are typed by the
player; the questions themselves are stored in the
computer’s memory. Things become rather inter-
esting when you think of an animal the computer
does not know about:

Are you thinking of an animal? YES
Does it live in water? NO
Does it fly? NO
Does it walk on four legs? YES
Is it an elephant? (sic) NO
The animal you were thinking
of was a? MOUSE
Please type in a question that
would distinguish an ELEPHANT
from a MOUSE?

HAS IT GOT A TRUNK?
For a mouse the answer
would be? NO

In fact, the program starts each time knowing
just one question and two animals. All the oth-
ers are added by the players in the same way as
the mouse. ANIMAL mimics a very simple learning
process.

Clearly, the questions and animals are stored in
the form of a key (or, equivalently, a binary tree),
ANIMAL combines the functions of a key-searching
program and key-building one. Although intended
as a ‘try to fool the computer’ game, it could be used
quite seriously as an identification aid. As such it
has definite advantages over a traditional printed
key, especially for children.

The first advantage is that only relevant ques-
tions are displayed on the screen. A key containing
1000 animals needs 999 questions but, in theory,
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only ten of them need to be answered to identify
any one of the animals. In practice, reality tri-
umphs over logic and keys cannot be designed that
well; nevertheless, only a small fraction of the ques-
tions are relevant at one time. The remainder are
distracting clutter, and it is easy to become hope-
lessly lost in a large printed key. ANIMAL avoids
the problem by avoiding the clutter. Secondly, AN-
IMAL breaks down the highly abstract problem of
designing an identification key into simple, concrete
steps. To add the mouse to the key it is not nec-
essary to think of all the attributes of mice or to
search for some essence of mouseness that will dis-
tinguish mice from anything else. You are simply
asked to find one clear difference between a mouse
and one other animal. The key-searching part of the
program ensures that the other animal is the most
similar one already in the key, so that the mouse is
inserted in the right place. This is not the only way
of breaking down the key-building problem nor, if
the aim is to produce ‘elegant’ finished keys, is it
the best. Nonetheless it is easy and foolproof: If
the individual questions work, the whole key will.

ANIMAL was not designed as a robust educa-
tional tool and suffers from a number of deficiencies.
It is not possible to correct any of the questions or
answers once they are entered — spelling mistakes
are permanent. Nor is there a facility for saving a
key on tape or disk, or for printing it out on paper.
The language used by the program itself limits the
use (‘Are you thinking of an animal?’ is a built-in
question). It would be awkward to use it to classify
plants or rocks.

There are now several elaborations of this idea,
written for educational use, in which these problems
have been solved. THINK is one example which,
while keeping the outward key format of ANIMAL,
has become a sophisticated tool for the creation,
correction and searching of binary trees.

A further development is offered by SEEK,
which comes in a package with THINK, several
ready-made keys and a program called INTREE for
typing in whole keys quickly. SEEK uses the com-
puter’s graphics to display the questions in binary
tree form. The questions appear in boxes and, de-
pending on whether you give a Y or N answer, you
are led down a branch to the left or right into an-
other box containing the next question or the an-
swer. At any stage you can move back up the tree
and down another branch, so that the whole tree
can be explored. SEEK makes the structure of the
information appear obvious. ANIMAL and its more
direct descendants appear, by contrast to produce
questions from nowhere; they seem cleverer than
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they are.

3. Using Key Handling Programs

Programs such as SEEK can be used in a surpris-
ing number of ways with children. Obviously they
can be used to .identify things if a suitable tree of
questions is already available. At the other extreme,
children can build their own tree from scratch, given
aset of rocks, twigs or kitchen powders, for instance.

There are also strategies that fall between these
two. If a class is planning to go pond-dipping, a key
to the commonest animals might be created in ad-
vance, using information from books. New animals
can be added one at a time as they are found, pos-
sibly over a long period. This may well be the best
approach with large, complex groups of things. The
initial skeleton tree can be designed so that its main
branches represent the major groups (nymphs, lar-
vae, snails, worms, etc.) and the research involved
in creating it can give focus to the childrens’ prepa-
rations for the first outing.

In the classroom, identification exercises can
provide very effective frameworks for practice of ob-
servational and experimental skills. A particularly
good example is the POWDER tree supplied with
the SEEK/THINK package. On the surface it is
simply an identification key for common household
powders, such as sugar, salt, washing powder, flour
and baking powder. The questions, though, are not
just passive observational ones: Most of them ask
the children to do something to the powder and
watch its reaction. In the next column is part of
the key as produced by SEEK on a printer.

There is no one way of classifying things. There
may be generally accepted ways for groups like
plants, animals or rocks, but even these are subject
‘to constant argument among scientists. If children
are to understand why things are classified the way
they are, they need to explore and compare differ-
ent ways. It is here that programs like SEEK display
their real value. By taking care of the overall organ-
isation of the tree, they let the children concentrate
on close observation, comparison and the logical and
language aspects of choosing good questions.

Imagine that a group of children are trying to
identify some epsom salts using the POWDER tree.
They will probably find that it is wrongly identified
as a salt. If they decide to extend the tree they
will be asked to find a question to distinguish the
two. This is no small challenge, finding the best
question may take a lot of time, experimenting and
discussion. The first stage is to find out everything
they can about the two substances by observing,

QUESTION YES NO

1 Feel your powder?
Is it smooth or
floury? 2 3

2 Put some in a
teaspoon and
heat over a
candle. Can you
see lots of
steam?

BAKING 4
POWDER

3 Look through a
magnifying
glass to see
if it 1s lumps
or crystals. Is
it crystals? 5 6

4 Put a drop of
iodine on your

powder. Does it go
blue/black?

FLOUR ICING

SUGAR

5 Put some in a
teaspoon and
heat over a
candle. Does it
smell like
toffee?

SUGAR 7

6 Put some in
water and shake.
Do you get lots
of bubbles?

SOAP POLY-

CELL

7 Put a teaspoon
of powder on a
saucer and add WASH-
vinegar. Do you ING
get bubbles? SODA

SALT

practical testing and research into their uses. The
result may be quite a long list of differences, so the
second stage is to decide on the best question to be
added to the tree.

‘Does it dissolve in water?’ is no good because
the both do.

‘Does it taste salty?” may be ruled out on safety
grounds (someone may try to identify something
poisonous).

‘Do you buy it at the chemist?’ requires prior



knowledge and would be impossible to answer if you
really did not know what the powder was.

‘Does it have big crystals?’ does not have a clear
answer: It depends what you compare them with.
Also the crystal sizes of both vary enormously.

‘Does it have long, thin crystals?’ is better, as is
‘Does it turn into white cake when you heat it over
a candle?”’

Some of these problems are quite subtle, and
children are unlikely to spot them until they try the
‘bad’ questions in a complete tree. Fortunately, all
the more recent programs let you prune and repair
a tree without having to rewrite the whole thing;
so children can learn from their mistakes and cor-
rect them with a minimum of frustration. A good
way of identifying problems and sharing insights is
to encourage groups of children to test each other’s
trees.

4. Mathematics

AUTOCALC is another example of a simple
program that promotes considerable discussion and
sharing of processes. It enables children to articu-
late their own methods and ideas and has proved
an extremely valuable way to build their confidence
in their mathematical abilities. The children are
challenged by the program to try out their men-
tal arithmetic skills and to review and compare the
range of possible processes. A large screen is needed
at the front of the classroom. The screen presents
the problems in the following format:

After a delay the computer then supplies the an-
swer to the calculation

The mode of the program is to generate such
problems by selecting random numbers according to
the parameters set at the beginning, using a chosen
operation and displaying the answers after a chosen
time delay. The option screen used for defining the
type of problem to be set is shown below:
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Autocalc Options

Type of problem Subtraction
Difficulty Level Own

Top number 1 to 20
Middle number 1 to 10
Bottom number 0 to 20
Delay time 2 seconds

This option setting provides simple subtraction
problems for young students.

Imagine a class of children working on the ways
in which they ‘add 9’ to numbers. The computer is
set to produce problems where the number is gener-
ated between 0 and 99, the second number is fixed at
9 and the time delay of 3 seconds before the answer
is given has been set. Fifteen problems appear one
after the other and the children attempt to calculate
the answer before it is displayed by the computer.
To simulate the experience complete the following
problems as quickly as you can:-

28 90 32 77 88 79 37 66
9+ 9+ 9+ 9+ 9+ 9+ 9+ 9+

Probably after the first try at this task the chil-
dren will feel that they might be able to get the
answers in under 2 seconds so that they can have
another go with reduced time delay. Some might
even like to go at producing an answer in 1 second!
After this activity the children are asked to say ex-
actly how they got the answers. The following list
of methods was the result of a class of ten year olds
sharing their ideas:

1. Helen decided to add one to the ‘tens’ and then
take one away from the ‘units’.

2. Jonathan was happy to count on his fingers but
didn’t always have time.

3. Susan added 3 three times.

. Jo subtracted ‘1’ and added ‘10’.

5. Anne worked out ‘how many to the next 10’s’.
This is then subtracted from 9 and the remainder
added
e.g. 78+ 9=80+7=87

6. Simon added 2 four times, then 1.

7. Jane used different mathematics for different
problems.

8. Michael just ‘knew’ the answers!

i

The children greatly enjoy sharing their methods
and trying out each other’s ideas. They are also en-
couraged to use calculators - various tasks are given
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that begin to expand their understanding of num-
ber and to encourage them to feel confident enough
to move into estimating outcoming numbers as well.
AUTOCALC can be run in a mode where the chal-
lenge is not to do the calculation but to spot ev-
ery time an incorrect answer is displayed. (This is
called the ‘oops’.mode.) The skills needed to suc-
ceed here are now dependent on having a good grasp
of number bonds and relationships. Another excel-
lent activity is to ask the children how many prob-
lems they can make combining a number between
0-99 and a number between 0-9 that has the an-
swer of 5; eg. 13—8 = 5, 1 x5 = 5 etc. After
exploring the problem in groups, the children offer
their solution. This brings out some fundamental
mathematical processes — classifying sets within the
solution set — setting the initial conditions in order
to limit the solution set to a finite set and many
others. The children express these ideas in their
own language and, of course, they are not yet aware
of the generalisation of such ideas. However it is
at this point that we become aware that this simple
computer program has given the children a stimulus
that has caused them to become true mathemati-
cians. In sharing their mathematical processes and
in valuing each other’s ideas they will build up con-
fidence in their own abilities to offer something to
the subject. In this way we can begin to remove the
fear that so many people leave school with in regard
to their mathematical abilities. A final stage t»s the
discussion of the ‘5’s’ problem is to watch the com-
puter doing the same problem and to write report
to ‘its parents’ on its performance. As the computer
applies an extremely simple algorithm (it just keeps
randomly generating problems but only displaying
those that give the result of 5), its performance is
certainly open to criticism. Here are some of the
children’s reports:
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Critics might say that the activities promoted
with AUTOCALC are not valuable because they
are dealing with numbers out of context to any real
problem. However we hope that the examples here,
which are only a minute part of the range of possi-
bilities, show children becoming aware of their own
power and thought processes and also taking over a
range of ‘teacher roles’ at various stages. Feedback
to the teacher of the children’s reasoning and the
way in which they articulate this 1s a major contri-
bution of AUTOCALC.

A few years ago Michael Girling (Her Majesty’s
Inspector) suggested that a definition for numeracy
might be ‘appropriate use of an electronic calcula-
tor’. What number sense would one need in order
to qualify?

We suggest:

Instant command of single digit arithmetic
Command of basic multiplication facts
Skill in estimation

Capacity to spot errors

Groh W

Capacity to select which operations are appro-
priate in any problem

With the exception of 5 all these points are
strengthened by the activities possible with AUTO-
CALC.

Concluding Remarks

This section has taken just a few examples of
simple software to illustrate how computers can
have a stimulating and refreshing relationship with
children. We are keen that the computer becomes
an accepted assistant and friend of both teach-
ers and children. The use of Logo, data banks and



word processing, have not been discussed here as
many books and articles are available to the reader
on these topics. Such languages and systems can
be employed to stimulate discussion and exitement
such as is described here. However, they can make
considerable demands on the users and we would
recommend that subsets of such systems are used
to start with. Slow progress is being made with im-
plementing a curriculum that make effective use of
computers and calculators. This is due to the fact
that there is not as yet a great deal of curriculum
support materials to introduce the range of learning
activities that simple or complex computer software
can support. However, this material will gradually
emerge and there is certainly enough available to
any enterprising school to offer children the advan-
tages of a computer in their classroom.

Any school able to equip each classroom with
a single microcomputer would gain experience and
confidence within a matter of months rather than
years. Add to this provision a small laboratory for
word processing etc. together with a collaborative
staff exploring possibilities together and the scene
will be set for an exiting time for children in such a
school.

Secondary School

Phenomena, Theories,
Experimental Mathematics

In mathematical knowledge one can differentiate
between facts on the one hand and the insight into
their necessity and their connections on the other
hand, or between phenomena and theories. This
distinction becomes clear, for example, in the do-
main of the geometry of triangles: Examples of phe-
nomena are the observable facts, such as that the
three angel bisectors meet in one point and. simi-
larly for t.e perpendicular bisectors, that the sum
of the in1 er angles equals 180 degrees, that two tri-
angles wich have the two sides and the enclosed
angle eqi al have all other measurable parts equal,
the form ila of Pythagoras, etc. Most classical the-
orems of school geometry belong here, but so also
do more gualitative facts such as: If two sides are
fixed in 1 :ngth, then the third side gets longer if the
enclosed angle is made bigger (up to 180 degrees).
There is 10w special software such as The Geomet-
ric Supp: ser or Cabri Géométre which helps to find
such fac's by giving assistance in the making and
systemat ¢ variation of geometrical constructions.

In tte domain of theory there is the logical or-
dering Jf facts (local and global), the insight into
the necessity of observed facts, the determination
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of the proper conditions under which the facts re-
main true (the domain of validity), etc. As a con-
crete example, let us look at the calculus (analy-
sis). Phenomena are: The graphs of functions, say
of f(z) = zsin1/z, the fact that sinz/z tends to 1
as z tends to zero, the divisibility of 2” -1 by z -1
and the form of the divisors, the formulas for the
derivatives of elementary functions, the linearity of
the integral, or the shape of solutions to a specific
initial value problem for a differential equation.

To the domain of theories, there belongs the def-
inition and fundamental properties of the limit, the
completeness of the real numbers, the definition of
the integral, the limits of validity of theorems, and
explanations of facts by arguments.

It is interesting, that there may be different pos-
sible theories, for example, Euclidean or Cartesian
geometry, with formalist or constructivist founda-
tions. Or, in the case of analysis there are differ-
ent possible non-equivalent theories, the classical
¢ — é-theory, non- standard analysis and different
constructivist approaches. But all those different
theories explain — in different ways ~ the same phe-
nomena. And all the concrete applications of geom-
etry or calculus only rely on the phenomena, not on
the underlying theories. In a similar way, comput-
ers and mathematical software work exclusively in
the realm of the phenomena; they can only exhibit
phenomena. And they are able to show the phenom-
ena even to students who have not yet mastered the
theory.

This is the point in our argument: In a mathe-
matics class using mathematical software, students
will get to see and know a lot of mathematical phe-
nomena. The mathematical theory then has to ex-
plain these phenomena; thus mathematics shifts in
the direction of a science which orders, describes and
makes understandable facts that are already known
and obvious even without explanation. This is in
sharp contrast to classical teaching methodology, es-
pecially in such domains where it was hard to ap-
proach the phenomena without theory or advanced
technology.

Here is an example. In the study of functions
and their transformations, traditional teaching de-
duced behaviour mostly from theory, since the ac-
tual plotting of function graphs by hand was far too
expensive, 1n terms of time and labour, in order to
make students see the facts, for example, the graph-
ical translations connected with the transformation
f(z) — f(z + a). With the help of a function plot-
ter they may observe those transformations, first
connected with a concrete f and a, then system-
atically explored with free chosen examples, and in
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between also formulated as hypothesis and verified
by arguments. In this way, the temporal order of
phenomena and theories reverses, and gets closer to
the usual habits of mathematics as a research ac-
tivity. Of course, such an approach has often been
used with mathematical content where exploration
of phenomena was cheaper.

The didactical paradigm just described has of-
ten been referred to as “experimental mathemat-
‘ics”, but it has to-be stressed that theory is an in-
dispensable part of it in order to be mathematics.
Just playing around with a function plotter does
not necessarily lead to insight. You normally need
hints, ideas, hypotheses, questions in order to see
something and get involved. (See Goldenberg, 1988
for more specific considerations and examples.) As
a counterexample, using fractal generating software
may give spectacular pictures of great esthetic value
but, if you stop at the phenomena, you won’t get at
mathematics with such software. You need at least
general concepts such as self-similarity or symmetry,
which are also needed for the better understanding
and appreciation of the beauty of the pictures in-
volved.

Software for Secondary School
Mathematics

We shall discuss this for threc content areas -
Geometry, Functions and Data Analysis.

Geometry _

Two software packages for geometry education
were mentioned above: The Geometric Supposer
and Cabri Géométre which allow constructions of
most of the problems of Euclidean plane geome-
try. A so-called draft mode allows the exploration of
consequences of moving one point in a figure while
keeping its connections to other points (see Fig. 1).
Descriptions and examples are given in Schumann
[1990]. Here we shall describe two other pieces of

Abb. 2.2 Abb. 2.3

“teachware”, which allow some unconventional ac-
tivities which are closely related to the curriculum
for grades 7 and 8.

The elementary didactical philosophy is that
there should be two levels of action in geometry
classes, when using a computer: On one level the
pupils should learn the constructions manually with
ruler and compass, as usual. On another level they
improve their competence with these constructions
by solving geometrical and applied problems with
graphics procedures on the screen which they per-
ceive as efficient and comfortable tools. In par-
ticular, this use of computer graphics in the early
years of secondary school has proved useful in three
modes:

1. Using procedures for ruler-and-compass con-
structions which have already been understood
as building blocks for more complex construc-
tions without the need to repeat the elementary
constructions again and again.

2. Using procedures for constructions in ways
which cannot be realized with ruler and com-
pass.

3. Using procedures for large and technically dif-
ficult constructions, which demand many itera-
tions of elementary constructions.

The Geometric Supposer fits in mode 1. We now
discuss two other software packages, SYMMETRIC
TURTLES and KALEIDOSCOPE, which illustrate
modes 2 and 3.

SYMMETRIC TURTLES (Graf, 1988)

It is well known that Logo’s turtle graphics can
help at the beginning of geometry education. As a
tool which provides an extension of the ruler and
compass a “running turtle” has been developed.
This follows the concept of Abelson’s dynaturtle
[Abelson and di Sessa, 1985], but without inertia.
To some extent you can use it like a pencil, con-
trolled with keys.

Keys 1, 2 .. 9 put it in slow or faster forward mo-
tion on a straight line, key 0 stops it. Z or N lets the
turtle draw or not draw when moving. A, S, D, F
effect small (5 degrees) or larger (15 degrees) left or
right turns of the stopped or moving turtle. Q marks
the position of the turtle on the screen and deter-
mines a number for this point. This point can be
reached again via keys K or P. K turns the turtle in
its actual position heading for another point. This
corresponds to putting a ruler through two points.
P puts the turtle on an already marked and named
point. And so on.

This running turtle allows construction of many
figures of interest in plane geometry. Besides this



turtle there are two more turtles, an “axial symmet-
ric turtle” and a “central symmetry turtle”. They
are controlled in the same way as the standard run-
ning turtle. But they do not only draw the figure
controlled but also the figure’s symmetric image in
a different colour relating to the z- or y-axis or the
centre point of the screen. This happens simultane-
ously and pointwise. This mode of construction for
symmetries helps the user to recognise the proper-
ties of the mappings immediately and more easily
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than from the final picture. You see that a straight
line remains a straight line, you see how the direc-
tion changes under axial symmetry and how it re-
mains the same under central symmetry. You also
see that a straight line and its picture are parallel
under central symmetry, but have different direc-
tions, etc. Figure 2 contains some examples. Unfor-
tunately, the “dynamic” quality of the turtles can-
not be seen from these figures.

Figure 3 shows how the following question can
be examined: “What happens when reflecting a tri-
angle in different positions relative to the axis of
symmetry or a point?”

Figure 4 gives a systematic answer to the ques-
tion, “How can quadrilaterals be generated by re-
flecting triangles?”

N

o 27

Figure 4

First, it is convenient to choose a side of a trian-
gle as an axis of symmetry. Then with the turtle you
get a kite. The special case of an isosceles triangle
occurs if the angle adjacent to the axis is 90 degrees.
If this angle is greater than 90 degrees, then you get
a quadrilateral which is not convex. You can also
get a rhombus and square by starting with special
triangles. But you never get a general rectangle or
a parallelogram or a trapezoid. The central sym-
metry turtle, however, applied on the centre of a
side of a triangle produces a parallelogram imme-
diately. This is an exciting discovery. The choice
of this special point of reflection is suggested by the
experiments shown in Figure 3. Again, no trapezoid
occurs. This fact can result in geometrical discus-
sions. More details about these tools are given in
Graf [1988]. Some reactions of teachers and student
teachers to this kind of teachware and some experi-
ences in classes are also reported there.

KALEIDOSCOPE
In a paper by Graf and Hodgson [1990] it is
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shown that the kaleidoscope can be a window to
some geometric concepts. These are elementary and
rich at the same time. They are rich in the sense
that they offer not only a mathematical model of
the kaleidoscope but also models for other worlds
like planes to be tiled or even like a fictional kalei-
doscope.

From a methodological point of view the mathe-
matical problems connected with kaleidoscopes can
be worked on at the following five levels:

1. Looking through the real kaleidoscope.

2. Reducing the kaleidoscope to a model with two
or more real mirrors placed on a sheet of paper
containing some figure.

3. Abstracting the mirrors and their reflections on
straight lines (axial reflections) constructed with
ruler and compass.

4. Transferring these constructions to a computer
graphics display.

- 5. Using formal methods to describe the phenom-
ena (and PROVE theorems!!), for example,
those of analytic geometry and linear algebra.
Here we can only give a few glimpses on the soft-

ware for simulating kaleidoscopic phenomena on the

computer and examples of patterns that can thus be
produced.

a) Two-mirror kaleidoscopes: The main menu of-
fers a choice of four different types of kaleido-
scope. Mode 1 leads into a dialogue about form-
ing a kaleidoscope with an arbitrary angle. The
user gives the positions of the axes and then the

position of the object to be reflected. The com- -

puter then displays the two axes and the object.
It then constructs and displays one reflection af-
ter the other until the pattern is complete. This
can be done with a pause after each image or in
an automatic mode. Mode 2 allows one to se-
lect a kaleidoscope with angle 45, 60, 72, 90 or
120 degrees and then proceeds as above. Figure
5 shows some steps in the development of a 60
degree pattern and the same process for a 70 de-
gree pattern. One of the many questions which
will arise after such experiments i1s: How many
reflections are there before the pattern begins to
repeat itself? Circular symmetry can be discov-
ered and discussed after such experiments.

b) Polycentral kaleidoscopes: These are built from
a greater number of mirrors and thus produce
groups of images around several centres spread-
ing in all directions. Forgetting about special
objects between the mirrors and just regarding
the reflections of the triangles or quadrilaterals
and so on shaped by the mirrors you discover
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another mathematical phenomenon: Coverings

-of the plane. In the case of three equal mirrors

or “sides” you end up with a perfect tiling of
the plane. Figure 6 shows the growing of such
a tiling. Obviously a discussion will arise from
this about good and bad tiles.

Figure 6

Fictional kaleidoscopes: The examples given so
far considered the transfer from real kaleido-
scopes to mathematical models, combining ax-
1al reflections and varying the type of kaleido-
scope. Why not vary the mathematical model
and forget about reality? Central reflections
(half-turns) will give us a model of some fic-
tional kaleidoscopes having no physical counter-
parts. One case is to look at a triangle again, de-
termined by three centers of reflection, and see
what happens after repeated reflections. We can
get a pattern extending throughout the plane
(see Figure 7), leaving some blank spaces.



A new situation occurs if we start reflecting a tri-
angle not about its corners but about the midpoints
of its sides, and go on reflecting the images about
these midpoints. A new tiling of the plane devel-
ops and — what is really surprising for the beginner
— this works well with any triangle. Next you can
turn to quadrilaterals and again you discover imme-
diately that a perfect tiling can be completed with
any quadrilateral, even a non-convex one (see Fig-
ures 8 and 9). So the fictional kaleidoscope brings
you back to a real problem and the search for its
correct mathematical solution.

Figure 7

Figure 8
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Figure 9

We conclude this section about geometry with
some general remarks. There should always be a
very careful examination of the advantages for learn-
ing before the computer is used in some field of
mathematical education. There is no use in trans-
ferring manual or mental activities (like construc-
tions with ruler and compass) to the computer un-
less this brings about more efficiency in learning.
Another good reason for using the computer may
exist if the computer allows activities which the stu-
dents cannot achieve with their hands or brains.
Then the computer acts like an additional tool,
increasing the traditional abilities of the students.
SYMMETRIC TURTLES and KALEIDOSCOPE
are good examples of such tools. They allow

e additional help in exploring mathematical prob-
lems.

e a great variety of investigations with little effort

e easy experimentation

e the viewing of a very broad spectrum of complex
geometrical constructions which turn up when
studying reflections of complicated figures

e doing manually impossible constructions like the
pointwise simultaneous construction of two or
more figures

e introducing and using simple methods of CAD

(computer-assisted design), a technique which

has replaced manual technical drawing to a con-

siderable extent.

Functions

Function plotting software in acceptable qual-
ity for use in schools is now available for nearly
all modern microcomputers, and there are now sev-
eral sources of didactical material describing teach-
ing units, giving hints and providing exercises which
can be used by normal mathematics teachers. The
general idea of a function plotter, to plot the graph
corresponding to a user given function, can also be
inverted, namely to plot the graph and let the user
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look for the term. This is realized in the “Funktio-
nen raten” (looking for the formula) part in Graphiz.

For example, the program plots the graph of a
function — say f(z) = 2z — 3 — but does not show
the term (Fig. 10). The user has to make use of the
information given in the graph to guess the func-
tion term and put it in. The computer reacts by
plotting (in another color, if available) the graph
corresponding to the user’s term in the same coor-
dinate system. If the user has not got the correct
solution (Fig. 11), he or she can now see the dif-
ference between the original and the guessed graph
and use this information to debug, that is, to cor-
rect any mistake. As many tries as desired can be
made. It is also possible to wipe out the screen and
see only the original function.

Figure 10
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Figure 11

The functions plotted by the program are of-
fered in different sets, organized according to dif-
ficulty and type of function (linear, quadratic, cu-
bic, trigonometric, exponential, using absolute val-
ues, etc.). The sets can be changed or augmented
with a simple text editor by the teacher, according

to the needs of the students. A specific option lets
the program be used by two partners (individuals,
groups): the first gives the term and the other has
to guess it from its graph.

The simple idea of the program gains its moti-
vational and challenging character from the use of
a sophisticated function plotter, which comes close
to the accustomed appearance of terms and graphs,
and from its deliberate generosity to an inexperi-
enced user. It is simple to use. The user is not
penalized for wrong answers. And it has adequate
error control, not through comparing the user’s term
with a predefined list of possible right terms, but
by numerically comparing the graphs with a certain
tolerance. So the software aims really to help users
to evolve and debug their knowledge about elemen-
tary functions and their standard transformations.

The program is to be used mainly by individuals
or small groups, in a wide variety of levels, grades 7
to 12 and up. It may be used for drill and practice,
and, of course, for remedial work.

Data Analysis

Statistical education — as mathematics educa-
tion in general — often has to cope with the problem
that, in order to solve real problems, the necessary
techniques are taught and, in consequence, also un-
derstood by students in isolation; their proper con-
ditions of application, their region of validity, their
limits are perhaps theoretically known, but seldom
part of active knowledge. In order to overcome such
limited understanding, one method is to confront
students with problems connected to themselves, so
that they don’t take the methods as neutral, but
of real importance. One of the goals of the soft-
ware Times 1s Just to give students some real data,
connected to themselves, in order to analyze and to
draw conclusions from the data and thereby about
themselves.

The software allows experiments with reaction
times: The computer produces a specific signal and
one of the students has to react in a specific way,
for example, by pressing a specified button, and the
computer measures the reaction time. The process
repeats, and the data are stored into a file bearing
the name of the student. Another student does the
same procedure, and the data is compared. Which
student is better? Is the arithmetical average a fair
arbiter or is the median better? How should one
judge extreme values? The program offers several
methods of comparing data, including some well
known statistical techniques. It calculates diverse
quantities such as averages, variances, the plot of



one distribution of values against the other It does
QQ-plots, displays the data as time series, etc.! In
defending their results, the students hopefully learn
to judge cautiously, to see the techniques as helpful
but normally not decisive tools, and the necessity of
properly interpreting the data rather than automat-
ically drawing conclusions after a routinely applied
test.

General Tools and Methods

Besides studying softwarg for specific mathemat-
ical areas like the ones just discussed, it is important
to consider software which supports specific mathe-
matical methods which have importance in different
areas. Here algorithms in their original sense (think
of Euclid’s algorithm) are most familiar and were
integrated into mathematics education even before
the advent of computer systems. First we shall give
an example of an algorithmic strand, which fits the
curriculum for the German ”Gymnasium”. From
this you will be able to see how this old mathemat-
ical idea of algorithm can be extended to a num-
ber of complex mathematical problems. Then we
shall discuss the general problem of how to com-
bine in class teaching students to understand and
execute mathematical methods and to solve math-
ematical problems (from multiplication to integra-
tion) by hand or brain with the need to tell them
that there are computers which can do these things
easily if you just give the problem to them in the
proper way. This is the black box/white box prob-
lem. Finally, we discuss two more general methods
of growing importance in mathematics education (as
well as in mathematics research) — simulation and
model building.

The algorithmic strand.

Algorithms are patterns with a certain schematic
background; although high mathematical invention
was necessary for their discovery, only stupid and
exact processing is needed for their application.
With this didactic philosophy the teaching of con-
cepts and theories of mathematics had priority at
schools. The use of algorithms formed the center of
exercises, homework and control of achievement and
so pupils were educated as if they were little com-
puters. Related to this secondary role of algorithms
is the fact that several thousand years of history of
mathematics have not produced a uniform language
for the description of algorithms. Now there is a

1 For a more detailed analysis and critical descrip-
tion see Biehler and Winkelmann (1988).

School Mathematics Curriculum 71

continuous algorithmic strand which forms 15% of
the curriculum in mathematics education during the
nine years of German grammar school. (We begin
at year five since we do not consider the four years of
primary education.) The following list shows typical
algorithms and also their related subjects.

5 Relations between the fundamental arithmetical
operations

Transformation between numbers with different
bases: (10,2,5,16 etc.)

Division algorithm

Sieve of Eratosthenes

Optimizing terms

Summation of arithmetical series according to
Gauss

Fundamental operations with sets

6 Calculation with fractions (handling formal

rules)

Greatest common divisor and least common
multiple (algorithm of Euclid in several varia-
tions)

Prime numbers, twins of prime numbers, distri-
bution of prime numbers etc., factorisation of
numbers

Arithmetic means, relative frequencies
Diagrams of descriptive statistics

7 Tables of proportions
Calculation of percents and interest
Random experiments
Constructive geometry in two dimensions
Geometrical mapping

8 Algorithm of Heron
Iterations for linear equations
Symbolic processing with equations

9 Solution of quadratic equations
Graphs of quadratic functions
Combinatorics
Continuation of geometry (similarity)

10 Several methods of integration of the circle
Division of polynomials
Trigonometric construction
Descriptive statistics

11 Experiments with sequences and series
Discussions of functions
Algorithm of Newton with variations
Regula falsi
Methods of optimisation
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12 Methods of integration according to Simpson,
Gauss, Romberg etc.
Symbolic integration
Algorithm of Gauss for systems of linear equa-
tions with variations
Operations with matrices etc.

13 Stochastic simulations
Symbolic handling of limits (I’Hospital)
Standard methods of inductive statistics
Methods for numerical, graphical and symbolic
solution of simple ordinary differential equations

This listing refers to a basic level of higher ed-
ucation. For the advanced level (“Leistungskurs”
with 6 lessons in the week) a lot of possibilities can
be added in the last three years such as:

complex numbers, special numerical methods,
algorithms of the theory of graphs, fitting of
curves according to Taylor and Gauss, interpo-
lation of functions according to Lagrange and
Newton, cubic splines, study of nonlinear iter-
ations, mapping and representation in three di-
mensions, constructive non-euclidean geometry
etc.

Also in the content of an algorithmic strand, the
methodological aspects need not be lost. Several
basic formulations of computer algorithms are help-
ful for mathematical comprehension, too. For ex-
ample, pupils always have difficulties understanding
the usual notations of sums, double sums, etc. The
algorithmic notation using for-loops or nested loops
removes many difficulties in understanding the role
of summation index etc. The practice of program-
ming recursions is helpful for understanding the log-
ical basis of induction proofs, etc.

For nearly all of the subjects listed software is
available, some of it with more options than are
needed in schools. Most teachers are pleased that
they do not have to enter into the specialities of
graphic representation and the other “higher” work
of computer insiders. Still some of them remember
another kind of work only a few years ago: For im-
portant algorithms of mathematics (Euclid, Gauss,
Newton, Simpson etc.), teachers themselves had to
write their own programs. The advantage of this
was that they could develop the central ideas simul-
taneously in their classes and in the programs. The
disadvantage was that the handling of many pro-
grams was not easy. Still, a further advantage was
that the teacher could modify an algorithm using
the (sometimes unusual) suggestions of the pupils.
As an example, in Newton’s method for the solu-
tion of transcendental equations, you could take the

tangent of a function instead of the function itself.
Or you could take tangents with the same constant
slope as the first tangent (the method converges in
many cases). Alterations of this kind are generally
impossible with acquired programs, which seldom
allow such open didactical processing. Naturally,
for these purposes the teacher needs a simple and
transparent computer language with natural key-
words and sufficient mathematical operators as well
as a compiler which can understand the language
in the same sense as humans. Teachers need as
well a good cooperation with teachers and pupils
of computer science, who can construct good pro-
grams according to their desires. Some programs in
the school market need to have a didactical dimen-
sion so that, for example, the plotting of functions
can be stopped and continued using the intuition of
the pupils. During algorthmic processing intermedi-
ate suppositions about the results should be possible
which can be verified or falsified.

Symbolic Processing/Symbolic
Manipulation

In recent years symbolic processing for personal
computers has entered into schools (see the chap-
ter by Hodgson and Muller). Solving linear and
quadratic equations, equations of third and fourth
degree, large systems of linear equations, simplifica-
tion of rational expressions with “towers” of double
fractions, division and simplification of polynomials
can all be done with symbolic algebra, often inte-
grated with the direct processing of very large in-
tegers. Where exact methods fail, approximations
are possible. Symbolic differentiation and integra-
tion, symbolic vector analysis and, finally, the sym-
bolic solution of ordinary differential equations of
first and second order together allow the possibil-
ity of ignoring all the rules of school mathematics
in a traditional sense. These packages are made by
professionals. Therefore, they often do not present
intermediate steps and some other didactical re-
main. Some of the symbolic packages are not pro-
grammable by the user. Nevertheless the union of
numerical, graphical and symbolical tools has enor-
mous power for schools.

Enlightenment through Black Boxes

In a recent article, Buchberger (1990) asks,
“Should students learn integration rules?”, given
that now there are computer algebra software sys-
tems available which solve any integration problem
much more quickly and more reliably than any stu-
dent could ever do with paper and pencil. Buch-
berger immediately generalizes the question for all



those areas of mathematics which are “trivialized”
by modern software, especially computer algebra
systems. He answers — for mathematics and com-
puter science majors — with his “White Box / Black
Box - Principle”: Students should learn the theories
and algorithms of such an area first, using the soft-
ware only for subordinate tasks (e.g. partial fraction
decomposition) but, after having studied the area,
all calculations from this area should be left to the
computer.

For schools and general mathematical software
the situation is more complicated: Numerical and
graphical oriented software doesn’t trivialize an area
of mathematics, but may provide profound help in
solving problems; school mathematics does not only
provide mathematical theories and algorithms but
also their intended applications, their modes of use
and the translation schemes needed in using them
outside of pure mathematics. High school students
are just not future mathematicians, but could be
regarded as future users of mathematics as well,
who obviously should have a different attitude to-
wards mathematical tools. So here we do not give a
recipe but rather some considerations which might
help in coping at school level with the problem of
using ready made software which cannot be made
“translucent”, since the details may be too com-
plex, or totally hidden from the user, or just not
worthwhile studying for secondary school students.

First of all, using ready-made mathematics, even
if not fully understood, is to be seen as taking part in
mathematics as a social enterprise. It may be looked
on as part of teamwork: Users rely on professional
mathematicians and programmers. But the coop-
eration is anonymous since the user can’t talk to
“coworkers”, and users have to know a lot in order
to use the black box correctly and with beneficial
results. But knowledge about black boxes (proce-
dures, algorithms, etc.) can be of various kinds:

Logical or erternal. The user knows the math-
ematical specification of the result the software de-
livers, but doesn’t know the method by which it has
been achieved. This is the classical black box and
is usually the case with the use of computer algebra
systems or simple calculators. A symbolic integra-
tion can be understood (and independently checked)
even if the internal Risch algorithm isn’t understood
or its existence even known. The cosine of a number
can be interpreted correctly as the best approxima-
tion within the domain of machine numbers to the
correct real number, etc.

Analogous. If a complete specification of the re-
sult of the software is not available, an analogous
knowledge of a similar algorithm may often help.
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The graph of a function, as displayed by a function
plotter, is different from the graph of the function
as normally defined within mathematics. But the
experience of doing function plotting and a reflec-
tion on the possible pitfalls (e.g. vertical asymp-
totes, discontinuities or the proper determination
of maxima) may help in understanding results and
becoming aware of possible limitations. For the nor-
mal student it is not worthwhile to learn the special
tricks and algorithms programmers of function plot-
ters use to give reasonable results even in difficult
situations. Analogous knowledge is needed in gen-
eral in the use of numerical software — possible pit-
falls, trade-offs between step widths and obtainable
accuracies, between reliability and speed, etc.

Algorithmic. Here the user knows — on a cer-
tain level — the specific algorithmic approach used
by the software, for example, that the numerical in-
tegration software uses Simpson’s rule, which the
use had applied in some hand calculations. But for
a suitable use of the software, the user has to have
some more general knowledge, too — the approxi-
mation character and the order of the algorithm, its
domain of validity, in what circumstances to switch
to other algorithms, etc.

All three kinds of knowledge have their special
value, and in most circumstances they should com-
plement each other. There is no a priori best way of
enlightening a software black box. Of course, math-
ematics teaching has the duty to enlighten black
boxes, to make them grey at least, but in which
way and to what extent has to be decided in view of
the intended use of the software, the kind of knowl-
edge to which this new knowledge is to be added
and connected, and to the overall goals of mathe-
matics teaching in the specific age group and school
system in particular.

On the Concept and Importance of
Simulations

How does one simulate a dynamical process?
Such a process is described by specifying the transi-
tion from one state of the system to the “next” state;
mathematically this is done by (systems of) differ-
ence or differential equations. In order to simulate
such a process, one first has to specify all param-
eters, initial states and possible external influences
numerically, and then follow the evolution of the
states numerically, replacing all mathematical oper-
ations which have no direct arithmetical translation
by numerical approximations. Some ending condi-
tions have to be efficiently specified, too, for exam-
ple, the maximum number of states to calculate, in
order to prevent never ending calculations.
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The resulting numbers — normally quite a lot -
can be given as tables or graphics. If the concrete
choice of parameter values or initial states is not
dictated by the situation but just ad hoc in order
to be able to start the simulation run, the whole
process will have to be repeated with other values
fixed — that means defining another scenario — to
get an overview over the behaviour of the system in
a range of scenarios.

From this description we have a geberal infor-
mal definition: By simulation (in mathematics) we
understand the effective operational translation of
mathematical objects or processes into numerical
operations. (Outside mathematics the concept has
to be extended to include the building of a mathe-
matical model first.)

Simulation in this sense is a general mathemat-
ical method which has always been used but has
gained importance enormously through the avail-
_ abilty of effective numerical machines, especially
computers. As a method it is very often not dif-
ficult to apply, and it can be a mighty instrument,
especially if combined with other, more traditional
mathematical methods such as proof, construction,
algebraic calculation, analysis, etc.

Here are some examples of simulations:

o Function plotting. The mathematical object is
the graph of the function, say of f(z) = sin z, which
is a subset of R2. For the simulation one has first
to fix boundaries, say from —# to 27, then approxi-
mate the interval [—m, 2] by a finite set of floating

point numbers, calculate approximations to the sine

of these numbers, determine screen pixels to corre-
spond to the calculated values, connect those pixels
by the built-in “line-drawing” routines, and display
the result. The fixing of parameters will become
even more apparent, if you simulate functions with
parameters, say f(z) =sin(az),a € R.

e Stochastic simulation. The mathematical ob-
ject is, for example, a stochastic variable with its
distribution, mean and variance, say a uniformly
distributed variable transformed by some compli-
cated process or function f. To simulate it, you take
a finite number of uniformly distributed (pseudo-
)random numbers, transform them by (a numerical
approximation to) f, take the resulting finite dis-
tribution as an approximation to the distribution
sought, and calculate its mean and variance.

o Solution to a differential equation.? The math-
ematical object is the general solution to the given
differential equation. To simulate it, one chooses

2 An indefinite integration is a special case of this,
namely the solution of ¥ = f(z).

several different initial conditions, solves the result-
ing initial value problems by numerical methods and
plots the results. The emerging picture should give
some insights into the fRow-lines of the differential
equation, its overall behaviour and possible loca-
tions of critical points.

Simulations normally share a double experimen-
tal character: First by the numerical approxima-
tions whose errors can be only estimated since the
assumptions of strict error control in most cases can-
not be verified by numerical methods alone, and sec-
ond by the fixing of the parameters, boundaries, etc.
Simulations need to be complemented by some the-
ory, however rudimentary, in order to lead to insight
and understanding. Thus the plotting of the sine-
function can only give a non-misleading intuition,
if the continuity and periodicity are known or can
be abstracted by the consideration of a well chosen
sequence of (simulated) pictures with some zoom-
ing or similar means. The insight does not come
from the pictures. The intellect of the students has
to see the connections between the pictures and the
necessities behind them; but to see the facts given
by the simulation may strongly help the student to
understand the facts given by some theory.

Model Building

The building of mathematical models is seen
by many people as the heart of application ori-
ented mathematics teaching. If done properly, the
usual restriction to linearity assumptions will soon
be noticed as inappropriate, and the use of simula-
tion software in order to explore the (mathematical)
models developed becomes necessary.

Here we describe briefly dynamic model build-
ing of simple growth processes in the mathematics
classroom with the program Modus, which at the
moment is being tested in schools in a preliminary
version. As with most dynamic modelling tools, the
crucial concepts are the distinction of the main vari-
ables as levels and flows. Levels can only be changed
through flows; this property is described in formal
mathematical language by use of difference or differ-
ential equations, the flows being the derivatives of
the levels. The model building is done by construct-
ing structure diagrams, thus avoiding the necessity
for an abstract formal language. The students eas-
ily develop linear and exponential models of growth.
The step from linear to exponential growth is made
by changing the constant flow to a (linear) function
depending on the level, thereby introducing a first
feedback loop (see Fig. 12 and 13).
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turtle there are two more turtles, an “axial symmet-
ric turtle” and a “central symmetry turtle”. They
are controlled in the same way as the standard run-
ning turtle. But they do not only draw the figure
controlled but also the figure’s symmetric image in
a different colour relating to the z- or y-axis or the
centre point of the screen. This happens simultane-
ously and pointwise. This mode of construction for
symmetries helps the user to recognise the proper-
ties of the mappings immediately and more easily
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las for the logistic function, the growth behaviour
can be completely understood from the model itself,
and becomes evident by observing parts of the phase
diagram being generated dynamically (Fig. 15).
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than from the final picture. You see that a straight
line remains a straight line, you see how the direc-
tion changes under axial symmetry and how it re-
mains the same under central symmetry. You also
see that a straight line and its picture are parallel
under central symmetry, but have different direc-
tions, etc. Figure 2 contains some examples. Unfor-
tunately, the “dynamic” quality of the turtles can-
not be seen from these figures.

Figure 3 shows how the following question can
be examined: “What happens when reflecting a tri-
angle in different positions relative to the axis of
symmetry or a point?”

Figure 4 gives a systematic answer to the ques-
tion, “How can quadrilaterals be generated by re-
flecting triangles?”

N

Figure 4

First, it is convenient to choose a side of a trian-
gle as an axis of symmetry. Then with the turtle you
get a kite. The special case of an isosceles triangle
occurs if the angle adjacent to the axis is 90 degrees.
If this angle is greater than 90 degrees, then you get
a quadrilateral which is not convex. You can also
get a rhombus and square by starting with special
triangles. But you never get a general rectangle or
a parallelogram or a trapezoid. The central sym-
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25 pupils in the class. Therefore, often theoretical
questions related to algorithms (additional special
cases, restrictions, possibilities for application etc.)
have to substitute for the real use of the algorithms
for problemsolving in examination periods.

The consequences for the curriculum are very
important. School mathematics was determined for
centuries by the number of accessible methods for
solving problems — equations of no higher degree
than 2, systems of equations with 3x3 or 4x4 ma-
trices etc. Application problems were selected care-
fully so that powerful computational tools were not
needed. With the speed and the capacity of mem-
ory of modern computers in schools (newer stan-
dard: 80386 processors, 1.2 MB RAM), numeri-
cal and graphical approximations for solving equa-
tions of higher degree and handling matrices of 10
or 20 columns and rows are no problem. Graphi-
cal representation of large sets of higher functions
or of complicated geometrical situations are also no
problem as are the symbolic transformation of com-
plicated rational terms or the symbolic solution of
differential equations with interesting initial condi-
tions. With these tools teachers can leave the small
garden of traditional school problems and amplify
enormously the orientation to modern application.

Let us demonstrate this with two examples.
First, from pure mathematics: After teaching curve
fitting by Taylor approximations or Fourier approx-
imations in the classical manner with the usual
demonstrations you can continue with Padé approx-

imations using rational functions and use these for

good approximations to functions with singularities
(see Fig. 16).

Our second example is from applied mathemat-
ics: The teacher can show how to compute ap-
proximations to curves of highways in the student’s
neighbourhood by parametric splines with the help
of the computers.

Thus various new fields are opened for the cur-
riculum. Simulations in natural science and social
science using systems of difference equations can be
used to solve interesting environmental or economic
problems never before accessible in schools. The
theory of graphs or the theory of functions with
complex variables are other examples of new ele-
mentary work with modern tools.

Speculation on the Future

During the first twenty years of computer use
in schools, the mathematics classroom was the first
place where most students met a computer at all.
So math teachers had to pursue an additional goal:

upper picture: 1l/cos(x) approximated by Taylor-
serie order 4 and B in x ~ @
{only the central part of the graph
is fitted well)
lower picture: 1/cos(x) approximated by Padé-term
order 4,4 in x « 0
(invisible fitting of the curve in
the central part and half of the peri-
pherical parts including the singularities)

Figure 16

Make students familiar with the basic structure and
function of a computer system and teach them how
to manipulate it. This situation has changed rapidly
and will have changed totally in the near future since
most students now get acquainted with computers
in their daily lives, in their family and recreational
environments, perhaps in computer science educa-
tion, and so on. This means the computer has a
new importance in math education, a more fruit-
ful one, more oriented towards mathematics. This
is described as follows in a study of mathematics
education for the information age to be realized
in the Japanese New Mathematics Curriculum [Fu-
jita/Terada 1991]. In upper secondary schools pri-
ority should be



“on giving to students opportunities to do
mathematics rather than improving their
techniques. Students should understand that
computers are powerful tools for intellectual
activities by human beings. In this connec-
tion, studying mathematics may be the first
as well as the best experience for students to
use computers for properly intellectual pur-
poses, namely, to study academic subjects
with computers. These experiences could
even be regarded as a prototype of scientific
research activities with computers. Some
good students will have chances to observe,
to model and to analyze in a mathemati-
cal manner various phenomena presented by
computérs. Furthermore, computer simula-
tion is close to mathematical reality. On the
other hand, computers are extremely help-
ful in fostering students’ mathematical liter-
acy. Rich mathematical experiences offered
by computers, particularly those through op-
erational work by students, will pave the way
for the majority of students to grasp con-
cepts and to understand fundamental facts
in mathematics.”

The New Curriculum plans three courses, Math-
ematics I - III, in grades 11 - 13 with a total of 10
units (1 unit requires 35 class hours of 50 minutes
each), covering a core of mathematics to be learned
by all students with Math III certainly to be learned
by all science and technology students. Three more
courses, Mathematics A, B, C, in grades 11 - 13, to-
talling 6 units, are composed of four option modules
from which two modules are freely chosen for in-
struction by teachers or schools. Module 4 of Math
A, computation and computers, offers students the
chance to get to know and become familiar with
computers as a tool for mathematics. Module 4 of
Math B, algorithms and computers, deals with the
powerful function of computers in doing algorith-
mic computations in mathematics. Math C is char-
acterized by the key phrases “application minded”
and “do math with computers” in the areas of ma-
trices and linear computation, various curves, con-
ics and polar coordinates, numerical computation
and statistical processing. The study mentions that
the newly introduced topics related to computers in
Japanese high school mathematics require certain
preparation for success, namely, purposeful text-
books, effective teacher training, quality software
and relevant development of teaching materials and
methods. Indeed, the educational use of comput-
ers in class is non-routine and should be explored
with respective emphasis of its three aspects; the
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teacher-initiated use, the student-initiated use and
the system-initiated use. .

From the viewpoint of a computer-supported
curriculum, teaching with computers in a classroom
will consist of the following six components:

1) “trial”, where learners are invited to the new
topic with fun applications offered by the com-
puter.

2) “approach”, where learners have heuristic and
operational experiences with the aid of comput-
ers.

3) “teaching”, where the teachers give a lecture
and learners get supplementary review and as-
sistance from computers.

4) “experimental understanding”, where learners
grasp concepts and facts through inductive and
experimental recognition with the aid of comput-
ers without being burdened by too much drill.

5) “exercise”, where learners can perform adequate
exercises at their level and using standard (but
interactive) CAL

6) “survey”, where learners review the topic which
they have learned and are given chances to view
further developments and applications.

The principal underlying purpose of the New
Japanese Curriculum is to cultivate “mathematical
intelligence” by aiming at two targets: Mdthemat-
ical Literacy and Mathematical Thinking. The as-
pects from the curriculum mentioned above show
that computer systems are considered to be very
helpful for both fields.

These two fields are also mentioned among the
principles for the development of a new mathematics
curriculum in the USA by 2000 [Ralston 1990]. In
this reference it is stated that “Mathematical educa-
tion should focus on the development of mathemat-
ical power not mathematical skills”. As to informa-
tion technology there is this principle: “Calculators
and Computers should be used throughout the K-12
mathematics curriculum; moreover, new curricula
and new curriculum materials should be designed in
the expectation of continuous change resulting from
further scientific and technological developments”.
Goals from these principles follow for the elemen-
tary grades (1-6) as well as for the secondary grades
(7-12). So “the teaching of arithmetic in elemen-
tary schools should be characterized by : ... a use
of computer software in the teaching and learning
process, ... proper and efficient use of calculators
for most multi-digit calculations as well as calcula-
tions involving negative numbers, fractions and dec-
imals”. One important example of computer use
in the secondary curriculum follows from the goal
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that this curriculum should develop students’ sym-
bol sense. This means developing “the ability to
represent problems in symbolic form and to use and
interpret these symbolic representations”, and “the
ability to identify the symbol manipulations neces-
sary to solve problems expressed in symbolic form
and to carry out manipulations using mental com-
putation, pencil and paper, a symbolic or graphic
calculator or a computer”.

It was noted above that new mathematics cur-
ricula should be designed in the expectation of fur-
ther technical and scientific developments. Most
certainly these will occur in artificial intelligence
and telecommunications. In a survey on Technol-
ogy and Mathematics Education, James Fey [1990]
writes about artificial intelligence, expert systems
and tutors: “One of the very active areas of infor-
matics research is exploring ways that computers
can be programmed to exhibit ‘behaviour’ that sim-
ulates human information processing. There are a
number of projects in mathematics education that
are attempting to capitalize on this computer capa-
bility to design programs that act, in various ways,
like teachers. The most interesting work along these
lines is producing intelligent tutors for an array of
mathematical topic areas including arithmetic, al-
gebra, geometry and proof, and calculus. There
are some preliminary indications that those tutors
provide very effective adjuncts to regular teacher-
directed instruction”.

As for telecommunications, one might think that
this will be important for general or social education
only. It is likely, however, that the ability to commu-
nicate about mathematical problems in a worldwide
group of peers will develop new attitudes towards
problem solving, different from the widespread “sin-
gle attack” of scientists and students. Also, it can
be imagined that a feeling for the benefits of inter-
national and intercultural understanding can grow
more intense through cooperation in a “serious”
field like mathematics or science, in addition to the
effects of leisure fields like music, movies, etc.

We want to conclude this article by pointing to
one of the greatest problems in the changing of the
mathematics curriculum under the challenge of com-
puter systems: We must convince the curriculum
makers and those who put changes into effect about
the necessity and the advantages of this change. We
hope that this article will provide good arguments
to everybody who wants to tackle this problem.
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THE CURRENT MATHEMATICS
CURRICULUM: TRADITIONS AND
CONCERNS

For many years, a crucial place in the mathemat-
ics curriculum of the last year of secondary school or
the first year of university studies has been occupied
by the differential and integral calculus. The calcu-
lus can be seen both as the culmination of the sec-
ondary school mathematics curriculum and as the
beginning of serious study of mathematics at the
university. In some sense, the study of calculus has
become synonymous with the serious study of math-
ematics. The central and essential position occupied
by calculus can be traced to at least two interrelated
causes.

For mathematicians, calculus represents the
methodology and techniques needed for the study
of functions, first defined on the real line, then on
higher-dimensional Euclidean spaces, and finally on
the complex plane. Thus, the study of the calculus
allows students for the first time to acquire the for-
mal abstract tools that are essential for the further
study of much of higher mathematics.

On the other hand, calculus provides the foun-
dation for many applications of mathematics to the
physical sciences and engineering. These applica-
tions date back to Newton’s original development
of the calculus in the seventeenth century, and since
that time they have been wildly successful across a
vast collection of disciplines, even including (in re-
cent years), the biological sciences and economics.
All of the calculus-based applications are based on
mathematical models that can be regarded as being
continuous; that is, the quantities being modeled
are real numbers (or elements of some Euclidean
space R").

Given both the central mathematical position of
the calculus and its vital role in applications (not
to speak of the interaction between these two fea-
tures), it is easy to see why the calculus has occu-
pied such a fundamental and unassailable position
in mathematics curricula. During the past several
decades, however, the central role of calculus has
been seriously questioned, and the questions have
been repeated with particular emphasis during the
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last decade (Ralston 1981, 1989, Kenney and Hirsch,
1991). Just as a major motivation for the predom-
mmance of calculus in the curriculum has been the
wide range of applications of continuous mathemat-
ics, the challenge to that predominance has arisen
from the steadily increasing interest in the applica-
tions of discrete mathematics in many disciplines.

This increasing interest in discrete mathemati-
cal applications can be primarily attributed to the
widespread use of computers. Computers are essen-
tially discrete machines, and the mathematics that
1s needed to use them is also discrete. As a conse-
quence, the discipline of computer science is heavily
dependent on a wide variety of discrete mathemat-
ical ideas and techniques. Furthermore, the easy
availability of computers has encouraged the use
and development of discrete mathematical models in
many disciplines. For example, operations research
models (linear programming, integer programming,
etc.) are widely used and are based on a discrete
mathematical perspective.

It is natural to expect that the rapid growth
of interest in discrete mathematics and its appli-
cations, fueled by the explosive developments asso-
ciated with computers, should have an impact on
the mathematics curriculum. Although this im-
pact would have been significant under any cir-
cumstances, its effect in the United States has
been magnified by other questions that have been
raised in recent years about the teaching of calcu-
lus. Widespread dissatisfaction has been reported
with the nature of the calculus courses and the
knowledge of the students that have completed them
(Lochhead 1983, Steen 1983, Douglas 1986, Steen
1988). The computer is also directly influencing the
¢content of the calculus course itself, both by en-
couraging the inclusion of numerical methods and
by suggesting that symbolic manipulation software
may make emphasis on techniques of differentiation
and integration obsolete (Bushaw 1983, Wilf 1983,
Nievergelt 1987).

In summary, both the nature of the calculus
course and the fundamental position that calcu-
lus has occupied in the mathematics curriculum for



more than a century have come under serious chal-
lenge. These challenges have come both from within
and outside the community of mathematicians, and
they can primarily be attributed to the increasingly
broad role that computers are playing in the various
scholarly disciplines represented within the univer-
sity and in the wider world. In the next section of
this paper, we will look at the responses that have
been proposed to these challenges.

RESPONSES TO THE CHALLENGE OF
DISCRETE MATHEMATICS

When any curriculum is confronted by a new
topic that should be included, there are essentially
two potential responses. The new topic can either
be encapsulated in a course that is added to the cur-
riculum, or it can be incorporated as a fundamental
constituent of a revised course. Most topics that
have been added to the mathematics curriculum in
recent decades have been added as new courses (e.g.
abstract algebra and topology).

It was therefore natural that when mathematics
faculties were asked to include discrete mathemat-
ics in the curriculum, this was most commonly done
by developing new courses in discrete mathematics.
Such courses were designed primarily for students of
computer science. There have been two fundamen-
tal problems with this approach. First, the discrete
mathematics courses were too often taken by third-
year students, so that the material was learned too
late to be of use in the data structures courses taken
by first and second year students of computer sci-
ence. Second, when students were expected to use
their discrete and continuous mathematical skills
in fourth-year computer science courses (for exam-
ple, in the analysis of algorithms), most have found
it very difficult to combine these skills effectively.
Many students do not see any connections between
discrete and continuous mathematics, and are un-
able, for example, to apply calculus techniques to
estimate growth rates of discrete functions or to es-
timate the size of discrete sums. This inability to
combine discrete and continuous skills is also found
in students of probability, operations research and
signal processing.

Both of the above reasons suggest that discrete
mathematics should be incorporated as a compo-
nent of the fundamental mathematics course that
is offered to all students in their first two years of
university study. This suggestion was first made
by Ralston (1981), who proposed that the study of
discrete mathematics precede the study of calculus.
He argued that such an organization would benefit
virtually all students of mathematics, and not just
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those students concentrating in computer science.
Ralston’s proposal has led to substantial discussion
in the United States on the proper place of discrete
mathematics in the curriculum (Ralston and Young
1983). The debate has focused on whether discrete
mathematics should precede or follow the calculus
in the curriculum of the first two years. Many of
the arguments advanced on either side are adminis-
trative in nature, dealing either with the demands
of other curricula (such as physics or engineering)
or with articulation with other institutions (such
as high schools, junior colleges or universities that
have retained the standard curriculum). One result
of this debate has been the publication since 1985
of over 40 discrete mathematics texts for freshman
or sophomore courses (e.g. Ross and Wright, 1988,
Maurer and Ralston, 1991).

Whether calculus is placed before or after dis-
crete mathematics, it is by no means clear that
students who have completed both courses will be
able to combine their discrete and continuous math-
ematical skills in an effective manner. This problem
has been recognized by some designers of proposed
curricula, and consequently their calculus propos-
als generally include some discrete aspects, such as
extended discussion of numerical methods and sub-
stantial use of sequences (see, for example, Bushaw
1983).

Another possibility, which has been given little
serious attention, would be to develop a new, uni-
fied curriculum that would interweave discrete and
continuous themes throughout its courses. While
the first year of the curriculum would correspond
to the calculus course, its real thrust would be the
study of functional behavior and functional repre-
sentation. The course would consider discrete func-
tions (sequences) along with continuous functions,
and would constantly emphasize analogies and par-
allels between discrete and continuous situations.
Thus the fitst year of the curriculum would be pri-
marily continuous, but with a strong discrete flavor.
The second year of the curriculum would focus on
structure, and would be primarily discrete, but with
a strong continuous flavor.

This paper will argue that a curriculum unifying
discrete and continuous themes is not only feasible,
but has the potential of providing students with a
broad, powerful perspective embracing the mathe-
matical ideas and techniques that are needed for the
study of computer science. This perspective would
also yield a strong mathematical foundation for the
study of engineering, the physical sciences, and in-
deed for the study of higher mathematics itself.

Furthermore, the development of such a cur-
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riculum would force a reexamination of the top-
ics taught in the conventional calculus course. As
mentioned above, various recommendations have
been made to remove or include particular top-
ics. Although each such recommendation has been
cogently argued, no consistent rationale has been
given for the collection of topics that together make
up the proposed calculus course. The first-year
course outlined below has a consistent theme - func-
" tional behavior and representation - and each topic
to be included in (or excluded from) the course
should be judged on the degree that it matches the
course’s perspective.

In the following section, a detailed outline and
discussion will be given only for the first year of the
proposed two-year curriculum. At the conclusion of
the paper, we shall return to the second year of the
curriculum, as well as to the larger issues raised by
the question of articulation with other curricula.

A FIRST-YEAR CURRICULUM INCOR-
PORATING DISCRETE AND CONTINU-
OUS THEMES

The fundamental thrust of the proposed first-
year curriculum is the behavior and representation
of functions. Roughly, the first semester is devoted
to tools for the description and analysis of functional
behavior, with the focus shifting to representation of
functions in the second semester. Before presenting
a more extended discussion of the benefits to be
achieved by including both discrete and continuous
topics, it will be useful to give an annotated outline
of the first semester curriculum.

A. Functions
1. Number and Relations

A knowledge of set concepts and notation is as-
sumed. Inequalities will be emphasized.

2. Functions and Operations
The function concept and functional notation
will be introduced, stressing the algorithmic in-
terpretation of the function symbol f. Discus-
sion will include domain and range, operations
on functions (arithmetic operations, composi-
tion, translation), and graphs of functions. Use-
ful functions will be introduced [polynomials,
rational functions, exponential functions (de-
fined on the integers), absolute value, floor, ceil-
ing].

3. Models
Algorithms and elementary complexity analy-
sis will be introduced (including binary search).
This will allow discussion of the function |lg(n)].

6.

Models  demonstrating the need to construct
functions and to perform curve fitting will be
included.

B. Behavior of discrete functions

. Sequences: Iteration and Recursion

This section will discuss a variety of sequences
including geometric squares, the Fibonacci se-
quence and the sequence generated by the Eu-
clidean algorithm.

. Difference Operators

The difference operation A will be introduced as
a function on sequences. The recursion scheme

U1 — Ug = Auy

will be treated in order to emphasize special
functions defined on the integers. Formulas for
higher differences will be discussed.

. Summation

The primary topic here will be the binomial the-
orem, both in its standard form and in the ex-
pression for (1+A)™. The second form will allow
various formulas for finite sums to be presented.

. Order Notation (O, 0) and Limits of Sequences

C. Behavior of continuous functions

. Limit Heuristics

Limits of functions will be discussed only in
terms of limits of sequences. The continuity con-
cept will be introduced. The operator

z+h)— f(z
NPBPLCEES
will be introduced. Analogies to the discrete
difference operator discussed above will be pur-
sued.

. First Derivative

The derivative will be defined, and interpreted
using tangent lines. It will be shown that differ-
entiable functions are continuous.

. Differentiation Rules

Powers and roots; product, quotient rules.

. Monotone Functions and Local Extrema

A rigorous treatment will be postponed. Curve
sketching will be introduced here and the use of
graphing calculators will be stressed.

. Second Derivative

Concavity will be discussed and applied to
curve sketching again using graphing calcula-
tors.

Eztreme Values



Maximum-minimum problems will be solved.
Examples will also demonstrate the use of piece-
wise linear functions.

7. Related Rates
The chain rule will be presented, and related rate
problems will be solved.

D. Estimation and error

Mean Value Theorem

Monotone functions will be discussed more rig-

orously, and the MVT will be applied to global

estimation of functions.

2. Solution of Equations
Newton’s method will be discussed from both ge-
ometric and iterative perspectives. An elemen-
tary treatment of error estimation will be given,
and critical values will be estimated.

—

3. Interpolation
Interpolation of functions by straight lines and
parabolas will be discussed using the difference
operators developed above.

4. Approzimation
Second-order Taylor polynomials will be used to
approximate functions, and the estimated error
will be computed. Analogies will be drawn be-
tween interpolation and approximation and be-
tween differences and derivatives.

E. Integration

1. Introduction
The summation operator for sequences will be
introduced. Its relation to the difference oper-
ator will be discussed. It will be treated as an
aggregation operator, and used to motivate the
discussion of area.

2. The Definite Integral
This will first be introduced using a piecewise
linear definition. This definition will then be
applied to step functions. The area definition
will then be presented, and applied to parabolas
using the results on finite sums obtained above.
Some elementary properties of the definite inte-
gral will be presented, including the mean value
theorem for definite integrals.

3. The Indefinite Integral
This will be explicitly computed for step func-
tions, piecewise linear functions and parabo-
las.

4. The Fundamental Theorem of Calculus
This will be derived from the mean value the-
orem for definite integrals. The chain rule will
be applied to investigate some properties of the
integral of 1/z.

5. Evaluation of Integrals: Analytic Techniques
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Substitution techniques will be discussed, as well
as the use of integral tables and symbolic calcu-
lators.

6. Evaluation of Integrals: Numerical Techniques
The trapezoidal rule and Simpson’s rule will be
discussed. It will also be shown how integrals
can be estimated using inequalities, and how
sums can be estimated using integrals.

7. Applications of Integration: Aggregalion
The applications to be treated include work and
volume.

8. Applications of Inlegration: Modeling
The primary theme here will be the recognition
of Riemann sums in differing situations. Exam-
ples will be taken from arc length and fluid flow.
The basic point will be that when a model gen-
erates a discrete (Riemann) sum, it can then be
approximated by a definite integral.

Although this annotated outline gives a good
overview of the first semester of the proposed course,
it is too brief to show how the interweaving of dis-
crete and continuous themes can lead to major bene-
fits. The following examples are meant to be typical
of the perspective that will be possible within this
course structure.

Example 1: At the beginning of the course, the
discrete exponential function, f(n) = 27, will be in-
troduced, along with its one-sided inverse, g(n) =
max{k|2¥ < n} = |lg(n)]. The function g(n) is vi-
tally important in computer science; for example,
g(n)+1 is the worst-case number of comparisons in
a binary search of a list of length n. The growth rate
of g(n) is important, and is usually treated (via cal-
culus) using L’Hospital’s rule. We suggest a discrete
approach, based on the binomial theorem. Clearly
29(7) < n, so that g(n)/n < g(n)/29"). To de-
termine the behavior of g(n)/29(") as n — oo it
is sufficient to consider powers of 2 since g(n) is
constant bétween successive powers of 2. Since for
n = 2% g(n)/29(") = k/2% it is only necessary to
look at the behavior of k/2* as k — co. By the bino-
mial theorem 2% = (14 1)* > k(k —1)/2, and hence
k/2*¥ < 2k/k(k — 1) = 2/k(k — 1), which gives the
result that g(n)/29(™) — 0 and, therefore, so does
g(n)/n. The simplicity of the discrete argument
should aid the student in learning, understanding
an assimilating the growth rate of the continuous
logarithm.

Example 2: The syllabus outline has referred to
analogies between the discrete difference and sum-
mation operators on the one hand, and differen-
tiation and integration on the other. For exam-
ple,- the difference operator is defined on the se-
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quence {u,} by Au, = uny; — tun. If we de-
fine the falling factorial function on the integers by
2™ = z(z—1)---(x —m+1) then it is easy to see
that Az(™ = mz("=1 A2:(™) = m(m—1)z(m-2),
and finally that A™z(m) = m! and A™+1z(™ = 0.
Thus the behavior of the difference operator (and its
iterates) on the polynomials (™ is strongly analo-
gous to the behavior of the differentiation operator
(and its iterates) on the polynomials {z}. Further-
‘more, since each collection of polynomials provides
a basis for the vector space of polynomials of degree
at most n, an example has been introduced which
will be useful in a later course in linear algebra.
One further benefit of the use of difference oper-
ators is the natural observation that A2" = 2" or
more generally that Ak™ = (k—1)k". This suggests
that exponential functions, whether discrete or con-
tinuous, may have a special role to play with respect
to difference or derivative operators, and serves to
motivate the later observation that d/dz(e”) = e*.
Example 3: The first two examples used dis-
crete 1deas to motivate continuous concepts that are
to be introduced later. In this example, continuous
techniques are used to obtain a discrete result. The
identity giving the sum of a geometric progression,

n—1 n
Z .’L’k — .’L‘l‘ —11
k=0
can be differentiated using the quotient rule to ob-
tain the identity

Ek x (n=Dz"*l —nz" 42
" = :
k=1 (z—1)?

Using this identity, it is immediate that
n—1
> k2F = (n—2)2" +2
k=1

and that

2n—l

n-—1
SkrF=2- ntl
k=1

The last result yields

o0
Z K27k =2
k=1

since k/2® — 0 as k — oo (see Example 1). This
example serves to remind students that continuous
techniques can be important in discrete situations.

These examples demonstrate that the proposed
course does not merely insert a collection of im-
portant discrete topics into the calculus course, but
rather expresses a consistent approach to all of the
subject matter. The fundamental perspective is the

study of functional behavior, and both discrete and
continuous functions are treated throughout. Each
class of functions is used to develop tools and sug-
gest analogies that will be useful for the study of
functions of the other class.

The second semester of the course further elab-
orates the functional perspective. Rather than give
a detailed, annotated outline, we shall discuss the
topics to be covered and describe how they relate
to the themes developed during the first semester.
The second semester is primarily devoted to mate-
rial taken from two broad categories, special func-
tions and representation of functions.

Exponential and logarithmic functions will be
treated in depth. The natural logarithm will be
introduced using the definite integral, and its prop-
erties will be investigated. The inverse of the log-
arithm will be motivated using growth models and
the differential equation dy/dz = ky and the rela-
tionship of this inverse to the exponential function
will be motivated using difference equations and the
discrete logarithm. Finally, the properties of the
function e* will be developed. Numerical estimates
for exponential and logarithmic functions will be
used throughout the discussion.

The next major topic will be trigonometric func-
tions. Here the primary motivation will come from
the geometry of the circle and from models of cir-
cular and harmonic motion, although discrete pe-
riodic functions, such as mod n, will also be used.
The properties of the trigonometric functions will be
developed. Integration by parts will be introduced
and applied to the special functions. The special
integrals leading to the inverse trigonometric func-
tions will be introduced here. Mathematical models
suggesting the use of trigonometric polynomials will
also be used.

Once the standard functions have been treated,
it will be natural to discuss various forms of in-
finitary behavior. The discussion will begin with
a reconsideration of infinite sequences, including a
presentation of indeterminate forms and their ap-
plications to order notation. The remainder of this
section will be devoted to improper integrals and
infinite series, emphasizing the analogies between
these two forms of infinite summation.

At this point, the focus will shift somewhat from
functional behavior to functional approzimation and
representation. Thus the next major topic will be
power series, with particular emphasis on the use
of Taylor series to represent functions. Generat-
ing functions for simple recursions will be discussed,
and a certain amount of attention will be devoted
to computational issues and the estimation of er-



ror terms. The constant theme will be the use of
Taylor series as function approximations to obtain
information about functional behavior that would
otherwise be difficult to obtain.

The final topic will be trigonometric series, with
particular emphasis on the representation of func-
tions using Fourier series. The treatment of Fourier
series at this early point will require the introduc-
tion of complex numbers, which will reinforce the
students’ geometric understanding of trigonometric
functions. Furthermore, the availability of Taylor
series will permit an analytic as well as a geomet-
ric discussion of the identity e** = cosz + isinz.
Finally, the early introduction of Fourier series will
make it possible to discuss discrete Fourier series
and their applications at a far earlier point in the
curriculum than is presently possible.

Clearly, the focus on functional behavior and
representation has produced a first-year course that
is quite different from what is currently taught. The
essential core of the current calculus course has been
retained, but it is always made clear that it is there
because it throws a powerful spotlight on functional
behavior and representation.

Conversely, many traditionally taught topics
have been removed. This pruning was only possible
because the developers approached each topic with
the same question: How does this topic impact on
the main theme of the course?

Now that the course has been outlined, it re-
mains to show how it will fit into the curriculum. We
will also have to pay some attention to the second-
year course that will follow this course, and also
to the political and institutional problems that its
adoption would pose.

IMPLICATIONS FOR THE CURRIC-
ULUM

The first question to be addressed is the audi-
ence to be served by the proposed course. 1t is
clearly ideally suited for students of computer sci-
ence, since it merges themes from continuous and
discrete mathematics in a synergistic manner. Stu-
dents who have successfully completed the course
can be expected to handle the mathematics arising
(for example) in the analysis of algorithms. It can
also be argued that this course would be well suited
as a first course for students of mathematics, the
physical sciences and engineering. For these disci-
plines the major omission has been vector geometry
and multivariate calculus. In many universities, a
large proportion of this material is treated in the
second year, and it is not unreasonable to suppose
that even more could be shifted to a third-semester
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course designed for those students.

Although much vitally important mathematics
can be subsumed under the general heading of
“functions”, an equally important heading is that of
“structure”. While the proposed course is intended
to give students the most important tools that come
under the former heading, it does not address the
latter. For students of computer science, both head-
ings are equally important, and thus an important
place in their education must be found for “struc-
ture”. Much of the debate summarized above on the
place of discrete mathematics in the curriculum can
be seen as a debate on the place of “structure” in the
curriculum. Following on the first-year course that
has been outlined above, it is reasonable to develop
a second-year course focusing on “structure”.

Such a course will not be described in detail here,
but it is possible to discuss briefly what general top-
ics might be included. The primary strands might
be discrete mathematics, linear algebra and proba-
bility theory. Discrete mathematical topics could in-
clude relations, graphs, Boolean algebras and formal
languages. The discussion of linear algebra could in-
clude some multivariate calculus, which could then
be applied in the probability portion of the course.
Just as with the first-year course, the topics in-
cluded in the second-year course should be chosen
because they illustrate vital structural themes or be-
cause they are motivated by or permit the develop-
ment of important applications.

The introduction of courses designed along these
lines will not be a simple matter. The obstacles that
will be found range from the need for new textual
materials to the difficulty of articulating the new
courses with other courses and institutions on all
levels. It would be an unfortunate mistake, how-
ever, to conclude that because of the certainty of
encountering what seem to be insuperable obstacles
to the introduction of a truly new curriculum, the
only possible strategy is one of incremental change.
The development and introduction of a curriculum
integrating discrete and continuous ideas is an ex-
citing challenge, and one that should be taken up in
several places. What is really needed is a collection
of design and development experiments, performed
in out-of-the-way “protected” environments. Once
a new currictlum has proven its viability and worth
in one or more of these experimental environments,
it will be time to address the structural and institu-
tional issues involved in transplanting the successful
curriculum to less protected situations.
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TEACHER EDUCATION AND TRAINING

Bernard Cornu
Institut Universitaire de Formation de Maitres, Grenoble, France

Introduction

During the ten last years, considerable progress
has been made in the development of computer
hardware and software, and many valuable educa-
tional experiments have been carried on. However,
computers are not so commonly used as one might
have expected. In many schools the computers are
locked in a special room, and it is not easy for teach-
ers to use them. They must plan in advance, be sure
the room is available, get the key and check and pre-
pare the computers. Then they go to the computer
room with the pupils, and the time spent there is
generally not totally “integrated” into the course.

Thus even when the computer is used, the im-
pact on the learning is not clear. For some pupils,
it is clearly useful and fruitful, but do we know why
and how? We all know very good and enthusias-
tic teachers using computers, and they generally do
it with success. But it is time consuming, it needs
a great personal investment, and the conditions of
success are not easy to reproduce or to transfer to
another situation.

However, computers are now very common in so-
ciety; they are used in many domains of daily life. In
many countries national plans for computer equip-
ment in schools have been achieved, and so a lot
of computers are available in schools. Much educa-
tional software has been produced, and it is often
of high quality. The use of computers does indeed
become easier.

Five or ten years ago, the focus was on the devel-
opment of hardware and software, and on original
experiments in using computers in education. Now
it appears that teacher training is the next major
and unavoidable step but one which has not been
sufficiently studied. Most countries are now asking
how to train all current and future teachers in the
use of new technologies for education.

Of course, training plans have already been
tried. The first ones were generally training in com-
puter science. Teachers from various subjects were
trained in computer science, and one thought that
they would then be able to use computers in their
teaching in an efficient way. It did happen but only
in some cases! And it did not solve the pedagogical
problems of the use of computers, which increasingly
appear to be essential.

The use of computers in education has relied
mainly on some enthusiastic teachers who spend
nights and weekends writing programs and prepar-
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ing activities for their pupils. These teachers some-
how got the training they wished (even if they learnt
a lot by themselves!}). But we now need to go fur-
ther, and the way the use of computers was devel-
oped with some teachers is certainly not applicable
to the teachers. We need to imagine new ways such
that all teachers will be able to use computers.

In most countries computer science is not yet a
school subject. Therefore, except in some particu-
lar cases, we do not need to train computer science
teachers, but we need to train teachers in all sub-
jects in the use of computers and new technologies
in the teaching of their subject. Thus we need to
reflect on the contents of such training.

The main problem, as noted, is the of general-
isation. We know how to train some teachers but
we now need to train all teachers. We have done
some very specific and sophisticated training; we
now need training which can be easily generalised
and delivered to all. We must take into account
the willingness and the abilities of the “standard”
teacher, and design adequate training. The usual
training for good and enthusiastic teacher$ is cer-
tainly not directly reusable.

This is both a pre-service and an in-service mat-
ter. In the next ten years in most countries, one
third of the teachers will be changed (because of re-
tirements and the increasing numbers of teachers).
So pre-service training will be efficient for this third.
The other two thirds will need in-service training
during the same ten years.

In the long term, one must think about the
link between pre- and in-service training. In an
ever changing world, it is impossible to give future
teachers the abilities and knowledge they will need
throughout their careers. They will have to learn, to
think and to reflect continuously. Pre-service train-
ing is not intended to avoid in-service training, but,
on the contrary, to prepare for it! Increasingly in-
service training should be considered a normal part
of the job of a teacher. It should not be only for
volunteers, but for all!

The evolution of teaching

For several different reasons, teaching is going

to evolve:
e Technology is evolving quite quickly. Hardware
is becoming smaller and cheaper and more and
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easier to use. Software is also evolving, becoming

more user-friendly, and it is becoming possible to

use computers with good software which requires
little preparation.

e Pedagogy is evolving. One reason is because re-
search in education provides better knowledge of
teaching and learning. And new tools are begin-
ning to be available for teaching. But pedagogy
is also evolving because of the democratisation of
education. More and more children have access
to education, and so pupils are increasingly di-
verse, and need pedagogy adapted to their needs.
In short, teaching needs to be more individu-
alised.

Current and future teachers must be prepared
for this evolution. It is not enough to master
the knowledge and some pedagogical strategies and
tools. Teachers must be able to deal with all the
evolution which will happen, and to adapt to many
different kinds of pupils.

The school of tomorrow may be quite different.
It will be organized according to a variety of peda-
gogical styles. There will be large rooms for large
audiences; standard classrooms; rooms for group
work; rooms for individual work; rooms for practi-
cal work or workshops; resource rooms etc. Not only
will the pupils be provided with a variety of rooms,
but so also will the teachers. Teachers now have
a rather standard way of working. They come to
school to give their lessons, and they stay at home to
prepare the lessons or to mark homework. One can
imagine that teachers will increasingly work with
their colleagues and that they will need to have
special tools and materials available for their work.
Certainly offices must be provided for teachers, and
rooms for group work. They will also need labora-
tories to prepare lessons using technology.

The school of tomorrow will be equipped with
advanced technology — computers, multi-media re-
sources, easily available in each room (perhaps with
permanent equipment, or possibly by plugging in
portable machines); Resource centers will also be
necessary in schools. Libraries with books, software,
audio, video, and multi-media products. As is the
case already with other subjects , one can imagine
that in the near future, mathematics laboratories
will be available in most schools.

The role of the teacher is also changing. Since
pupils are more and more diverse, the teacher has to
intervene in many different ways, not only as a lec-
turer, giving lessons and delivering knowledge to the
pupils. In the classroom teachers must use different
pedagogical styles and different kinds of activities.
They must also work with small groups of pupils and

sometimes individually with pupils. Activities with
the pupils may occur not only in the classroom, but
also in other rooms of the school such as a resource
center, laboratory, a room for small groups etc.

Altogether the teacher has to be a counselor, ad-
visor, organizer, leader and a manager. The task is
not only mastering of teaching, but also mastering
the management of learning.

The way teachers work every day is evolving.
They will probably be in the school all day and all
week long and will use various tools in preparing
lessons and in teaching. They will work together
with colleagues, and even teach together with col-
leagues. Their personal work will also evolve and be
more diverse. The evaluation of pupils is going to be
more and more complex, and the role of the teacher
in evaluation will be more important. Evaluation
itself i1s becoming more precise and more technical;
the use of evaluation in training and in individu-
alization of education will be a major role for the
teacher.

Teachers will also have to be involved in the elab-
oration of pedagogical tools. The evolution of teach-
ing needs new tools, but also new ways in designing
the tools. Textbooks, software, video and audio doc-
uments and resources for pupils will all have to be
better adapted to specific pupils or groups of pupils.
Their elaboration will need more techniques, more
technology and more professionalism.

Team or group teaching will become more fre-
quent. Teachers will work and reflect together and
this will soon be considered as a normal component
of the job of a teacher. As intellectuals, teachers
must continue training and reflection throughout
their professional life.

Thus teaching can no longer be considered only
as an art; it is a profession with all the components
of the professionalism. And this has consequences
for the education and training of teachers. We must
train professionals!

A good professional must have access to the best
and most efficient tools and must be prepared to
use these tools, to choose the tools to be used and
to adapt to new tools. Once again we note that
continuous training is a natural part of the job of a
teacher.

Will the computer be able to replace the teacher?
The answer seems to be no. Teaching and learn-
ing are very complex processes, and, although tech-
nology brings new tools, the main didactic actor is
the teacher who manages the learning process and
adapts it to each pupil and who insures the social-
ization of the knowledge and its compatibility with
the “external world”. Among the productions of the



pupils in the class, those must be identified which
deserve status of knowledge. Thus the teacher in-
stitutionalizes knowledge.

Of course, personal and individual moments are
possible and necessary in learning, and the com-
puter can make them more efficient As well, some
particular topics can be learned “automatically”
with a computer (for example, typing; training in
repetitive skills such as computation, learning “by
heart” etc.). But teaching and learning need in-
teraction between the teacher and the pupils, and
among the pupils; the computer must be used in a
way that facilitates this interaction.

Teacher training
Which competencies?

In talking about teacher training we need first to
determine the competencies which are necessary for
a teacher. Which teachers do we need for tomorrow?
Which kinds of teachers do we want to prepare?

First, we certainly need teachers who have mas-
tered perfectly the knowledge they will have to
teach; teachers must be competent in their subject.
But this is not enough. They must not only be good
“in” their subject; they must also be good “about”
their subject. They need to know about the origins
and evolution of their subject, about its history and
epistemology. They need to know about the role of
their subject in society and about its applications.
They need to know about the “philosophy” of their
subject.

We need teachers who are able to communicate
knowledge and to make pupils construct their own
knowledge. Teachers must be educated in the peda-
gogy and didactics of their discipline. They must
know about the obstacles to learning, they must
know about the errors students may make and their
role in dealing with these errors. They must know
about the conditions which facilitate learning and
they must know about evaluation.

We need teachers able to manage and lead their
classes. They must know about groups and individ-
uals. They must have some knowledge of psychol-
ogy.

We need teachers able to advise and orient their
pupils. Thus they must know the educational sys-
tem, its place and its role in society so they need
some knowledge of sociology.

We also need teachers trained in the technical
aspects of their job, able to speak loudly and clearly
enough and able to use technical tools etc.

In general then, teachers have many different
roles and must be competent in each of them.
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But what about new technologies and comput-
ers? They are linked with each of the aforemen-
tioned competencies. One must think about the role
of the computer with respect to the subject itself.
What is the influence of the computer on mathe-
matics, on the way mathematicians work and on
the mathematics which is taught in schools?” What
is the place of computers in the way mathematics is
used in society? What is the influence of computers
on the pedagogy and didactics of mathematics? On
evaluation? What is the role and the use of the com-
puter in class management, in individualization, in
the organization of the teaching? How does it affect
the psychology of the pupil? What technical help
can the computer bring to the teacher?

Of course, there are no definite answers to these
questions; the education of teachers must make
them able to ask these questions and reflect about
them. Education cannot give definite competencies,
but it must give an aptitude to evolve; it must give
the basic tools necessary to be able to build one’s
own strategies, one’s own answers.

We now try to list some of the competencies a
teacher needs in computers and computer science,
remembering that our purpose is not to train com-
puter science teachers, but mathematics teachers.

e Basic tools: such as word processing, spread-
sheets, data processing, and also other techno-
logical tools such as video and the overhead pro-
jector. This is certainly a very important point:
If we want ALL teachers use new technologies,
they must be totally familiar with the most com-
mon and easy to use; it is an absolute necessity
that teachers be able to use computers for ele-
mentary applications. This is the way to make
the computer part of the “daily life” for teachers.

e Technical elements: to be able to use the hard-
ware, to manipulate the main accessories, to
identify elementary troubles, and to deal with
the technology in the school; teachers need a ba-
sic level of “familiarity” with technique.

o Elements of computer science. But to what
extent? Teachers certainly need to know just
enough in order to “understand what happens”;
but the links between mathematics and com-
puter science are so strong that it is certainly
useful to know about some fundamental con-
cepts (as well as some concepts of algorithmics -
see the chapter by Maurer).

e Mathematics and informatics. Mathematics is
evolving and changing under the influence of
computers and informatics. - Therefore, teachers
need to maintain their mathematics knowledge
and to practice mathematics from an informatics
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viewpoint. Mathematics is becoming more ex-
perimental, more algorithmic, more numerical;
teachers must be able to follow the evolution of
mathematics, and to acquire new competencies
and new attitudes and to be able to carry out
new activities in mathematics.

e Using existing resources. Teachers must be able
to know what exists — different software, differ-
ent tools, different strategies for teaching. They
must be aware. of new products which appear.
They must be able to choose among existing re-
sources according to the needs of their pupils
and according to their pedagogical choices. They
must be able to advise pupils which products
they should use.

e Pedagogy, didactics and the computer. One of
the main problems of the use of computers for
mathematics teaching is the integration of the
computer activities into the pedagogical strat-
egy. Too often, computer activities are just
added to the usual lessons. An optimal use of
the computer needs not only good knowledge
of the hardware and software to be used, but
also mastering of the problems of learning. A
teacher should be aware of what we now know
about how pupils learn; the computer should be
Just a tool to implement new strategies and new
solutions to learning problems. It can be an ef-
ficient tool, for example for individualization of
the learning and for evaluation, but only if indi-
vidualization or evaluation problems are solved
in pedagogical and didactical terms. Technology

does not replace pedagogy. So, training in new’

technologies cannot be independent of training
about pedagogy and didactics.

¢ Didactical engineering. Teachers have to elabo-
rate the situations needed for pupils. Since they
have a large number of tools at their disposal
and a large number of choices in terms of strat-
egy, a teacher needs to have the characteristics of
a “didactical engineer”, i.e. they must have the
ability to use the results of research or theoret-
ical statements and transform them into usable
products.

Which methodology for training?

The methods used in teachers training are at
least as important as the contents of the training.
It is well known that teachers usually teach, not as
they were taught to do, but by reproducing the way
they were taught. If you only use lectures to train
teachers (even if you lecture about active methods
for teaching), they will then mainly give lectures to
their pupils.

So the most important thing in educating teach-
ers how to use computers in teaching is not to give
lectures on “how to use computers”, but to actually
use the computer in the training. This is true for
all new technologies. You should use the overhead
projector in the training, rather than give a lecture
on “how to use the overhead-projector”.

If you want to convince teachers that pupils can
learn better with the computer, just make these
teachers or future teachers actually learn something
with the use of computers.

This means that the training should include ac-
tive parts, even if some theoretical aspects are also
necessary. One often says that problem solving is a
good way to learn mathematics; similarly, the solv-
ing of teaching or learning problems is a good way
to learn about pedagogy, and the solving of teach-
ing or learning problems using new technologies is
certainly a good way to learn about the use of new
technologies in education.

Teacher training should not be only an accu-
mulation of knowledge. As already noted, teach-
ers should be prepared to evolve and adapt to new
situations.

Among the different methods which can be used
for training teachers, “training by research” is prob-
ably one of the best. It does not mean that all teach-
ers should be researchers. But they should be able
to use the methodology of research, and this can
be learnt through group activities — reflection, inno-
vation, preparation of documents and of situations,
etc. Teachers will need to learn to work in teams
with colleagues. To be prepared for such activities,
they need team activities in their training!

Teachers should also be trained to communicate,
to read, to write (for their pupils; for their col-
leagues; for publication) since this will also be a
component of their job.

Teachers should be prepared for a diversity of
pedagogy. There exist many different pedagogical
strategies, many different pedagogical styles. Too
often, one is convinced that one of these methods
is the best. But it is better to be able to deter-
mine, in given conditions, at a given moment, with
given pupils what is the appropriate method to en-
able them to learn a specific topic. This implies
that in the training itself many different methods
and strategies will be used — lecturing with one
computer in the room, used mainly by the teacher
(“blackboard computer”); collective activities in a
room with one computer for each student or group
of students; individual activities on computers; self-
evaluation using computers etc.

Diverse software must also be used in teacher



training — utilities, basic tools such as word-
processors, languages, tutorials, open-ended soft-
ware, multi-media tools etc. Giving teachers access
to the maximum of diversity increases their freedom
in their own professional activities.

Which contents?

This is again a question without a definite an-
swer. Of course, the answer should not be the same
in pre- and in-service training. But, in fact, the
topic of computers is new for most in-service teach-
ers, and they need training which is close to that in
pre-service.

We can hope that in the future students will have
acquired the necessary elements about new tech-
nologies in their previous studies, for example using
computers for word-processing.

The first question to be asked is: Do the teachers
I train need computer science? Will they consider
computer science as a subject in itself? Should they
only learn informatics as it impinges on their main
subject, and through its use in their subject?

Many different answers to these questions have
been attempted. Some countries have tried to train
teachers by giving them a full year of training in
computer science. This produces “specialists”, but
the reinvestment for other teachers was not easy.
Many countries organize sessions for teachers. Here
again the diversity of what is offered to the teachers
is certainly a good thing — lectures on specific topics;
one week or two weeks sessions; a course over one
term or one year etc.

In pre-service training, there should certainly be
specific modules in order to prepare future teachers
for the use of computers. As a possible example,
here is the contents of a course we have given for
many years at Grenoble University, both to future
teachers and to in- service ones. This course lasts
for 150 hours (5 hours a week during 30 weeks).
The title is: “Informatics for mathematics teach-
ing”. Each week, 2 hours are devoted to lectures
and 3 hours to practical work. The course is di-
vided into three parts:

o Informatics and algorithmics. Students learn the
basic use of a computer; they also learn elements
of algorithmics, including recursion, proof of pro-
grams, evaluation of algorithms and data pro-
cessing. They use three different languages for
programming: Pascal, Logo, and Prolog.

e Mathematics from an informatics viewpoint. In
order to use the computer in mathematics teach-
ing, it is necessary to use it for mathemati-
cal activities, and therefore to reconsider some
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mathematics concepts with the help of comput-
ers. Every year in the course we choose different
mathematics topics in the curriculum of univer-
sity studies (not in the curriculum of secondary
schools because we want the students to be able
to accomplish by themselves the transfer of these
activities to the field of secondary school math-
ematics).

o Pedagogical and didactical viewpoint. In this
part, we use and analyse various existing tools
(software, textbooks with computer studies in-
tegrated into them etc.). We try to combine
the fundamental notions of pedagogy and didac-
tics of mathematics together with technology.
We also try to make the students solve teach-
ing problems using computers. (For example: I
must prepare a lesson about linear equations for
tomorrow. What will the content of the lesson
be? What software will I use? What will be the
activities of the pupils? Here is another example:
I must prepare a course about linear equations,
but I have six months to prepare it. How will I
do it?).

During the year the students have to produce a
personal project which takes the form of a piece of
software they design and experiment with.

Research, innovation and training

The development of the use of new technologies
in mathematics teaching makes it necessary that re-
search be carried on in several domains — research
about mathematics learning; research about com-
puters in mathematics teaching; research leading to
appropriate software; research about teacher train-
ing. This research may take several forms — funda-
mental research, applied and experimental research,
innovation. Too often, there is a gap between the
fundamental results of educational research, and
products which are usable in teaching and in train-
ing. We need to develop applications and implemen-
tations of the results of the research and we need
pedagogical products based on research.

Innovation and research can contribute to teach-
er training. Indeed, the participation of teachers or
future teachers in innovative activities is a good way
for training them.

The participation of teachers in elaborating and
experimenting with pedagogical products is neces-
sary, but not sufficient. Designing good software
needs computer scientists and software specialists as
well as specialists of pedagogy-and teachers (prac-
titioners). It is a professional matter which needs
professionals.
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Two other tracks need to be explored:

e Teacher training is becoming more complex, and
we need courses and training activities adapted
for this purpose. Courses for teachers and future
teachers must be developed. We also need to
reflect about the specific competencies which a
teachers trainer must have. In fact, in many
countries the first problem to be solved before
we are able to train ALL the teachers is to train
teacher trainers.

e In order to diversify the tools usable in teacher
training, it would certainly be interesting to de-
velop computer tools and software for teacher
training.

Conclusion

We have done a lot of experimenting with new
products and new strategies, and the most enthusi-
_ astic teachers have shown both their efficiency and
their limits. The problem now is to generalise the
use of new technologies, so that ALL teachers are
able to use them as they wish, or to know why they
do not want to use them.

Two conditions seem to be essential in order to
help all teachers and future teachers use computers:

e Make the computer actually available and us-
able; make it a “daily life” tool; make it really
user-friendly. This means that it is necessary
that schools be well equipped. The aim should
be that each teacher or future teacher has a com-

puter (either one the teacher owns (special plans

may need to be set up for purchasing comput-

ers at reasonable prices; loans may need to be

obtained for future teachers) or the institution
must own computers and make them available
for teachers and future teachers).

e Actually use the new technologies in teacher
training, and not just train about “how to use”
them.

In no case can the technology replace the peda-
gogy. A bad teacher using computers will certainly
still be bad! So training and education are neces-
sary, but not only from the viewpoint of technology.
We need coherent training, integrating both techno-
logical and pedagogical approaches. Teachers must
be ready to evolve and adapt, and must retain the
ability to ask questions. At each instant they should
ask whether education or technology is the driving
force.

Teacher training is a continuous process. Pre-
service and in-service training are strongly linked,
and both are necessary. No longer can a teacher be
provided with all the abilities and knowledge needed

at the beginning of a career; training never ends,
reflection never ends; in-service training should be
considered as a natural component of the teacher’s
Jjob. We must never forget that teachers are profes-
sionals, and need professional training.

Many countries use a “cascade model” for
teacher training. The education ministry organises
a course for a number of selected trainers; after-
wards, each of them trains a number of other train-
ers, who then train teachers (or trainers who train
... ). Such a model can be efficient, but may also
not be! The main characteristics of good training
— motivation, activities, understanding — must be
present at each stage of the “cascade”. And this
model can apply only to very specific, precise, and
limited training.

“Training plans” have been set up and imple-
mented in many countries for training teachers in
the use of computers. They have only partly suc-
ceeded. One reason for this is that they are gen-
erally too restricted as to technology. A training
plan should be more global, aiming not only at solv-
ing new technology problems, but aiming at solving
teaching and learning problems. New technology
problems should not be treated in too isolated a
context.
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Symbolic manipulators, that is, computer pro-
grammes with the capability of carrying out sym-
bolic computations, for example, in calculus or lin-
ear algebra, are now widely available. While these
are well-established tools in many areas of math-
ematics, science and engineering, it must be recog-
nized that they are still in their infancy with respect
to their use in mathematics education. They repre-
sent an ineluctable challenge to current approaches
to the teaching of mathematics and there is a belief
among some members of the mathematical commu-
nity that electronic information technology, through
these symbolic capabilities, will exert a deep influ-
ence on how and what mathematics is taught and
learned (for example see Page (1990)). However no
clear pattern has yet emerged on how such an influ-
ence is to be articulated.

This paper will discuss certain aspects of the im-
pact of symbolic manipulators on mathematical ed-
ucation in the upper secondary years and the first
few years of university. It is by no means intended to
give the final word on such a vast field as much work
is in progress and the technical environment (com-
puter hardware/software and calculators) is con-
stantly improving. The aim of this paper is rather
to examine some of the major issues and to indi-
cate general trends which have developed since the
1985 ICMI Study on “The Influence of Computers
and Informatics on Mathematics and its Teaching”.
The influence of symbolic manipulators on more ad-
vanced (senior) mathematics courses will not be ex-
plored. This is not intended to belittle their impact
at this level but rather to concentrate on those years
where these systems must be implemented in order
to benefit the largest possible number of students
in mathematics courses. The influence of these sys-
tems and their mathematical foundations (see for
example Davenport, Siret and Tournier (1988)) will
be thrust into the upper level courses by more capa-
ble and interested students as they progress through
the system.

Section 1 defines Symbolic Mathematical Sys-
tems in broad terms and presents an example of
their potential use in mathematics education. Sec-
tion 2 raises some general concerns related to the
impact of these systems on mathematics education
while Section 3 discusses implementation of some
of the required changes in secondary and university
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mathematics education. The Appendices provide
the following additional information: (1) references
dealing with the technical aspects of some of the
better known Symbolic Mathematical Systems, (2)
further illustrations of the capabilities of these sys-
tems, and (3) references to current projects aimed
at the integration of such systems into mathematics
education.

1. Symbolic Mathematical Systems

The term Symbolic Mathematical Systems is
used to define calculator and microcomputer sys-
tems which provide integrated (1) numeric, (2)
graphic, and (3) symbolic manipulation capabili-
ties!. Numerical computations have always been
included in the domain of both the calculator and
the computer. This capability is usually thought
of as the ability of doing decimal arithmetic. For
example, if 1/3 4+ 1/9 is input, then the approxi-
mate solution 0.444444 (to some prespecified num-
ber of digits) is provided. Symbolic Mathematical
Systems have the ability to perform rational arith-
metic, that is, to give the exact answer 4/9 if the
input is 1/3 + 1/9. The user must request the dec-
imal approximation if it is desired. Graphing is a
more complicated numerical activity. Calculators
with graphic capabilities (for example the Casio
fx-7000G, Hewlett-Packard HP-48SX or Texas In-

1 It should be noted that in a much more gen-
eral context, the expression “symbolic computa-
tion” could be construed as referring to various
types of symbolic objects, for example as described
by Aspetsberger and Kutzler (1988): geometric ob-
jects (computational geometry), logic objects (auto-
matic reasoning), programmes (auiomatic program-
ming). The concerns of this paper are limited
to computations involving algebraic expressions, so
that typical topics of the field are symbolic differ-
entiation and integration, calculation of sums and
limits in closed form, symbolic solution of systems
of equations and of differential equations, polyno-
mial factorization, manipulation of matrices with or
without numeric entries, arbitrary precision rational
arithmetic computations, etc. These are sometimes
misleadingly called “Computer Algebra Systems” —
but they can do much more than algebra as will be
illustrated by the examples in this article.
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struments TI-81) as well as microcomputer graph-
ing programmes are available. To many mathe-
maticians and mathematics educators symbol ma-
nipulation by calculators (for example the Hewlett-
Packard HP-28S or HP-485X) and microcomputer
programmes (for example Maple, Mathematica, De-
rive to name a few) was a most unexpected de-
velopment. It is the one capability which has the
potential of producing the most radical changes in
the teaching of mathematics at the secondary school
and university levels.

To convey a feeling for some of the capabilities
of Symbolic Mathematical Systems and how they
could be used in a calculus class, consider the fol-
lowing example of a session with a specific system
(namely Maple but this particular choice is not cru-
cial). Such an example could be done in class, or
could be structured as part of a laboratory exer-
cise. The example illustrates the numeric, graphic
and symbolic manipulation capabilities of the sys-
tem and shows the system can be used in a mode
which requires no programming by the user, but
only the knowledge of a few command words. For
ease of understanding lines starting with a # (and
in 7talics) are external comments, lines starting with
a ::: are the user’s input and the lines in bold are
the (Maple) system’s response.

# The task ts to explore the derivative of In(z) using
#the definition of the derivative. First the limit of
# (In(t)—1n(4))/(t—4), called y, as t approaches the
# integer value § is explored from a numerical
#point of view, by computing the value of y around
#1 = 4. Clearly the value at t = § does not exist.

i y:= (In(t)=In(4))/(t—4);

In(t) — In(4)
Y ="

#ALL = 3.99

::: subs(t=3.99,y);

—100 In(3.99) + 100 In(4)

# Evaluation using floating-point arithmetic of this
#last displayed ezpression then gives

2o evalf(”);
.250313
#AL1 = 3.999
i evalf(subs(t=3.999,y));
.250031
#AL1 = 4.01
i evalf(subs(t=4.01,y));
.249688
#ALL = 4.001

it evalf(subs(t=4.001,y));
.249969

# Looks as though the function is approaching 0.25
#as t approaches 4. Does the graph support this?
#A plot of y for 3.5 < 1 < 4.5 is obtained.

it plot(y,3.5..4.5);

| 0.245

| 0.2353.6 3.8 4 4.2 4.4
" n . L L

# Yes 1l does and the graph indicates by a hole that
#the function is not defined at t = J, where y is
#approrimately equal to 0.25. One repeats this
Fezperimentation with a few more integer and
#rational cases, for example 5, 3/2, 7/3. Then the
#symbol manipulation capabilities can be used to

#evaluale the limit directly,
20 limit((In(t)—In(3/2))/(t—3/2),t=3/2);
2

3

#suggesting that the limit of
#(In(t)=In(a))/(1—a) as t approaches a is 1/a
#for all a>0. This is confirmed by the system.
22 limit((In(t)—In(a))/(t—a),t=a);
1

a

# Which is also confirmed by the differentiation

F#capability of the system.
0 diff(In(a),a);
1
a
# Does the derivative have the properties expected?
# Plot the function and its derivative on the same

#graph (in some judiciously chosen interval !).
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i plot({In(t), 1/t},0.5..10.5);

# Yes In(t) is a monotonically increasing
# function and the derivative is shown to be
#positive in the chosen range. Measurements along
#the azes appear to confirm the previously
# computed points (4,1/4) etc. The formal
#definition of the limit can also be explored, namely,
#1L is the limit of y as t tends to a if for every
#eps > 0 there is a del > 0 such that if
#0 < |t—a| < del then |y — L| < eps.
# Consider the case explored earlier where it was
# conjectured that the limit of y as t tends to § 1s
#1/4. Select eps = 0.01 > 0; is there a del such
#that for 0 < |t — 4| < del, then ly— 1/4] <
#0.012 The condition |y — 1/4| < 0.01 can be
#rewritten as 1/§—0.01 < y < 1/4+0.01.
# This is solved using the system. (Maple solves
#different types of equations: algebraic, numeric,
#differential, elc.) In this case we are
H#interested in the numerical solution of an
#equation in one variable. Numerical procedures
#for the solution of such equations often require
#the user to specify an interval within which one
#expects to locate the rool. In this particular case
# Maple does not require such a prompt and
#tprovides the following:

it fsolve(y=0.24,t);

4.33789986
;0 fsolve(y=0.26,t);
3.696303966

# From these two values it 1s concluded (based on
#the continuity of the log function) that there is a
#del, for example 0.2, such that when

#0 < |t— 4| < 0.2, then y is in the specified

#trange. This is visualized with the following plot,
#where we notice that the graph of y is
#completely contained in the specified window.

::: plot({y, 0.24,0.26}, 3.6963..4.3379);

0.26

L 0.255

 0.245

0.24

7 8 ) T T-T T, 'R

# To demonsirate how incredibly sensitive and
#accurate the limil procedure is, one can consider
F#the following.

222 limit((In(t)—In(3.2))/(t—3.2),t=3.2);

undefined

# What happened? To resolve this apparent
#anomaly the user must realize that elementary
#tfunctions involving numbers other than integers
#or rationals are approzimated (the calculator
#mode), that is In(3.2) is evaluated as shown by
#the following output
0 y:=(In(t)—In(3.2))/(t-3.2);
_In(t)-1.163150810
yi= t-32

#and, because of the numerical approzimation, the

#limil of y as t approaches 3.2 does not exist.

For those who are not familiar with Symbolic
Mathematical Systems Appendix 2 provides further
examples of their capabilities. While special pur-
pose packages have been created to cover specific
aspects or topics within the mathematics curricu-
lum, this paper is concerned with “full service” Sym-
bolic Mathematical Systems which can become part
of mathematics education across different courses
and at different levels. The more powerful systems
were originally created to help individuals perform
complicated yet algebraically routine mathematics.
There is no evidence that the introduction of inex-
perienced students to more dedicated (smaller spe-
cially developed systems addressing one part of the
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syllabus) has been more successful than introducing
them to the larger more sophisticated systems.

2. Mathematics Education Concerns

Mathematics educators must continually make
decisions about what mathematics is to be taught,
how it is to be presented and what student activi-
ties are to be required or encouraged. To this de-
cision making must now be added the role of Sym-
bolic Mathematical Systems. These systems are a
fact of life and can no longer be ignored. Mathe-
matics educators have the responsibility to decide
consciously whether this environment is to be in-
cluded within the student’s educational experience
and what should be the exact role of the Sym-
bolic Mathematical System. This decision cannot
be taken lightly for these systems can perform all the
mathematical techniques presently included in sec-
ondary school mathematics programmes and most
of those included in the first two years of university
mathematics. The decision to include or exclude the
experience of a Symbolic Mathematical System has
far reaching implications to the student, the teacher
and to the curriculum. These are now considered in
turn.

a) Implications to the student

The magnitude of the experiences promised to
the student by Symbolic Mathematical Systems 1s
illustrated by the following allegory:

A person explores her surroundings by walk-
ing (pencil and paper) — many interesting things
are discovered, but situations in the neighbouring
province are too far away to be experienced, so the
use of a car (standard scientific calculator) is al-
lowed. As she drives along, local attractions are
overlooked in order to get to her destination. How-
ever, even with this mode of transport, she can-
not explore distant lands, so an airplane (Symbolic
Mathematical System) is provided. She lands in a
country where the language is not her own, customs
are different — as educators we would try to pre-
pare her for this shock — but there is nothing that
is quite like being there. What potential benefit
awaits her! — she can now explore concepts which
were unknown before and she can contrast, com-
pare and have a different view and appreciation of
her own culture and home environment. In this new
land she continues to use the other modes of trans-
portation, namely, walking and driving to enhance
her experience.

Mathematics education has many of the proper-
ties of this allegory. Individuals develop their math-
ematical understanding in various ways. Due to the

different roles played by the left and right hemi-
spheres of the brain, it is most likely that the repre-
sentation of mathematical concepts in complemen-
tary modes such as numeric, graphic, and symbolic
will enhance the learning process. For the first time
in the history of mathematics education Symbolic
Mathematical Systems offer the ability to move eas-
ily and rapidly between these different representa-
tions. It is expected that the use of paper and pen-
cil will be retained by most students; however, one
should not be surprised to find students who can op-
erate completely within the computer environment
since most systems now provide for easy interplay
between word processing and Symbolic Mathemat-
ical Systems.

b) Implications to the teacher

For the teacher Symbolic Mathematical Systems
are remarkable not only because they can be used to
directly perform rational, symbolic or graphic com-
putations but, more importantly, because of what
they suggest about mathematics itself and about
mathematics teaching. As Young (1986) puts it,
“(...) we are participating in a revolution in math-
ematics as profound as the introduction of Arabic
numerals into Europe, or the invention of the cal-
culus. Those earlier revolutions had common fea-
tures: hard problems became easy, and solvable not
only by an intellectual elite but by a multitude of
people without special mathematical talents; prob-
lems arose that had not been previously visualized,
and their solutions changed the entire level of the
field.” Symbolic Mathematical Systems are part
of this revolution. They can serve to help concept
development and, by permitting easy and efficient
processing of non-trivial examples, they can stim-
ulate exploration and search for patterns?, general-
izations or counter-examples. The teacher must now
question the whole of mathematics education. For
example, it is increasingly difficult to justify want-
ing students to become good symbol manipulators
unless it can be shown that such procedural skills
are essential to an understanding of the underly-
ing mathematical concepts — but no one has yet so
shown. However this does not imply that students

"2 “The rapid growth of computing and applica-
tions has helped cross-fertilize the mathematical sci-
ences, yielding an unprecedented abundance of new
methods, theories and models. (...) No longer just
the study of number and space, mathematical sci-
ence has become the science of patterns, with the-
ory built on relations among patterns and on ap-
plications derived from the fit. between pattern and
observation.” Steen (1988).
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no longer need develop “symbol sense” — just as the
arithmetic calculator has not reduced the need for
“number sense”. Suddenly the teacher is brought
to question both the content of the mathematics
courses and their presentation. As the former re-
lates to curriculum more directly, the latter concern
is addressed first.

The teacher must consider many factors which
affect the learning of mathematics. An important
factor is the social environment. Some students find
it easier and more enjoyable to work on their own
while others prefer to work in groups. Some de-
pend on the verbal or written or visual presenta-
tion of mathematical concepts by those who under-
stand them. Others find this distracting and prefer
to work directly from books. Computers provide
opportunities to enhance these social environments.
They also introduce a new factor — the computer
— which may, for some individuals, erect new bar-
riers and difficulties. It is therefore important for
mathematics educators to provide alternative en-
vironments for students to experience. Individuals
will then be in a position to evaluate them and de-
cide which provide the most opportunities for the
development of their mathematical knowledge.

Symbolic Mathematical Systems can be inte-
grated into mathematics education in a number of
different ways. The three most obvious ones are:

(1) The teacher can use it as part of a lecture or
class presentation. This requires some projection
facilities to allow the students to see what appears
on the computer screen. For the mathematics in-
structor the use of such a system in the classroom
provides very different class dynamics. Attention
has to be paid to typing, errors, unexpected forms of
expressions, graphs which appear different from the
traditional book presentation (cf. Muller (1992)),
multiple answers, etc. Many mathematics instruc-
tors find this situation difficult to handle. Perhaps
the central aspect in the successful integration of a
Symbolic Mathematical System in the classroom is
a necessary evolution of the role of the teacher where
intervention is no longer restricted to exposition. In-
stead the teacher must become a “facilitator” cre-
ating a context appropriate for a fruitful interaction
between the student, the machine and the mathe-
matical concept. The lecture-examples format must
be replaced by a more open-ended approach. Al-
though such a point of view is desirable even in a
computer-free classroom, it becomes essential when
computers come into play. One of the reasons why
films and videos have played such a small role in the
mathematics classroom may be the mathematician’s
belief that you understand mathematics by doing it

and not by viewing it. Unlike film, Symbolic Math-
ematical Systems provide an active environment re-
quiring constant intervention and change of direc-
tion. Nevertheless it would be naive not to realize
that many teachers will find the sacrifice of tradi-
tional security quite threatening. This will be es-
pecially true of mathematics teachers who see their
role as one of “professing” well-polished mathemati-
cal knowledge. White (1989) has suggested that the
use of Symbolic Mathematical Systems “can be as-
similated most easily in traditional teaching meth-
ods and curricula.” However, in practice, finding
an appropriate role for the teacher may prove to
be a major barrier for the universal introduction of
Symbolic Mathematical Systems into the traditional
lecture presentation and teachers should seriously
look at alternative and/or complementary modes of
implementation. Even though introducing an occa-
sional Symbolic Mathematical System demonstra-
tion into a traditional set of lectures is a start, what
is needed is a complete rethinking of the objectives
of those lectures.

(2) The technology can also be used in scheduled

laboratory sessions. This is probably the least

threatening mode of introduction for the teacher.

Laboratory activities can be developed and tested

before the students try them. Students can be given

materials to prepare for the laboratory sessions and
support can be provided for the students during
their scheduled laboratories. The physical labora-
tory setup can vary. There are advantages to having
students working with their own system and advan-
tages to having four to six students working together
with a single system. Activities appropriate for lab-
oratory work with a Symbolic Mathematical Sys-
tem should not be a simple duplication of activities
which can be achieved just as easily with pencil and
paper. What are appropriate activities? Clearly
the lack of sustained experience limits one’s vision.

Nevertheless it is suggested (cf. Muller (1991)) that

laboratory activities should meet one or more of the

following general attributes:

(a) they encourage exploration of mathematical con-
cepts;

(b) they probe inductive reasoning and/or pattern
recognition;

(c) they investigate interrelationships between dif-
ferent representations — algebraic, graphical, nu-
merical, etc.;

(d) they involve problems which would be very diffi-
cult and/or too time consuming to solve without
the technology.

One can visualize a situation where the lecture and
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laboratory activities are merged and the lecture pre-
sentation takes place in an area where students have
access to systems. Because students work at differ-
ent rates with systems it is quite a challenge to lec-
ture in the traditional way and have students work-
ing independently or in groups. The lecture dynam-
ics parallels the situation where one allows time for
students to work independently on problems. De-
vitt (1990) and others have used this method.

(3) It is important to prepare for the time when stu-
dents will have easy individual access to Symbolic
Mathematical Systems. A consequence of techno-
logical improvements is that a calculator with inte-
grated numeric, symbolic and graphic capabilities is
no longer a dream and that such devices can only
become progressively more powerful and cheaper.
Furthermore, one can expect that the difference be-
tween portable computers and calculators will be-
come less apparent. Denying the use of such calcula-
- tors/computers in structured mathematics instruc-
tion does not solve the problem of their existence,
and their access by a few more fortunate students.
Every society believes that its students should be
exposed to all environments which promise a richer
educational experience. Of course many situations
arise where that society cannot afford to provide a
particular environment. Nevertheless this does not
relieve teachers from their responsibility to make ev-
ery possible effort to provide them.

¢) Implications to the curriculum

There is no doubt that Symbolic Mathematical .

Systems will have impact on the curriculum. What
18 in question is the magnitude of this impact. There
is already evidence that traditional courses will have
to change if these systems are to be integrated in any
meaningful way. Even with relation to elementary
concepts such as graphing, Dick and Musser (1990)
observe: “This change in approach made possible
by these calculators marks a significant shift in how
graphing could be perceived by students. Instead of
as a final task to be completed, graphing can assume
the role as a problem-solving heuristic and a tool
for exploration.” Thus the traditional calculus ap-
proach of finding what the graph looks like is turned
around to using calculus and numerical methods for
locating more accurately the properties which are
known to exist. Students rapidly come to appreci-
ate both the exactness of non-numerical algebra and
the approximation techniques underlying numerical
analysis.

The decision as to what extent Symbolic Math-
ematical Systems are to be included in the mathe-
matics curriculum will vary according to the groups

of students being considered and their level. For in-
stance, one could have requirements for a student in
a university mathematics programme different from
those for a student registered in a mathematics ser-
vice course. In this respect there is much evidence
that shows that scientists from other disciplines (see
for example Lance et al. (1986)) serviced by math-
ematics departments are interested that their stu-
dents not be denied the use of Symbolic Mathe-
matical Systems. Such scientists, often more open-
minded than pure mathematicians with respect to
technological developments, simply perceive Sym-
bolic Mathematical Systems as tools that can help
them in their work and so are eager to use them. It
is therefore necessary to reassess the proper balance
in the requirement of basic symbolic manipulation
skills and in the choice of topics covered in the var-
ious mathematics curricula.

Mathematics educators must make sure that in
connection with domains where Symbolic Mathe-
matical Systems can play a role, their courses help
students acquire the appropriate intellectual skills.
The required skills, while not really “new”, are very
often given little place in most traditional teaching:
these are interpretive skills, needed to make math-
ematical judgements, to appreciate the validity and
limitations of the tool being used, to assess the rea-
sonableness of the computed “answer” (cf. Hodgson
(1990)). Such skills, being much more demanding
than traditional algorithmic ones, will require the
student to be confronted with a substantial number
of theoretical notions. Thorough understanding of
mathematical concepts is thus now surely as — or
even more — necessary in mathematics education
as it has ever been (cf. Hodgson (1987)).

Another issue which is important in a pedagogi-
cal context is the extent to which the symbolic pack-
age will act in a “black box” mode or on the contrary
give indications about how the “answer” to a partic-
ular problem can be obtained. A White-Box/Black-
Box Principle has been advocated by Buchberger
(1990) in relation to the question: Should students
learn integration rules? Buchberger’s point of view
is essentially that in a stage where a certain math-
ematical topic is being learned by the student, the
use of a Symbolic Mathematical Systemn realizing
the pertinent algorithms as “black boxes” would be
a disaster. So he calls for systems that would fea-
ture the possibility to use an algorithm both as a
“black box” (as is most often the case with exist-
ing systems) and as a “white box”, i.e. in a step-
by-step mode in which the reduction of the prob-
lem to subproblems is exhibited and in which the
user could eventually interfere. A similar view is
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taken by Mascarello and Winkelmann (1992) in this
volume. They claim that even if all the details of
the internal functioning of a Symbolic Mathematical
System are not usually essential to users, they must
not remain totally hidden: understanding of main
ideas and fundamental restrictions are necessary for
proper use of (what they now call) the “grey” boxes.

Once these systems have been introduced into
the mathematics courses then the student evalua-
tion must change to reflect this new environment.
As less emphasis is placed on certain techniques and
more time is spent on concepts, the testing proce-
dures must also change. Osborne (1990), Beckmann
(1991) and others have started to address this issue.

It is clear that much experimentation and re-
search are needed to establish how best to use Sym-
bolic Mathematical Systems in the different courses,
with the wide-ranging mathematical capabilities of
students, and with the various attitudes of teachers.
Appendix 3 provides a list of ongoing projects which
are addressing some of these concerns.

3. Effecting curriculum changes

Generally curriculum changes in the secondary
school system require much time to be implemented
but when they happen, they are universally imple-
mented: this is a direct consequence of the highly
centralized administration of secondary school pro-
grammes in almost all educational systems. On
the other hand curriculum changes in university
courses can be far more spontaneous, but they tend
to be localized to a particular course or section of
a course, usually under the commitment of one or
a few highly motivated individuals. Therefore the
introduction of Symbolic Mathematical Systems in
secondary school and university mathematics edu-
cation poses problems of a different nature. In the
former, to affect curriculum change one must con-
vince a small group of influential curriculum mak-
ers. For the latter, to ensure that the use of Sym-
bolic Mathematics Systems becomes integrated in
courses, it 1s necessary to expose the majority of fac-
ulty members of the department to these systems.
Kozma’s (1985) study on instructional innovation
in higher education supports this view. He con-
trasted projects which were collaboratively devel-
oped with those developed by individuals and found
that the former were much more likely to be institu-
tionalized. This section discusses some of the time
and effort consuming activities which are required
when introducing Symbolic Mathematical Systems
in both upper secondary and university mathemat-
ics education.

The number of different Symbolic Mathemati-

cal Systems is expanding rapidly. Some of them
have even been developed specifically for education
at secondary school or at the beginning of univer-
sity education. In most systems, especially the more
recent ones, attention is being paid to make them
more user friendly, that is, easier to use. A list of ref-
erences which review some of the better known sys-
tems is provided in Appendix 1. While the choice of
a specific Symbolic Mathematical System appropri-
ate for use in a given classroom context might rest
on various criteria (e.g. hardware facilities, level of
instruction, topics to be covered, etc.), it is clear
that some basic requirements must be met by those
systems. For instance the use of the software should
be transparent, that is students should spend their
time thinking about the mathematics, and not how
to operate the computer. Documentation should
be essentially unnecessary for users, so that what
needs to be done at any point should be apparent
(some on-line “help” facility might however be use-
ful in this respect). The software should be robust so
that students’ (sometimes unpredictable) behaviour
should not cause it to crash or hang up too easily. It
should interact easily with some word-processor, ei-
ther internally to allow preparation of “notebooks”
integrating word-processed text inserted in the mid-
dle of active symbolic software code, or externally
to facilitate preparation of reports by students. But
most important of all the program, whether used in
a tutorial or interactive mode, should be devised so
as not to foster the myth of computer omniscience
and infallibility too often rooted in students’ minds:
while the computer brings in speed and reliability,
it is the human being who has the intelligence and
the ability to reason and make decisions.

As the cost of basic microcomputer technology
continues to drop, one would hope for an analo-
gous reduction in the price of hardware necessary for
supporting Symbolic Mathematical Systems. While
this has happened in some cases, this is not the
general rule. Indeed, one should be aware that
the general software development trend has been
to demand more and more memory and disk space,
thereby requiring more powerful and more expensive
microcomputer units. Software developers tend to
think in terms of the latest available (or forthcom-
ing) hardware facilities, and experienced users call
for more integration, namely word-processing, sym-
bol and graphic manipulation, spreadsheets, etc.,
all of which push up the requirements of the com-
puter system. Thus the implementation of curricu-
lum change involving Symbolic: Mathematical Sys-
tems requires financial planning for the purchase of
equipment and software. Budgets must also be al-
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located to the maintenance of both hardware and
software. Mathematics departments generally have
little experience in requesting monies. This has
tended to be the prerogative of Science, Physical
Education, Fine Arts and other departments. In
secondary schools funds are sometimes allocated for
implementation of curriculum changes, but these are
unlikely to be sufficient. In a university setting it
may be worthwhile to run experimental sections to
‘accumulate evidence of improvements in traditional
indicators and to obtain faculty and student atti-
tudes and responses to these systems.

In a context where a lot of importance is given
in the literature to various symbolic software run-
ning on microcomputers, it might be tempting to
overlook calculator technology. But the calculator
is not restricted to school applications or to compu-
tations on numbers in so-called “scientific” notation!
There are a number of calculator projects reported
in the literature (see for example Nievergelt (1987)
and Demana and Waits (1990)). It is true though
that present calculators only have limited graphic
and symbolic manipulation capabilities. But devel-
opments in electronic technology strongly suggest
that such more powerful and user-friendly calcula-
tors will most certainly be a reality in a not too dis-
tant future. To equip a class or for individual use,
calculator technology should thus be seriously con-
sidered. This is especially true in situations where,
for instance, electricity supplies tend to be unreli-

able.

Once the equipment (hardware/software) has:

been purchased, meaningful mathematics activities
for the students must be developed. Few such ac-
tivities are available, although some recent publica-
tions provide examples in calculus: see for example
the Mathematical Association of America Notes Se-
ries (P8) and the Maple Workbook (Geddes et al.
(1988)) referenced in the Bibliography. But redefin-
ing objectives for a course or building pertinent ac-
tivities is a daunting task. And for such a quest to
have a lasting effect, it should be undertaken not
by one individual (with eventual loss of the effect,
should that individual be away for a while), but
rather by a group, for instance by a majority of
the faculty members within a mathematics depart-
ment. This raises the difficult question of how to
react to a possible lack of interest by some of those
faculty members. After all, most are busy people
and are not willing to invest large amounts of their
limited time unless there is some evidence that the
result will be worthwhile. This is even more true
when students’ attitudes towards the use of Sym-
bolic Mathematical Systems in the classroom are

not as positive as what could have been expected
(see for instance Muller (1991) for an attitudinal
survey of some teaching experience with a Symbolic
Mathematical System).

The principal word of warning is certainly that
implementing the necessary curriculum changes
takes a lot of human resources in the form of time
and dedication. It takes time to conceive the “new
course”, to develop meaningful students activities,
to prepare new materials, to devise tools for assess-
ment. And this must be done in contexts where of-
ten no (or little) credit is given to those who embark
on such a task! Furthermore released time, super-
vision, hardware and software all require financial
resources in an area where administrators have not
been used to allocating funds. Mathematics educa-
tors must convince school or university administra-
tions and funding bodies that such an investment is
essential and is worth its value! And what is needed
to support the argument is a critical analysis of con-
trolled experiments, rather than anecdotal reporting
of experiences.

4. Conclusion

The introduction of Symbolic Mathematical Sys-
tems into mathematics programmes should be con-
sidered within the broader context of the impact of
technology on mathematics education. Mathemat-
ics teachers who have successfully integrated other
software into their teaching of geometry, statistics
etc. as well as computer scientists can offer useful
insights and pedagogical points of view. Most of the
projects aimed at the integration of Symbolic Math-
ematical Systems into mathematics teaching are ei-
ther still under way or, if concluded, have results
which are difficult to interpret. For example, how
does one separate the effects of a Symbolic Math-
ematical System from other effects, such as those
generated by the enthusiam of those involved with
the experiment or the effects produced by the avail-
ability of additional resources? It is most proba-
bly too early to look for a significant impact on the
curriculum (measured by the proportion of students
in mathematics courses affected by the existence of
Symbolic Mathematical Systems). It appears to be
the consensus of those who are using these systems
in their teaching that the course is taught differently
but that it retains a fairly traditional content.

Thus there are few proposals of changes in
the curriculum narrowly defined by course content.
Some examples of proposals for change are: Tall
(1985,1991) proposes a much greater visual com-
ponent to calculus teaching; Moller (1990) sug-
gests that the conceptual approach to calculus using
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“Lipschitz-restricted” concepts of limit, continuity,
differentiation and integration is a much more nat-
ural one for students and one in which Symbolic
Mathematical Systems are easily integrated; Heid
(1988) reports experiments in the resequencing of
skills in introductory algebra and calculus where at-
tention to hand manipulation skills was drastically
reduced; Artigue et al. (1988) traces the influence
of computers on the evolution of the teaching of dif-
ferential equations; the texts of Hubbard and West
(1991) and of Kogak (1989) support this evolution
and emphasize the importance of visualization in
the study of differential equations.

It is anticipated that many more such experi-
ments will be reported in the near future as there
are many projects on the way. Appendix 3 lists
some of these projects for which information could
be found. Ralston has constantly advocated cur-
riculum reform at all levels of Mathematics Educa-
tion in order to reflect the reality of today’s tech-
nology and prepare individuals for future technol-
ogy; in Ralston (1990), he proposes a framework for
the school mathematics curriculum in 2000 which
is highly dependent on the use of technology. Yet
teachers receive their mathematics education from
university mathematics courses in which they make
very little use (if ‘any!) of technology. How then
can they be expected to realize the importance of
technology in Mathematics Education? The reform
must be spearheaded by the universities where there
exists a greater latitude for experimentation.

There is as yet little evidence that Symbolic
Mathematical Systems have had a significant im-
pact on the mathematics curriculum of secondary
schools and universities. It appears that the domi-
nant reason for this lack of impetus on the curricu-
lum is the education of teachers and faculty, that
is, the lack of experience in these systems by a large
proportion of mathematicians. In the university set-
ting there is no evidence to suggest that changes im-
plemented by an individual in one section of a course
will have any impact on the course as a whole un-
less special effort is directed toward involving the
majority of the faculty in a department. There are
too many interests riding on the required introduc-
tory mathematics courses to expect that innovative
changes made by one individual will be able to per-
meate the programme without the support from the
majority of individuals in that department.

In spite of the human and financial costs in-
volved, there is no doubt that Symbolic Mathemati-
cal Systems must be introduced into the mathemat-
ics curriculum. They probably constitute the single
most powerful force compelling change in secondary

and university mathematics education in the near
future. They offer unprecedented opportunities to
deepen and revitalize mathematics courses, focus-
ing more on concepts and ideas than on mechan-
ical calculations. While it is true that Symbolic
Mathematical Systems, whether on microcomput-
ers or on hand-held calculators, can only become
more powerful, more user-friendly and more widely
available, they offer right now an exceptional po-
tential for progress in the teaching of mathematics
and there is no reason for mathematics educators to
delay becoming seriously involved with them. For
such an evolution to happen, experiments must be
performed on a very large scale and results must be
evaluated and widely disseminated.

Appendix 3 contains a (partial) list of projects
presently underway, in which Symbolic Mathemat-
ical Systems are being used in the classroom both
at university and secondary school level. Hopefully
these projects can stimulate more mathematics ed-
ucators to involve Symbolic Mathematical Systems
in their daily teaching.
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APPENDIX 1

This appendix provides a list of some Symbolic
Mathematical Systems software reviews. It is im-
portant to realize that it is extremely difficult to
evaluate and benchmark this software. Furthermore

many of the evaluations do not take into account
possible classroom use and the use by neophytes.

a) The Notices of the American Mathematical Soci-
ety (see reference P9 above) have recently included
an individual review of most Symbolic Mathemati-
cal Systems:

Vol. 35, 1988

The HP-28S brings computations and theory back
together in the classroom, Y. Nievergelt, 799-
804.

Supercalculators on the PC., B. Simon and R.M.
Wilson, 978-1001.

Mathematica — A review, E.A. Herman, 1334-
1344. (Also: Other comments on Mathemat-
ica, 1344—1349.)

Vol. 36, 1989
MicroCalc 4.0, G. Gripenberg, 680.

The menu with the college education (A review of
Derive), E.L. Grinberg, 838-842.

Milo: The math processor for the Macintosh, R.F.
Smith, 987-991.

Milo, Sha Xin Wei, 991-995.

PowerMath II, Y. Nagel, 1204-1206.

More on PowerMath II, P. Miles, 1206-1207.
Vol. 37, 1990

Review of PC-Macsyma, Y. Nagel, 11-14.

Review of True Basic, Inc. Calculus 3.0, J.R.
Moschovakis, Y. Matsubara, G.B. White, 129-
131.

Derive as a precalculus assistant, P. Miles, 275-276.
The right stuff, K. Devlin, 417-425.

Almost no stuff in, wrong stuff out, J.D. Child, 425-
426.

Four computer mathematical environments, B. Si-
mon, 861-868.

Vol. 38, 1991

Crimes and misdemeanors in the computer algebra
trade, D.R. Stoutemyer, 778-785.

Periodic knots and Maple, C. Livingston, 785-788.
b) Other reviews are:

Symbolic manipulation programs for the personal
compuler, K.R. Foster and H.H. Bau, Science,
243, 679-684 (1989).

Derive: A mathematical assistant, E.A. Herman,
Amer. Math. Monthly, 96, 948-958 (1989).
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Mathematica: A system for doing mathemalics by
computer, L.S. Kroll, Amer. Math. Monthly,
96, 855-861 (1989).

Math without tears, C. Seiter, MacWorld 8 (1), 159-
165 (1990).

Theorist, J. Rizzo, MacUser, 6 (6), 57-59 (1990).

Mathematica: A system for doing mathematics by
computer, A. Hoenig, Math. Intelligencer, 12
(2), 69-74 (1990).

Theorist, F. Wattenberg, Amer. Math. Monthly,
98, 455-460 (1991).

Review of Maple in the teaching of calculus, E.R.
Muller, College Math. J., (to appear).

c) Reviews of software and comments on experi-
ments on their use in teaching can also be found
in specialized newsletters. Some examples are:

Computer Algebra Systems in Education Newsletter
published by the Department of Mathematics,
Colby College, Waterville, ME 04901, USA.

Maths & Stats published by the CTI Centre
for Mathematics and Statistics (Computer in
Teaching Initiative), Faculty of Education,
University of Birmingham, Birmingham, B15
2TT, UK.

Computer-Algebra Rundbrief published by Fach-
gruppe 2.2.1 Computer-Algebra der GI, c/o
Dr. F. Schwarz, GMD, Institut F1, Postfach
1240, 5205 St. Augustin, Germany.

APPENDIX 2

This appendix provides a limited number of ex-
amples to illustrate some of the capabilities of Sym-
bolic Mathematical Systems (the system used here
is Maple but this particular choice is not crucial).
These systems are so powerful that it is impossible
to provide a complete overview of their capabilities
n a brief text.

# The system can be used to do some elementary
#number theory. For instance the command ifactor
#returns the prime factorization of an integer.

20 ifactor(123456780);

2?  (3* (5 (7
# With such a tool available, it might be tempting to
#venture into some calculations that are not
#trivial to do either by hand or in a standard
#computer environment. For ezample the prime
#factors of the Mersenne number 257 — 1 were
F#given tn 1903 by F. Cole. It reportedly took him

# “three years of Sundays” to complete the

(14593)

#calculations. What can Maple do with that
#number?

o ifactor(2°67~1);

(761838257287)(193707721)

# Done in just a fraction of a minute!! (Bul
#needless 1o say it is very easy to give as an
#inpul a number that would take “three years of
#Sundays” for the system to do.)
# Roots of equations can be found directly.

i yi= XT3-4%x"2-T*x+10;

y=x>-4x%2 —7x+10
2 solve(y=0,x);
1,-2,5

# Even with symbolic coefficients.

i zi= a*x"2—-2*b*x+4-c;

z:=ax?-2bx+c
;i solve(z=0,x);

2b+2 (b2 —ac)V/?

2
v - ,
b— 2 _ 1/2
1/2 2 2 (b ac)
a

# The example in Section 1 demonsirated that
#1lhese systems are able to compute limits and to
#differentiate. They can also find Taylor’s Series,
#sum finite and infinile series and integrate
#and solve differential equations.

0 taylor(In(x”2),x=1,4);

2x—1) = (x~-12+2/3 (x-1)° 4+ O((x-1)%)
2 sum(j©2, j=1..m);
1/3(m+1)*-1/2 (m+1)?+1/6 m+1/6
irint(x " 3*sqrt(x"2-9),x);
-3/5 (x% — 9)V/2x%2_54/5 (x* — 9)*/2
+1/5 (x? — 9)1/3x*
0 deq:= diff(x(t),t)*t " 3+x=0;

d
d = {— 3 =
eq (dtx(t))t +x=0
.0 dsolve(deq,x(t));

x(t) = exp(1/2 tlz)c

# The next few examples are taken from linear
#algebra, namely, the solution of linear
#equations and some properties of matrices and
#vectors.

i eqns:= a*x+b¥y=e c*x+d*y=f; vars:= x,y;
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eqns:;= {fax+by=e,cx+dy=f}
vars:= {x,y}
;0 solve(eqns,vars);
bf-ed af-ce
“ad—cb YTad—cb)
0 Ar= array([[1,a,a"2],{1,b,b"2],[1,c,c"2]]);
A := array(1..3,1..3,

[1,a,a%]

fx=

[1,b,b?
[1,¢,¢?)
o det(A);
b c2 -b%c—a c?+a%c+ab?—a%b
. factor(”);

—(— ¢+ Db)(a—c)(a—b)
#(The symbol ” refers to the previously
#displayed ezpression.)
i ali= array([x1,y1,21)); a2:= array([x2,y2,22]};
a3:= array([x3,y3,23});
al := array(1..3,

[x1,y1,21])
a2 := array(1..3,

[x2,y2,22])
a3 := array(1..3,

[x3,y3,23])

;2 vol:= abs(dotprod(al,crossprod(a2,a3)));
vol :=abs(x1 (y2 23 — 22 y3)
+ yl1 (22 x3 — x2 2z3)
+ z1 (x2 y3 — y2 x3))
o ar= array([[13,5],[5,2]]);
a := array(1..2,1..2,
(13, 5]
[5,2])
i ci= eigenvals(a);
c:=15/2+1/2 221Y/% 15/2 —1/2 221/
# The decimal approzimation lo these two
#eigenvalues gives

:: evalf(c[1]); evalf(c[2]);
14.93303438
066965625

APPENDIX 3

There is as yet no single source which can
provide a comprehensive international listing of
projects in the area of Symbolic Mathematical Sys-
tems in Mathematics Education. Therefore, the fol-
lowing list cannot be regarded as comprehensive:

1: The Swedish ADM project (Analysis of the role of
the Computer in Mathematics Teaching); see Bjork
(1987).

2: The Research Institute for Symbolic Computa-
tion at the Johannes Kepler University, Linz, Aus-
tria.

3: The Computers in Teaching Initiative Centre for
Mathematics and Statistics (Development of class
work sheets to be used with Derive), see the Maths
& Stats newsletter published by the CTI Centre,
University of Birmingham, UK.

4: A European Cooperation on the use of Computers
in Mathematics; see Dechamps (1988).

5: The National Science Foundation (U.S.A.) is
funding a number of different university projects
specifically directed at integrating Symbolic Math-
ematical Systems into the calculus curriculum. The
following is a selection providing a one line state-
ment together with the university and the principal
investigator.

Developing a user friendly interface to Maple
and incorporaling use of sysiem into teaching cal-
culus, Rollins College, Winter Park, FL; Douglas
Child.

Developing new calculus curriculum using Maple
on a VAX, Rensselear Polytechnic Institute, Troy,
NY; William Boyce.

Developing a compulerized tutor and computa-
tional aid based on Maple, University of Rhode Is-
land, Kingston, RI; Edmund Lamagna.

Developing an electronically delivered course us-
ing the Notebooks feature of Mathematica, Univer-
sity of Illinois, Urbana, IL; Jerry Uhl.

Developing a new calculus course emphasing ap-
plications and using Mathematica, University of
Iowa, Iowa City, [A; Keith Stroyan.

Developing a laboratory based calculus course us-
ing Mathematica, lowa State University, Ames, IA;
Elgin Johnston.

Developing a new calculus course for liberal
arts colleges using Mathematica, Nazareth College,
Rochester, NY; Ronald Jorgensen.

Developing calculus as a laboratory course us-
ing MathCad and Derive, Duke University, Durham,
NC; David Smith.

Emphasizing computer graphics using Maple and
emphasizing concepts via programming in ISETL,
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Purdue University, West Lafayette, IN; Ed Dubin-
sky.

Porting the laboratory calculus developed at Duke
over to Mathematica, Bowdoin College, Brunswick,
ME; William Barker.

Collecting, testing, and desktop publishing the
best materials being developed using Mathematica,
University of Michigan at Dearborn, Dearborn, MI;
David James.

More detailed informations about projects in the
U.S.A. integrating Symbolic Mathematical Systems
in the calculus curriculum can be found in the re-
ports contained in reference P8b above: Tucker,
T.W. (ed.), Priming the Calculus Pump: Innova-
tions and Resources. Mathematical Association of
America (MAA Notes Number 17), 1990.
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CALCULUS TEACHING AND THE COMPUTER. ON THE INTERPLAY OF DISCRETE
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Maria Mascarello
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Bernard Winkelmann
Institut fiir Didaktik der Mathematik, D-4800 Bielefeld, Deutschland

1. NEW POSSIBILITIES

The computer is a mighty mathematical tool,
not only for mathematical research, but even more
in the process of applying mathematics and in the
process of teaching and learning mathematics. In
the following, we shall concentrate mainly on the
new possibilities which the computer presents in the
realm of calculus for users and future users of math-
ematics. By a user we mean somebody who is in-
terested in mathematics merely (or mainly) through
the use of mathematical models (in particular calcu-
lus models) to solve (extra-mathematical) problems.
Future users of mathematics are, for example, en-
gineering students, but even those learning calculus
in schools as part of a general education may be
included under this rubric.

1.1 New possibilities for the user

We describe first the changes in the mathemati-
cal knowledge and habits of the user of mathematics
induced by the availability of sophisticated math-
ematical software to all who have to rely heavily
on mathematical problem-solving such as engineers,

natural scientists, etc. During the past decade we

have seen the proliferation of mathematical software
systems for personal computers which have become
more powerful and/or more user friendly’. By rais-
ing the standards in these two domains, such sys-
tems are now in the hands of a rapidly growing num-
ber of users, even if until now (1991) they have not
yet reached the majority of the teachers of mathe-
matics, at least at the secondary level. But, if the
trend continues, not only professional users of math-
ematics, but also most students and teachers will
soon have regular access to such systems. However,

1 A typical example might be the realm of com-
puter algebra systems: In the progress from MU-
MATH to Derive there has been a big gain in user
friendliness, allowing the use of the system even by
users reluctant to program, but - at the same time -
with a certain loss in functionality, e.g. in the solv-
ing of differential equations. On the other hand, the
progress from MUMATH to Mathematica is mostly
in power, much less in user friendliness. See also the
chapter by Hodgson and Muller in this book.
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the integration into regular classroom teaching will
still be a problem.

The classic situation of the user of mathemat-
ics could be described - in a somewhat oversimpli-
fied manner - as a huge amount of passive mathe-
matical knowledge contained in monographs, hand-
books, recipes. Traditionally, this knowledge could
only be used by being activated through the active
mathematical knowledge of the user himself or by
direct cooperation between the user and a mathe-
matically more knowledgeable person. In contrast
to this, the mathematical knowledge contained in
mathematical software can have a far more active
character, e.g. in giving advice and help interac-
tively, offering possibilities for exploratory experi-
ments or answering questions, acting like a mathe-
matical expert system. Even more common numer-
ical software, which exists in the form of sophisti-
cated procedures, is far more active than the recipes
of the old-fashioned handbooks, since in many cases
these procedures are in fact polyalgorithms: They
decide with considerable expertise which particu-
lar algorithm should be invoked, depending on the
circumstances?. So the demand for mathematical
knowledge on the part of the user has changed. The
emphasis has shifted from detailed knowledge of the
advantages and disadvantages of specific numerical
methods and of the algorithms themselves to some
meta-knowledge of the possibilities of numerical al-
gorithms in general and their interaction with the
concrete application situation.

As an example let us look at the process of the
solution of ordinary differential equations®. This is
indeed an example of great importance since such
equations appear in many applications and are at
the heart of applicable elementary calculus. So if
it is possible to master them at a more elementary
level than hitherto was possible, this could even be
regarded as the most appropriate goal for the teach-
ing of elementary calculus at schools and colleges. In
the ediication of engineers at technical universities

2 ¢f. Rice [1983], e.g. p.291f.
3 ¢f. Winkelmann [1984] and the chapter by Tall
and West in this book.



or similar institutions, where differential equations
have always been part of the calculus sequence, even
beginning calculus could concentrate more on appli-
cations and so give the student a more realistic and,
one hopes, a more motivating start.

In the pre-computer age an engineer or scientist
who had to handle differential equations was sup-
posed to have detailed knowledge of diverse meth-
ods for the analytic solution of various elementary
types, to be able to master complicated analytic-
algebraic formulas and to carry out lengthy error-
free symbolic and numerical calculations. Now he or
she can use software which has this knowledge and
ability built in, since it can solve more elementary
differential equations than a non-specialist mathe-
matician can do*. But in building up the model
the user still has to understand fully the meaning
and significance of the diverse quantities (variables)
and of their derivatives and to be able to relate
these to each other in order to set up the differential
equation. And to give the details to the computer
program, a thorough intuitive understanding of the
mathematical meaning of the identifiers which ap-
pear in the modeling equations is needed, be it as
variables, parameters, initial values, names for (yet
unknown) functions (dependent variables) and so
on. If an analytic solution exists, the program will
normally present it as a somewhat confusing lengthy
expression which must be qualitatively interpreted
to be understood, namely through looking for sim-
pler special cases, for settings of specific parame-
ters or initial values, for asymptotic patterns of be-
haviour, etc. This process is guided by the intended
interpretation of the solution in the context of the
application model. If no analytic solution exists, the
user may give his equation to some ready-made nu-
merical software. In this case he needs some knowl-
edge to make reasonable explorative choices of the
values of parameters and initial values; there should
be some experience with numerical phenomena (pit-
falls of computations) and the ability to interpret
the numerical and graphical output of the computer
and to use this interpretation interactively for new
choices of starting points for the next calculation.

In total, there can be observed a specific shift
in the spectrum of abilities, from precise algorith-
mic abilities to more complex interpretations, so to
speak from calculation to meaning, which in a cer-
tain sense is a reversal of the historical evolution. In
this process the mathematics to be mastered tends
to become intellectually more challenging, but tech-
nically simpler.

4 of. Watanabe [1984)].
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What does this mean for the mathematical ed-
ucation of the future user? Of course, there is no
direct way from the mathematical activities of the
user to the teaching process; the goal must not be
confused with the means. Understanding and abili-
ties for complex interpretations can only be built up
by personal involvement of the student; she has to
do full (but simpler) examples in all the main steps
herself, be it by hand-calculating, by using interac-
tive symbolic systems or calculators or by program-
ming in some suitable programming language. This
seems necessary in order to get an awareness of the
mathematical situations, even if such activities are
no longer part of the final application process. And
even if today’s sophisticated mathematical software
need not and cannot generally be fully understood
by the normal user, there must not be totally black
boxes; a principal understanding of simple cases, of
main ideas or of fundamental restrictions can be
gained and seems necessary for proper use of the

now ‘grey’ boxes®.

On the other hand it is quite clear that extensive
drill in formal calculations, in fluent structured pro-
gramming or even in the handling of some software
package cannot be justified in view of the changed
qualifications needed by the user.

1.2 New possibilities in the teaching-
learning process ‘

In the field of teaching methods the computer,
if it has been loaded with the appropriate software,
will function as a simplifying aid, almost as a su-
per hand-held calculator which permits the pupil to
overcome computational obstacles in the treatment
of more complex problems and to handle more re-
alistic applications, e.g. in dealing with larger ma-
trices, in the numerical solution of differential equa-
tions, or in the symbolic treatment of more com-
plicated formulas; this will serve to widen the po-
tential scope of mathematics education in terms of
content. On the other hand, a computer equipped
with appropriate languages and environments can
become an instrument for solving problems in the

5 Buchberger [1990] gives an argument for a much
more strict procedure: first, the algorithms of the
software have to be completely understood by the
student; afterwards he may use the software for all
calculations. But Buchberger has the algorithms
of Computer Algebra and mathematical majors or
computer science majors in mind; his arguments do
not extend to numerical software and typical future
users of mathematics. See also the somewhat more
detailed discussion in the chapter by Fraser, Klingen
and Winkelmann in this book.
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hands of the student (interactive calculating or pro-
gramming); in this case, the student tends to under-
stand techniques more at the cognitive level, and no
longer mainly at the level of skill. Beyond that, the
computer, with its possibilities for illustration and
symbolization, will provide opportunities for more
comprehensive and rapid mathematical experiences.

This presents problems and tasks as well as op-
portunities for educators mainly on two levels. On a
more technical level, there is the necessity to provide
more suitable software with strong mathematical
functionality, educationally sound help functions,
user interfaces for the inexperienced user, and ac-
companying explanations, hints and worked-out ex-
amples for teachers. On a more fundamental level,
the problem is to achieve a balance between the
quantitative and qualitative relation of new and old
goals and methods as well as to set up the right
trends for future developments.

The computer creates new opportunities for in-
struction in analysis, e.g.

e numerical and graphical illustrations®,

e more complex and more realistic applications,

e a language in which to describe traditional cal-
culus,

e CAL (computer-aided learning) in its various
forms.

Some traditional motivations for treating con-
ceptually exacting analysis in school can, however,
no longer be maintained. For instance:

e calculations such as finding extreme values or
areas can be easily done without analysis,

e practical applications in physics or technology
which used to rely on analytic methods now are rou-
tinely done numerically on a computer by discrete
calculations.

This results in a crisis: The legitimacy of tra-
ditional analysis in school is challenged; educators
will have to make clear to the general public, and
the teacher will have to explain to his pupils how
and why the treatment of continuous analysis still
makes sense nowadays.

In Section 3 we shall report on some experiments
concerning the use of informatic tools in teaching
basic mathematical courses at the Politecnico (Poly-
technics) of Torino, Faculty of Engineering Sciences.
We emphasize that the choice here has been to
keep the teaching of calculus reasonably traditional,
while at the same time giving some basic notions of

6 See Tall [1986], the article by D. Tall in John-
son/Lovis [1987] and the chapter by Tall and West
in this book.

informatics in the main course of lectures and de-
voting special laboratory sections to “calculus at the
computer”.

2. THE DISCRETE - CONTINUOUS
INTERPLAY

2.1 General considerations

Although the role of applications of analysis has
been changed both by the growing number of disci-
plines using mathematical models and by new meth-
ods, particularly the extensive use of computers,
an understanding of fundamental concepts in which
mathematizations take place remains indispensable.
Examples are:

e variable quantity, change

¢ functional dependency

e local rate of change

e average value

e accumulation.

We shall refrain from discussing here how far tra-
ditional mathematics education was able to attain
the goal of teaching these.

Now it is evident that these central concepts
of mathematical applications can be implemented
both by discrete and by continuous conceptual-
izations. Corresponding to such continuous con-
cepts as function, differential equation, derivative,
weighted integral, and integral, are the correspond-
ing conceptualizations in discrete analysis, namely:
sequence and time series, difference equation, dif-
ference, arithmetical mean value, and sum. These
discrete concepts are often technically and almost
always intellectually much simpler than their con-
tinuous counterparts.

In the following we will give some justifications,
which are, in our opinion, crucial in answering the
question now raised inevitably: “Why use the con-
cepts of continuous analysis in teaching at all?” In
(a) and (b), we state the problem, conceived as an
epistemological question regarding the role of anal-
ysis in applications and model building, and in (c)
and (d) we introduce the argument which solves the
dilemma.

(a) Insufficiency of continuous analysis for ob-
laining concrete numerical results. Let us recall
some of the facts: Most integrations cannot be ex-
ecuted analytically, but only numerically; this is
all the more true for solving differential equations.
Even tasks as simple as determining the extremes
of a familiar function like z sin ¢ require numerical
methods. School mathematics has hitherto confined
itself in a rather unnatural way to problems involv-
ing classes of functions which were solvable by ana-
lytic methods. It has paid dearly for this with heavy



losses in orientation to problems of reality, content
and relevance. This is particularly true for classi-
cal university courses in, for example, elementary

differential equations’.

(b) Most concrete models using analysis have a
discrete basis. This is first evident in the social sci-
ences or in population biology, where the quantities
to be modelled are numbers of items or individuals,
or monetary units, which cannot be subdivided at
will. But in physics, too, for instance, most models
start discretely: even disregarding the fact that the
universe is finite in principle and structured in parti-
cles, and that there are quanta (i.e. smallest units),
it is a fact for quantities which are usually conceived
of as being continuous, and mathematized accord-
ingly, that concrete models based, say, on results of
measurements, will start as discrete models simply
because continuous functions cannot be obtained as
the results of a series of measurements which yield
only discrete sequences or time series. (This does
not hold, of course, for modeling based on theoreti-
cal approaches.)

(c) The continuous character of models using
analysis is the resull of the intended domain of valid-
ity.® Most mathematical models have a specific in-
tended domain of validity, especially a certain scale
level, even if this is not explicitly stated. A Eu-
clidean line serves as a model for edges of solid bod-
ies, e.g. of a shelf, only at a macroscopic scale. If
we look at such an edge through an electron mi-
croscope, the edge doesn’t look straight any more,
and on the atomic scale, it loses its one-dimensional
character too. Therefore, although the edge is well
modelled by a line, we should not draw conclusions
from this model outside its intended domain of va-
lidity. In an analogue sense, calculus models of dis-
crete real phenomena typically are only intended for
phenomena at scales where the discreteness doesn’t

7 This is properly described in Artigue [1989].

8 We have taken this argument from Rice [1988]
who writes under the sub-heading “Verifiable Hy-
potheses: Does Mathematics Model Reality?”: “...
we can argue that the real world is inherently dis-
continous everywhere, its ‘microscopic’ structure is
either discrete or random or both. In any case,
the mathematical definition of continuity, deriva-
tion, etc., do not apply because, at some fine scale
of examination, the functions are undefined or dis-
crete or something intractable. The implication of
this view is that the concepts of smoothness and be-
haviors of functions are related to a scale and that
an adequate mathematical model must take this into
account.” (p. 37).
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enter. Calculus concepts such as limit, derivative,
integral are not to be interpreted in the strict math-
ematical sense, but they express certain invariances:
The corresponding discrete concepts do not depend
on the step size, provided it is sufficiently small (but
yet in the intended scaling domain). This consider-
ation gives sense to the use of calculus models in
such typically discrete domains as population dy-
namics or economics. But of course, there are also
models, which do not show such invariances in their
intended scaling domain. These should not be mod-
elled by calculus. Such situations arise in consid-
erations about fractal phenomena: the length of a
coastline (as a quantity of integral type) is typically
not invariant with the measuring unit, but of course
the assumed statistical self-similarity also holds only
in a sensible scale, which certainly does not extend
to the microscopic level.

(d) The transition from models to concrete nu-
merical resulls cannot be accomplished in general
without continuous analysis. This is true, for one
thing, because of the rounding errors which in-
evitably occur in numerical computing, and have
to be controlled by a more abstract model which
does not include the discretization error. A second,
deeper reason follows from a closer look at the dis-
crete aspects mentioned in points (a) and (b): It is
the case that the step widths used in (a) and (b) are
basically independent of each other, as is to be ex-
pected from the argument in (c). The density of the
values measured in the measuring process is gener-
ally determined by practical considerations such as
information content and “cost”. One of the most
fundamental hypotheses for determining the step
width i1s that a diminution of the step width may
yield more exact results, but basically not results
which differ in principle. The phenomena which are
to be observed and/or described are considered to be
invariant with respect to the step width used in the
observations provided it is sufficiently small. This
fits in with the assumption that the corresponding
limits exist. It is only on the basis of this assump-
tion that the measuring process can be carried out
in a discrete way chosen by practical considerations.
In this case, however, the phenomena concerned are
basically invariant with respect to the step width,
and are thus best described in mathematical models
which do not explicitly contain a step width. The
fact that the step width with which the measured
data were obtained is only of marginal importance
for the model explains why step widths used, say,
to solve numerically the corresponding differential
equations, will generally be completely independent
of the step width used in measurement. Both are
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independently determined by practical criteria such
as cost and the precision required.

This fundamental consideration has been refor-
mulated here for the special case where the results of
discrete measurement are used as a starting point.
It is true, in an analogous way, pointed out in (c),
for all the other cases in which mathematizing and
modeling is done by analysis.

This behaviour is of course not valid for all math-
ematical models in the sciences or other domains.
But it is in a sense typical for calculus models: If
this behaviour is not observed in a specific situa-
tion, then normally we should really use discrete
models, and if we - for technical reasons - neverthe-
less use some calculus models, we should be aware
of the improper use and of possible difficulties in in-
terpreting results. This may happen for example if
we try to consider “fractal” phenomena in nature,
such as natural borders (of islands, leaves of trees,
etc.). Here, for example, the application of formulas
for the length of a curve does not make much sense.

2.2 The context of dynamical systems

Dynamical systems (systems of time-indepen-
dent explicit first order ordinary differential equa-
tions) appear as rather natural mathematical mod-
els for many situations in a variety of disciplines
such as the physical, biological or economic sciences.
Here typically we have to distinguish between situa-
tions where a natural step width exists whose value
influences the phenomena, and situations in which
this is not the case. In both cases, modeling with
(discrete) difference equations is possible and ad-
equate; but whereas in the former case, the step
width of the difference equation has to be equal to
that of the underlying situation, in the latter it may
be chosen as a free parameter which suggests that
the use of differential equations might be more nat-
ural.

As an example, consider the logistic growth of
a (biological) population. If the generations of the
population are distinct, as with certain bugs, there
may be observed oscillations and fluctuations of the
population, which are easily modelled and explained
in the context of a difference equation, but would
disappear in the transition to the corresponding dif-
ferential equation (if it were not explicitly mod-
elled by including a time lag which would induce
similar fluctuations but would exclude the result-
ing equation from what is normally considered a
differential equation in mathematics). But if gen-
erations are not distinct and population oscillations
are slow compared to normal reproduction times,
modeling with (logistic) differential equations seems
adequate, even if there were only discrete points in

time where new offspring could be noticed.

2.3 Symbolical, numerical and qualitative

solutions

Linear differential equations, and some others
which may be transformed to those, can be solved
explicitly by closed formulas. From such formu-
las one can - at least in principle - answer almost
any question about the underlying dynamical sys-
tem: asymptotic behaviour, stability and depen-
dence on initial values and parameters. But this
is the exception, not the rule, since most dynamical
systems arising from model building are essentially
nonlinear® and do not admit any closed-form solu-
tions. Numerical solution algorithms on the other
hand are generally not sensitive to nonlinearity, but
they share a double experimental character: in most
cases, the degree to which they approximate the
true solution can only be estimated, not proveni®;
and - more seriously - a numerical solution has a
strict local empirical character. It does not by it-
self allow any conclusions about other initial val-
ues or parameters, which is catastrophic in applica-
tions where such values are only estimated. So they
necessarily need to be complemented by theoretical,
usually qualitative considerations about possible be-
haviours of this or a slightly modified dynamical sys-
tem, be it continous or discrete. So this describes
another complementarity between discrete numeri-
cal and theoretical methods.

3. EXPERIMENTS IN USING INFOR-
MATIC TOOLS

In this section we report on some experiments
concerning the use of informatic tools in teach-
ing basic mathematical courses at the Politecnico
of Torino (Italy), Faculty of Engineering Sciences.
These experiments refer in particular to the courses
Mathematical Analysis 1 and Mathematical Anal-
ysis 2 given to students of Mechanical Engineering
in the years 1980 to 1983, using pocket computers.
This activity was continued in 1984 and 1985, in
the same courses, using such micro computers as the
Sharp MZ803 and IBM PC. At this second stage, the
experiment was concerned with a restricted number
of students, selected on the basis of a test.

The experiment was sufficiently successful so
that since 1986 all the students of the course (about
300) have been taught in the computer enhanced
style. At the Politecnico of Torino an introductory

 For an interesting account of nonlinear model
building see West [1985].

10" An exception is the so-called EEE-methods, see
Kaucher/Miranker [1984], but use of these methods
is not yet widespread. ’



computer laboratory is available for students; engi-
neering students in the first two years have access
to the lab after the completion of a specific course
which prepares them for meaningful utilization of
the available calculating devices and also supplies
them with adequate knowledge of a programming
language.

Several instructors of the Engineering Faculty
have experimented with the use of the lab as an aid
to the basic first two years mathematics courses, and
from the resulting experience two didactic strate-
gies have emerged. One was for the students them-
selves to perform the actual writing of the software.
The other was to use existing software. It was ob-
served that the preparation of software is, even from
a mathematical standpoint, an occasion for investi-
gation of the topic at hand. However, a certain risk
was noted in the tendency toward interest in the
computer itself to the detriment of time intended
for dedication to mathematical reflection.

As far as concerns the use of already available
software packages, the possibilities are many. We
have readily available software written by colleagues
instructing in analogous courses, that produced by
students in previous courses, and, of course, soft-
ware offered by the companies producing calculating
devices.

While we refer to Boieri et al.[1984], to Mascar-
ello-Scarafiotti [1987], [1988] and to Mascarello-
Scarafiotti-Teppati [1989] for the general aims, the
list of the themes and the results obtained, we
should like to detail here some of the topics and con-
tent, and to add some final comments, as a ‘proof’
of what we asserted in Section 2.

Let us begin by observing that, to carry out the
experiment in a useful way, it has been necessary to
rely on basic informatic arguments. To this end, in
the main course of lectures, the teacher, after giv-
ing some notions of the theory of formal languages,
then introduced machine-numbers and algorithms
for floating-point arithmetic computations. At the
same time, in this first part of the course, some
proofs of classical analysis results were presented in
computational form.

One of the most important experiments con-
cerned the study of dynamical systems using micro-
computers. More specifically, we began in Mathe-
matical Analysis 1 with the study of discrete dynam-
ical systems, which was introduced after the study
of sequences defined by recurrence formulas. As a
natural continuation, in Mathematical Analysis 2
we considered continuous dynamical systems, giv-
ing a formal expression of the qualitative results.
Finally, we returned to the use of microcomputers

Calculus Teaching and the Computer 113

to find numerical results; this was done in order to
check the known results of the theory, and also to
conjecture new results concerning open problems.

To be specific, we briefly list the contents of
the exercise sessions concerning dynamical systems
(Mathematical Analysis 2):

e Cauchy problem for first order ordinary dif-
ferential equations; solutions at the microcomputer,
comparing the methods of Euler and Runge-Kutta.

e First order systems of ordinary differential
equations, and in particular autonomous systems;
visualization of the trajectories in the phase plane.

e Second order ordinary differential equations;
solutions on the microcomputer of some nonlinear
equations of particular significance in applications,
such as the pendulum and other equations of math-
ematical physics.

e A numerical approach and simulation on the
microcomputer of the trajectories for some problems
which are still open in their qualitative aspects, as
for example the mathematical model of the Lorenz
attractor.

Now we present some further details of some of
the above, which appear to us particularly signifi-
cant from the didactic point of view. 1) The stu-
dent, knowing the classical analytic theory of lin-
ear equations with constant coefficients, and having
some basic notions of the stability theory, is invited
to “solve” the equation Z + kz + z = 0 on a mi-
crocomputer and to visualize the trajectories in the
phase plane (without any direct assistance from the
teacher). Figures 1 and 2 show some drawings of
the kind obtained by a student.

Figure 1: For the equation £ + z = 0,z(0) =
3,2(0) = 0 the Euler method converts what should
be a circle to an outward spiraling curve.
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R

Figure 2: The true solution to Z + z + 0.2z =
0,z(0) = 3,z(0) = 0 is an inwards spiraling curve.
The outward spiraling which results with the Euler
method exactly compensates resulting in no spiral-
ing effect.

A discussion with the students followed concern-
ing the validity of the results obtained in this way;
particularly surprising is the second picture, where
" closed trajectories appear for k # 0. ii) The stu-
dents “solve” on the microcomputer the pendulum
equation z”+sin z = 0 by the Runge-Kutta method.
Figure 3 shows the drawing obtained by one student.

Figure 3: Phase portrait of the undamped pen-
dulum, Z + sinz = 0 obtained by a student using a
Runge-Kutta method.

We can observe that the picture seems satisfac-
tory from a numerical point of view. Some qualita-
tive aspects of the solutions are underlined by the
teacher, as a check of the known results from the
theory. iii) The student is invited to simulate on
the screen the trajectories of the equation of the
Lorenz attractor:

dz/dt = —sz + sy
dyf/dt =rz — y—zz with s =10,r = 28,b=8/3
dz/dt = —bz + zy.

Figure 4:
Lorentz attractor as obtained by a student using the
modified Euler method with z(0) = 0.00001, y(0) =
0.00001 and 2(0) = 0.00001.

Plot of a curve approaching the

In Figure 4 there is a picture obtained by a
student (the completion of the program required
a certain informatic ability, due to the complica-
tions arising from the 3-dimensional representation
of the trajectories in (z,y, z)-space). No compari-
son was attempted with known qualitative results
since the existing literature on the subject seems
to be too far advanced for a second year engineer-
ing student. However, a comparison was possible
with what might be expected from the physical
phenomenon (such as fluid turbulence phenomena).
What it is very important to emphasize is that at
this stage (end of Mathematical Analysis 2) students
were able to evaluate correctly the results obtained
from the computer, namely, to take into account
the discrepancies which may occur between numeri-
cal solutions and analytic solutions, keeping in mind
that the final objective is the interpretation of the
physical phenomenon.

4. CONCLUSIONS

Our considerations have shown that even today
when internally discrete digital computers are used
for handling calculus models (so far as applications
are concerned), continuous analysis cannot be dis-



pensed with when describing problems for which
analysis has been classically used. This, however,
need not lead to the conclusion that analysis educa-
tion at school or universities should go on as before.
Our discussion has shown the function of continuous
analysis in applications, and teaching must be done
in such a way that this function is fulfilled. This
requires that the transition from the discrete to the
continuous model and vice versa be experienced by
the students and that the respective particular pos-
sibilities and limitations of the model be perceived.
To us, it would seem dishonest to try to explain
to the student the importance of analysis for appli-
cations by means of unrealistic and oversimplified
minimum-maximum tasks. Rather, it seems crucial
to have the student at least begin to assess the use-
fulness of the various components of the system of
analysis, 1.e. concepts, approaches, calculi, trans-
lation schemes in practical applications. This goal
should be attained by appropriate problem solving
in the classroom; and formal explication should play
a subordinate part. It remains to be seen how a
balance between the individual components can be
achieved. The following aspects, however, should be
included in any case:

a) The teaching of analysis should include the
treatment and study of discrete models. This leads
to numerical computations. It does not necessar-
ily imply explicit teaching of numerical mathemat-
ics, but requires including important basic numeri-
cal facts such as propagation of errors.

b) Building models is an important activity
which must not be neglected in favour of just in-
terpreting models. In particular, this means that
the techniques of finding suitable functions are as
important as discussing functions.

¢) The role and function of (continuous) calculus
must be developed in an appropriate way. It cannot
be used to obtain numerical results, save in excep-
tional cases: it can, however, guide and direct the
use of numerical methods.

d) The recent development of computer science
has established techniques, in particular program-
ming languages, which permit the precise descrip-
tion even of complicated processes such as, for in-
stance, the algorithms necessary for symbolic dif-
ferentiation. Mathematics teaching should increas-
ingly make use of these results.
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The human brain is powerfully equipped to pro-
cess visual information. By using computer graph-
ics it is possible to tap this power to help students
gain a greater understanding of many mathematical
concepts. Furthermore, dynamic representations of
mathematical processes furnish a degree of psycho-
logical reality that enables the mind to manipulate
them in a far more fruitful way than could ever be
achieved starting from a static text and pictures in
a book or roughly drawn pictures on a chalk board
or overhead projector. Add to this the possibility of
student exploration using prepared software and the
sum total is a potent new force in the mathematics
curriculum.

In this paper we report on the development of in-
teractive high resolution graphics approaches to var-
ious areas in mathematics. The first author has con-
centrated initially on the calculus in the UK (Tall,
1986, Tall et al, 1990) and the second is working
in the USA on differential equations with John H.
Hubbard (Hubbard and West, 1990).

An interactive visual approach is proving suc-
cessful in other areas, for example, in geometry ( The
Geomelric Supposer, Cabri Géométre), in data ma-
nipulation (e.g. Macspin, Mouse Plotter), in prob-
ability and statistics (e.g. Robinson and Bowman,
1987) and, more generally, in a wide variety of top-
ics (such as the publications in the Computer Ilus-
trated Text series, which use computer programs to
provide dynamic illustrations of mathematical con-
cepts).

New approaches to mathematics

The existence of interactive visual software leads
to the possibility of an exploratory approach to
mathematics which enables the user to gain intuitive
insight into concepts, providing a cognitive founda-
tion on which meaningful mathematical theories can
be built. For example, the notion of a limit has tra-
ditionally caused students problems (e.g. Cornu,
1981, Tall and Vinner, 1981). The computer brings
new possibilities to the fore; we may begin by con-
sidering the gradient not of the tangent, or of a
chord as it approaches a tangential position, but
simply the gradient (or slope} of the graph itself.
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Although a graph may be curved, under high mag-
nification a small part may well look almost straight.
In such a case we may speak of the gradient of the
graph as being the gradient of this magnified (ap-
proximately straight) portion. For instance, a tiny
part of the graph y = z? near £ = 1 magnifies to a
line segment of gradient 2 (figure 1).
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Figure 1: Magnifying a small part of a graph to
show its local straightness.

To represent the changing gradient of a graph,
it is a simple matter to calculate the expression
(f(x + ¢) = f(z))/c for a small fixed value of ¢ as
z varies. As the chord clicks along the graph for
increasing values of z, the numerical value of the
gradient for each successive chord can be plotted
as a point and the points outline the graph of the
gradient function (figure 2). In this case the chord
gradient function of sinz for small ¢ approximates
to cosz, which may be checked by superimposing
the graph of the latter for comparison. Thus the
gradient of the graph may be investigated experi-
mentally before any of the traditional formalities of
limiting processes are introduced.

Such moving graphics also enable the student to
get a dynamic idea of the changing gradient. Stu-
dents following this approach can see the gradient as
a global function, not simply something calculated
at each individual point.

The symbols dx, dy can also be given a meaning
as the increments in z,y to the tangent. Better
still, (dz, dy) may be viewed as the tangent vector,
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a valuable idea when we come to the meaning of
differential equations.
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Figure 2: Building up the gradient function of a
graph.

Conceptualizing non-differentiable functions

In a traditional calculus course, non-differenti-
able functions would not be considered until a very
late stage, if at all. However, if one views a differen-
tiable function as one which is “locally straight”,
then a non-differentiable function is simply one
which is not locally straight. For instance, the graph
of [t — 1] at £ = 1, or |sinz| at £ = 7, has a “cor-
ner” at the point concerned with different gradients
to the left and right. More generally, it is possible
to draw a function that is so wrinkled that it never
looks straight enywhere under high magnification.

An example is the blancmange function bl(z),
first constructed by Takagi in 1903. First a saw-
tooth s(z) is constructed for a real number z by
taking its decimal part d = £ —INT(z) and defining

s(2) = {Cli—d

The sequence of functions

ifd< 3
otherwise.

bi(z) = s(x)
ba(z) = s(z) + s(2x)/2

ba(z) = s(z) + ... + s(2" " 1z) /27!

tends to the blancmange function (figure 3).

the blancmange

Figure 3: Building up the blancmange function
adding successive half-size sawtooth graphs.

The process may be shown dynamically on a vi-
sual display unit; we regret that it cannot be pic-
tured satisfactorily in a book. But higher magni-
fication of the blancmange function using prepared
software shows it can nowhere be magnified to look
straight, so it is nowhere differentiable. This in-
tuitive approach can easily be transformed into a
formal proof of disarming simplicity (Tall 1982).

Visualizing solutions of first order differential
equations

In graphical terms, a first order differential equa-
tion dy/dz = f(z,y) simply states the gradient of
a solution curve at any point (z,y) and a solution
is simply a curve which has the required gradient
everywhere. The Solution Sketcher (Tall 1991) or
MacMath (Hubbard and West 1991) allows the user
to point at any position in the plane and draws
a small line segment of the appropriate direction.
This line-segment may be marked on-screen and
successive line segments fitted together to build up
an approximate solution curve. More broadly, it 1s
possible to draw a direction diagram with an array
of such segments and to trace a solution by following
the given directions (figure 4).

Figure 4: Drawing a numerical solution of a first

order differential equation.
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The differential equation

dy _
ydz-

has implicit solutions of the form z?+y? = k, rather
than an explicit global solution of the form y = f(z).
At points where the flow-lines meet the x-axis, the
tangents are vertical and the interpretation of dy/dx
as a function fails, but the vector direction (dz, dy)
is valid with de = 0 and dy # 0. Thus a first-order
differential equation is sometimes better viewed in
terms of the direction of the tangent to a solution
curve rather than specifying the derivative.

xr

Existence of solutions

There comes a time in every university course
on differential equations when honesty should com-
pel the teacher to admit that cookbook methods for
solving differential equations are inadequate. Such
innocent looking equations as

dy/dz = y* — z,dy/dz = sin(zy),dy/dz = e*Y

do not have solutions that can be written in terms
of elementary functions. Students often mistakenly
confuse this with the idea that the equations have no
solutions at all. However, if they are able to inter-
act with a computer program that plots a direction
field and then draws solutions numerically following
the direction lines, the notion of a solution takes on
a genuine meaning: “Of course the equations have
solutions: we can see them!” From this cognitive
base it is possible to use the computer to analyse
solutions in an entirely new way.

Qualitative analysis of differential equations

New forms of analysis emerge now that we can
see as many solutions as we wish all at the same
time. In figure 5, notice how the solutions tend to
“funnel” together moving to the lower right-hand
side; in the upper right they spray apart (an “an-
tifunnel”). Qualitatively descriptive terms such as
“funnel” and “antifunnel” can be defined precisely
to give powerful theorems with accurate quantita-
tive results (Hubbard and West 1991). For exam-
ple, the equation dy/dt = y? — t in figure 5 has two
overall behaviours: solutions either approach verti-
cal asymptotes for finite ¢ or fall into the funnel and
approach y = —v/t as t — +oo. In the antifun-
nel there is a unique solution approaching y = +v/1
which separates the two usual behaviours. Further-
more, the qualitative techniques enable us to esti-
mate the vertical asymptote for a solution through
any given point with any desired precision.
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Figure 5: A family of solutions of a differential
equation, showing funnel and antifunnel behaviour.
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Figure 6: A numerical approximation to the
many-body problem. (a) Masses in initial position
with velocity vectors. (b) A little later under the
action of Newton’s Laws.



120 Influence of Computers and Informatics on Mathematics and Its Teaching

Newton’s Laws

The classical three body problem defies elemen-
tary analysis, yet a computer program can cope with
relative ease. The program Planets (Hubbard and
West 1990) takes a configuration of up to ten bodies
with specified mass, initial position and velocity and
displays the movement under Newton’s laws (figure
6). The data can be input either graphically with
the cursor, or numerically in a table. The program
allows exploration of possible planetary configura-
tions and it soon becomes plain that stability is the
exception rather than the rule. One may wonder
under what circumstances stability occurs. Other
questions arise, such as the reason for the braided
rings of Saturn that were a great surprise when first
observed by the Voyager space flight. Nobody had
imagined such a behaviour beforehand, yet braided
behaviour showed up in the very first experiments
with the Planets program.

Figure 7 shows a model of a possible orbit of a
tiny satellite around two larger bodies, alternately
oscillating between revolving round one then mov-
ing into a position of superior gravitational pull of
the other and moving, for a time, to revolve round
the other (Kogak 1986). Once again, computer ex-
ploration shows vividly how three bodies move in a
complex pattern.

The theory of dynamical systems and chaos
is a paradigmatic example of a new branch of
mathematics in which the complementary roles of
computer-generated experiments to suggest theo-
rems and formal mathematical proofs to establish
them with logical precision go hand in hand.

Chaos has become not just a theory but also
a method, not just a canon of beliefs but
also a way of doing science. ... To chaos re-
searchers, mathematics has become an exper-
imental science, with the computer replac-
ing laboratories full of test tubes and micro-
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Figure 7: A numerical plot representing a tiny
satellite orbiting two larger bodies.

P T ronl

scopes. Graphic images are the key. “It’s
masochism for a mathematician to do with-
out pictures” one chaos specialist would say.
“How can they see the relationship between
that motion and this, how can they develop
intuition?”. (Gleick 1987, pp. 38-39)

Systems of differential equations

The MacMath software of Hubbard and West
(1991) draws solutions of systems of differential
equations dz/dt = f(z,y),dy/dt = g(z,y) in the
z,y- plane and also locates singular points using
Newton’s method, drawing separatrices for saddle
points (figure 8).
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Figure 8: Locating singular points and separa-
trices for saddle points.

In this way the computer may be used to draw
solutions of systems of differential equations that are
far too complicated to draw by hand. As a further
example, Artigue and Gautheron (1983) draw the
solutions of the polar differential equations

dr . df
— =sinr,— = cosr

dt T dt
which exhibit limit cycles for r = kx (figure 9).

Figure 9: Limit cycles of simultaneous polar dif-
ferential equations. .



Generalizing the concept of visual solutions
A second order differential equation such as

d’z - ¢
Z =

no longer has a simple direction field in (2, z) space,
because through each point (t,z) there is a differ-
ent solution for each starting direction v = dz/dt.
However, this differential equation is equivalent to
the simultaneous linear equations:

dz
dt
dv t’
dt

and in three dimensions, with coordinates (¢, z, v),
these equations determine a unique tangent vector
(dt, dz, dv) in the direction (1, v, —t). Hence the idea
of a direction field does generalize, but it must be vi-
sualized in three-dimensional (¢, z, v) space. Figure
10 shows two solutions of the simultaneous differ-
ential equation spiralling through (¢, z, v) space and
their projections onto the t —z and ¢ —v planes, with
the t — z projection giving solutions to the original
second order differential equation.

Visual exploration in geometry

Euclidean geometry traditionally served to in-
troduce students to a deductive system. In many
countries (such as the United Kingdom) it has all
but disappeared from the mathematics curriculum.
Computers now give the opportunity to manipulate
geometrical figures to build up intuitions for pos-
sible theorems (the Geometric Supposer, Schwartz
and Yerushalmy, 1985, Cabri Géoméire, 1987). The
initial phase of study of geometry can now be an
experimental science, in which the student can use
the computer to construct a figure and experiment
with it.

Visual Data Processing

It is now possible to explore data visually, for
example, to see a line of best fit for data in two or
three dimensions. MacSpin allows up to ten cate-
gories of data, from which any three can be selected
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Figure 10: Two nearby solution curves for a pair
of simultaneous differential equations.
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Figure 11: Cabri Géomeétre software for manip-
ulating geometric figures.

and displayed. Though only represented as a projec-
tion of three dimensions onto the two-dimensional
screen, the data may be rotated and viewed dynam-
ically from any angle to give a sense of depth that is
not visible in a static picture (figure 12). Individual
points may be selected and inspected to see where
the data originates to identify interesting informa-
tion, such as outlying values. Rotating the data in
the figure suggests that it clusters together in a way
which intimates that the three components are cor-
related.

Modern spreadsheets, statistical packages and
data handling packages now include visual repre-
sentation of data which encourages the user to ex-
plore and communicate complex information in vi-
sual ways. ’
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Figure 12: Manipulating data with three com-
ponents to look for a visual correlation.

The ability to present and manipulate informa-
tion visually is becoming widely available in many
_ different areas in mathematics. For example, Robin-
son and Bowman (1986) introduce probability and
statistics using computer graphics with the inten-
tion of giving a ‘feel’ for probability distributions
rather than elaborating mathematical detail. More
generally, the Computer Illustrated Texts (starting
with Harding 1985) are designed to use simple com-
puter programs to provide interactive illustrations
of mathematical ideas which can be explored by the
student in place of static pictures in a book.

Is programming essential?

We have not explicitly mentioned programming.

for the purpose of gaining insight into mathematical
processes. A body of expertise is growing in which
students are expected to write or adapt short pro-
grams (usually in structured Basic, Pascal, or Logo)
to carry out mathematical algorithms. From here it
is often intended that they move on to prepared soft-
ware that uses the underlying algorithms in a more
interactive manner. The early computer-illustrated
texts assumed that the programming would be suf-
ficiently simple that it would allow the student to
modify the programs, but this became an impossible
ideal in later texts as more sophisticated programs
were written that were too complex for the user to
modify. Programming requires a serious investment
in time and effort. However, it can pay vast divi-
dends in gaining insight into the underlying math-
ematical processes if the investment is sufficiently
generous.

Dubinsky has evidence that having students
make certain programming constructions (in the
computer language ISETL) can lead to their making
parallel mathematical constructions in their minds

and thereby come to understand various mathe-
matical concepts (see, for example, Dubinsky and
Schwingendorf 1991). Clearly a spectrum of ap-
proaches may be possible with varying amounts of
programming, depending on the time and commit-
ment available.

New Styles of Learning

Software is becoming widely available to give
graphical representations in calculus, differential
equations, geometry, data handling, numerical anal-
ysis, and many other areas of mathematics. This is
usually predicated on a new kind of learning ex-
perience Q one in which the student may ezplore
and manipulate ideas, investigate patterns, conjec-
ture theorems and test theories experimentally be-
fore going on to prove them in a more formal con-
text.

For instance, beginning calculus students may
investigate the gradients of functions such as sine,
cosine, tangent, exponential and logarithm, and
conjecture their formulas before they are derived
formally (Tall 1986, 1987). In differential equations
they may explore problems at the boundaries of re-
search (such as the rings of Saturn) and make the
mental link between the friendly world of (mostly
linear) equations that can be solved by formulas and
the strange world of those (usually nonlinear) that
can not (Hubbard and West 1991).

This form of learning is not a replacement for
formal deduction, but a precursor and a comple-
ment to it. It enables the less able student to grasp
essential i1deas that would previously be too diffi-
cult when framed in a purely formal theory and for
the more able student to build a cognitive base for
the formal theory to follow. It enables a wide range
of students to integrate their knowledge structure
through their powers of visualization.
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Gray, T.W. and Glynn, J. [1991]: Ezploring Math-

ematics with Mathemalica, Reading, MA:
Addison-Wesley.

An introduction to Mathematica, written
in the form of a dialog between the two au-
thors, presenting exploration of various math-
ematical concepts. A section is devoted
to Mathematica’s application to high school,
college and university mathematics teaching.
The book comes with a CD-ROM disk con-
taining an electronic edition of the text in the
form of Mathematica’s Notebooks.

Heid, M.K., Sheets C. and Matras, M.A. [1990]:

Computer-enhanced Algebra: New roles and
challenges for teachers and students in T.J.
Cooney and C.R. Hirsch (eds.) Teaching
and Learning Mathematics in the 1990s, (1990
NCTM Yearbook), 194-204, Reston, VA: Na-
tional Council of Teachers of Mathematics.

Discusses the new roles for teachers and
students when the computer enters actively
into mathematics education. The teacher as
technical assistant. The teacher as collabora-
tor. The teacher as facilitator and catalyst .
Responsibilities for evaluating student learn-
ing, etc.

Hirst, A. and Hirst, K. (Eds.) [1988]: Proceedings

of the Sizth International Congress on Mathe-
matics Education, Budapest, 1988, Budapest:
Janos Bolyai Mathematical Society.

The ‘state-of-the-art’ on the use of com-
puters in mathematics education. Contains
reports of plenary sessions on computerization
of schools and mathematics education, and on
algoritmic mathematics, and of a theme group
on computers and the teaching of mathemat-
ics.

Hubbard, J.H. and West, B. [1991]: MacMath: A

Dynamics Package (for the Macintosh com-
puter), New York: Springer-Verlag.

Twelve interactive and easy-to-use graph-
ics programs for both iteration and differen-
tial equations, with a handbook of sugges-
tions for what to do with them; developed
to accompany the authors’ three volume text
Differential Equations: A Dynamical Systems
Approachalso being published by Springer-
Verlag.

Jacobsen, E. [1989]: An International Perspective in

SIGCUE OUTLOOK (Bulletin of the Special
Interest Group for Computer Uses in Educa-
tion), 20, 2, New York: ACM Press.

Provides a worldwide overview of micro-
computers in education. The priorities of gov-
ernments and current usages are illustrated by
selecting representative countries in each con-
tinent. UNESCO’s role in the field of comput-
ers and education is examined.

Jaffe, A. [1984]: Ordering the Universe: The Role of

Mathematics in Renewing U.S. Mathematics,
Washington, DC: National Academy Press.

A sweeping survey of contemporary math-
ematics, “an ancient art, ... highly esoteric,
and the most intensely practical of human en-
deavors.” Emphasizes the role of mathemat-
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As with the other two, it should be consid-
ered as a source for information and references
and not as a basic textbook. Although the
title may sound as if the book is mainly for
programmers concerned with preparing sort-
ing routines, it virtually covers all theoretical
aspects of programming.
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alization in Teaching and Learning Mathemat-
ics, MAA Notes Number 19, Washington,DC:
Mathematical Association of America.

An authoritative collection from many ex-
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